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Abstract. Many properties of a string can be viewed as sets of depen-
dencies between substrings of the string expressed in terms of substring
equality. We design a linear-time algorithm which finds a solution to an
arbitrary system of such constraints: a generic string satisfying a system
of substring equations. This provides a general tool for reconstructing
a string from different kinds of repetitions or symmetries present in the
string, in particular, from runs or from maximal palindromes. The re-
cursive structure of our algorithm in some aspects resembles the suffix
array construction by Kärkkäinen and Sanders (J. ACM, 2006).

1 Introduction

Let s be a string of length n, s = s0 . . . sn−1. For 0 ≤ p ≤ q < n, we denote
a substring sp . . . sq by s[p..q]. A substring equation is a constraint of the form
“s[p..q] = s[p′..q′]”. We say that a string s of length n is a solution to a system
of substring equations E (satisfies E) if it satisfies each equation of the system.

Clearly, every system has a solution which is a string over a unary alphabet,
i.e., an. Thus, we focus on generic solutions containing the largest number of
different characters. The important feature of any such solution is that it can be
used to describe all solutions of a system of substring equations:

Observation 1. If s is a generic solution of length n to a system E, then for
each string s′ of length n that satisfies E there exists a letter-to-letter morphism
(a coding) µ such that µ(s) = s′.
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In particular, every two generic solutions of the same length are equivalent
up to renaming letters. We denote one of the generic solutions by Φ(E).

Our main result. We design a linear-time algorithm which computes a generic
solution Φ(E) for a system E of substring equations.

The fact that our solution is generic lets us solve in O(n) time many classic
string recovery problems.

Algorithms recovering (reverse engineering, inferring) a string from many in-
ternal structures are known. This includes recovery from border array [13,11,12],
strong border array [15], prefix array [7], the set of maximal palindromes [17],
minimum and maximum cover array [9,26], Lyndon factorization [27], suffix ar-
ray [3], directed acyclic word graph (DAWG) [3], suffix tree [19,5,28], and pa-
rameterized border array [18]. For all but the last one of the aforementioned
problems, there are algorithms running in linear time and constructing a string
over the smallest possible alphabet. For parameterized border array reconstruc-
tion, the fastest algorithm works in O(n1.5) time. A more difficult task is recon-
struction of a string from the set of all runs. In [25] an O(n2)-time algorithm
for this problem is presented and, moreover, it is shown that recovering a string
over the smallest alphabet is NP-hard. Another hard problem is string recon-
struction from the longest previous factor (LPF) array, which is NP-complete
even without restrictions on the alphabet size [16]. Recovery problems have also
been investigated for indeterminate strings [1,4].

A solution to our general problem provides a single tool for several existing
recovery problems. This mainly includes problems which can be expressed as
finding a string satisfying a conjunction of certain explicit substring equality
constraints and implicit substring inequality constraints.

Our further results. We obtain linear-time algorithms for inferring a string
from its border array, prefix array, set of maximal palindromes or set of runs. In
particular, we improve the quadratic reconstruction algorithm from runs of [25].
In all cases the algorithms compute a generic solution.

Overview of the paper. In Section 2, we present a naive algorithm and name
certain properties of generic solutions Φ(E). Also, we provide a way to remove
all redundant equations in the system. In Section 3, we present a simple O(|E|+
n log n)-time algorithm, which is based on the doubling technique. It shares
some features with the construction algorithm of the KMR identifiers [21], but
it processes equations in decreasing lengths, as opposed to the increasing order
in KMR. Then, in Section 4, we design a linear-time solution. It is a recursive
algorithm which to some extent resembles the suffix array construction algorithm
by Kärkkäinen & Sanders [20]. In order to achieve O(n) running time, in this
version of the algorithm we apply the maximum spanning tree construction
algorithm by Fredman and Willard [14], which is not feasible in practice. To
overcome this issue, in Section 5 we change some details of the algorithm, so
that no heavy word-RAM machinery is required. We conclude with Section 6,
where we present applications to several string recovery problems.
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2 Basic observations

A naive approach to finding a generic n-character solution to a system of equa-
tions E is to transform substring equations into equations of individual letters.
If “s[p..q] = s[p′..q′]” belongs to E, then for every i ∈ {0, . . . , q − p}, the equa-
tion on letters sp+i = sp′+i must be satisfied. The latter can be represented as
edges in a positions graph whose vertices {0, . . . , n− 1} correspond to positions
in s. This graph lets us easily characterize generic solutions. The idea of using
a graph to represent constraints on letters already appeared in the context of
prefix array reconstruction for indeterminate strings [6,4].

Observation 2. For s = Φ(E), we have s[i] = s[j] if and only if i, j are in
the same connected component of the positions graph.

Example 3. If the equations are:

E : s[0..2] = s[3..5], s[2..2] = s[3..3], s[3..5] = s[5..7],

then we obtain the following positions graph:

0 1 2 3 4 5 6 7

Its connected components are {0, 2, 3, 5, 7} and {1, 4, 6}. The generic string
that satisfies E is a string Φ(E) = abaababa.

The approach described above in general works in O(|E|n) time, where |E|
is the number of equations in E. However, it is much more efficient for short
equations.

Observation 4. If all equations of E are of length 1, then the size of the posi-
tions graph is O(|E|+ n). Consequently, Φ(E) can be computed in linear time.

We call two systems E and E′ equivalent, denoted E ≡ E′, if both have
exactly the same solutions, i.e., Φ(E) = Φ(E′). Observe that this relation is
hereditary in some sense: if E ≡ E′, then E ∪ F ≡ E′ ∪ F for any system F .

In the remainder of the paper, we represent each equation “s[p..q] = s[p′..q′]”
as a triple (p, p′, q−p+1). We refer to p, p′ as the starting positions and to q−p+1
as the length of the equation.

Our algorithms follow the lines of Observation 4, converting the input system
E to an equivalent system composed of equations of length 1. As opposed to the
naive algorithm, we control the number of the equations. This is achieved using
two kinds of transformations, which we refer to as Split and Reduce.

A Split operation transforms a single equation into an equivalent system
of shorter equations. More formally, to split an equation (i, j, `), we choose a
collection I of integer intervals {b, . . . , e− 1} such that

⋃
I = {0, . . . , `− 1} and
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replace {(i, j, `)} with {(i+ b, j+ b, e− b) : {b, . . . , e−1} ∈ I}. It is easy to verify
that this indeed produces an equivalent system of equations.

While a Split transformation lets us decrease the lengths of equations, it
increases the number of equations. To control the latter, we apply a Reduce

operation, which finds E′ ⊆ E such that E′ ≡ E. Such an operation can be
also seen as a sequence of removals of a redundant equation: we find an equation
(i, j, `) ∈ E such that E \ {(i, j, `)} ≡ E, and remove it from E.

For a system of equations E represented as triples, we define its equations
graph G(E) as a weighted graph (V (E), E), where V (E) =

⋃
(i,j,`)∈E{i, j}, and

triple (i, j, `) represents edge (i, j) with weight `. Note that the equations graph
coincides with the positions graph for every system of equations of length 1. The
equations graph lets us conveniently describe some properties of the system E
using notions of graph theory. We say that a system of equations E is acyclic
if the underlying graph G(E) is acyclic, i.e., if G(E) is a forest. For a weighted
graph G, by MST(G) we denote the edge-set of a maximum-weight spanning
forest of G.

Lemma 5. Let F = MST(G(E)) be a maximum-weight spanning forest of G(E).
Then F ≡ E.

Proof. It is well-known that a maximum spanning forest can be constructed by
iteratively removing the lightest edge on a cycle (this is the so-called red rule,
upon which Kruskal’s algorithm is based). Suppose that G(E) contains a cycle C.
By removing the lightest edge of C, denoted (i, j, `), we obtain a set of edges E′.

Note that C ′ = C \ {(i, j, `)} is a sequence of edges (i, i1, `1), . . . , (ik−1, j, `k)
such that ` ≤ min(`1, . . . , `k). By transitivity, the equation (i, j, `) is implied by
the equations from C ′. Hence, C ≡ C ′, and consequently, E ≡ E′.

Applying this argument inductively, we obtain that MST(G(E)) ≡ E. ut

3 O(|E| + n logn)-time algorithm

We start with an O(|E| + n log n)-time algorithm, which uses simple split and
reduction rules. We say that a system of equations E is p-uniform if all equa-
tions in E have length p. For uniform systems, it is easy to design an efficient
implementation of the reduction rule obtained through Lemma 5. We denote the
underlying procedure as UniformReduce(E).

Lemma 6. Given a p-uniform system E, an equivalent acyclic subsystem F ⊆
E can be constructed in O(|E|) time.

Proof. By Lemma 5, it suffices to take F = MST(G(E)). For a uniform system
of equations, G(E) has uniform weights, so any spanning forest is maximal. Such
a forest can be constructed using a textbook graph search algorithm. ut

A complementary split rule UniformSplit(E, p) is used to transform each
equation (i, j, `) from a system E into a pair of equations of a specified length p:

{(i, j, `)} ≡ {(i, j, p), (i+ `− p, j + `− p, p)}.
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It is applicable whenever all equations satisfy p ≤ ` ≤ 2p.
The pseudocode of an algorithm using these two rules is provided below. In

each step, it processes a system of equations of length between 2k and 2k+1− 1,
which consists both of equations obtained from the preceding step and equations
from the input system. First, these equations are transformed into a 2k-uniform
system using the UniformSplit operation. Then the resulting system is reduced
into an acyclic system using Lemma 6.

Algorithm 1: O(|E|+ n log n)-time solution

Input: A system of equations E
Output: A generic solution Φ(E)

Fblognc+1 := ∅
for k := blog nc downto 0 do

Ek := {(i, j, `) ∈ E : 2k ≤ ` < 2k+1}
Fk := UniformSplit(Fk+1 ∪ Ek, 2k) {now Fk is 2k-uniform}
Fk := UniformReduce(Fk, 2k) {using Lemma 6}

return Φ(F0) {using Observation 4}

Proposition 7. Let E be a system of m equations over n positions. Algorithm 1
computes the universal solution Φ(E) of E in O(m+ n log n) time.

Proof. The iteration of the for-loop indexed with k runs in O(|Ek|+ |Fk|) time.
Note that

∑
k |Ek| = m and |Fk| < n, since each Fk is acyclic. ut

4 Linear-time algorithm

There are two main ideas behind the improvement from O(n log n) to O(n)
in the running time of the algorithm. First, we apply advanced machinery to
efficiently implement for an arbitrary system the reduction rule following from
Lemma 5. The other idea relies on a novel application of splitting. Previously, we
used it only to manipulate the lengths of equations: to make them smaller and
uniform. Now, we also apply split operations to restrict the starting positions of
long equations. This is useful since the |E| < n bound on the size of an acyclic
system is actually |E| < |V (E)|. Thus, we introduce special positions.

4.1 Properties of k-special integers

Definition 8. We say that a non-negative integer i is k-special if none of the
k least significant digits of the quaternary representation of i is zero, i.e., if the
suffix of length k of (i)4 does not contain a zero.

We denote the set of k-special integers by Sk.
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Observation 9. Let i, j be non-negative integers such that i ≡ j (mod 4k).
Then i ∈ Sk if and only if j ∈ Sk.

Example 10. An integer i is 2-special unless its remainder modulo 16 is one
of the following: {(00)4, (01)4, (02)4, (03)4, (10)4, (20)4, (30)4}. We have S2 =
{5, 6, 7, 9, 10, 11, 13, 14, 15, 21, 22, 23, 25, 26, 27, 29, 30, 31, . . .}.

Fact 11. (a) For every positive integer n we have |Sk∩{0, . . . , n−1}| ≤
(
3
4

)k
n.

(b) If i, j ∈ Sk, then there exists an integer r ∈ {0, 1, 2} such that i + r4k, j +
r4k ∈ Sk+1. Moreover, such r can be found in constant time.

Proof. (a) Observe that |Sk∩{0, . . . , 4k−1}| = 3k. Hence, due to Observation 9,
the claim is valid whenever n is a multiple of 4k. The technical generalization of
the proof for arbitrary n is omitted in this version.

(b) Let c and d be the (k + 1)-th least significant digits of (i)4 and (j)4,
respectively. If both c and d are non-zero, we take r = 0. If both are equal to 0,
we take r = 1. Otherwise, exactly one of c, d is 0. If the other is equal to 1 or 2,
we choose r = 1. In the remaining cases, we take r = 2. ut

4.2 Split rules

An equation (i, j, `) is called k-special if the positions i, j are both k-special
integers. We say that an equation is r-short if its length does not exceed r.

Lemma 12. Every k-special equation can be split in O(1) time into a constant
number of k-special equations each of which is (k + 1)-special or 4k+1-short.

Proof. If the input equation (i, j, `) is already 4k+1-short, there is nothing to
do. Otherwise, we apply Fact 11(b) to find r ∈ {0, 1, 2} such that (i + r4k, j +
r4k, ` − r4k) is (k + 1)-special, and we use it in the decomposition along with
(i, j, 4k+1). ut

By SpecialSplit(E, k) we denote a procedure which applies the lemma above
for every equation in E and returns a pair of systems (E1, E2) such that equations
in E1 are 4k+1-short, equations in E2 are (k + 1)-special, and E ≡ E1 ∪ E2.

Lemma 13. Every 4k+1-short k-special equation can be split in O(1) time into
a constant number of 4k-short k-special equations.

Proof. If the input equation (i, j, `) is already 4k-short, there is nothing to do.
Otherwise, we split it into at most four 4k-short k-special equations. We replace
the input equation with (i, j, 4k) and (i+ 4k, j + 4k, `− 4k). By Observation 9,
the latter is also k-special, and we might need to further split it into shorter
equations. This step needs to be performed at most 4 times since ` ≤ 4k+1. ut

By SimpleSplit(E, k) we denote a procedure which applies the lemma above
for every equation in E and returns a system E′ equivalent with E.
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4.3 Reduction rule

The general reduction procedure Reduce(E) is based on implementing Lemma 5
using a celebrated result by Fredman and Willard:

Theorem 14 ([14]). In the standard word-RAM model of computation with
word size w = Ω(log n), maximum-weight spanning forest of a graph with w-bit
integer weights can be computed in linear time.

Corollary 15. After O(n)-time preprocessing, given an arbitrary equation sys-
tem E, an equivalent acyclic system F ⊆ E can be constructed in O(|E|) time.

Proof. We follow the approach given by Lemma 5: we build the equations graph
G(E) and apply Theorem 14 to compute its maximum-weight spanning forest
F ⊆ E. To avoid renaming vertices, we store them in an array of size n. During
the preprocessing phase, we initialize this representation to store an empty graph,
and then add an edge for each equation in E. Once we are done computing
MST(G(E)), we clean up iterating through E once again. ut

4.4 Algorithm

In this section we apply the split and reduction rules developed above to obtain
a linear-time algorithm. The main idea is to use SpecialSplit for subsequent
values k = 0, 1, . . . in order to further and further restrict the starting positions
of long equations. This is interleaved with reductions which bound the number
of such equations to |Sk ∩ {0, . . . , n − 1}| ≤ ( 3

4 )kn, which is O(n) in total. For
large enough k there are no k-special equations. In the end we are left with the
remaining products of SpecialSplit, i.e., for every k with O(( 3

4 )kn) equations
which are both 4k+1-short and k-special. They are processed in the order of
decreasing k using alternating calls of SimpleSplit and Reduce, similarly as in
Algorithm 1. The following recursive procedure implements this approach.

Procedure Shorten(E, k)

Input: An acyclic system E of k-special equations
Output: An equivalent acyclic system of k-special 4k-short equations

if E = ∅ then return ∅
(E1, E2) := SpecialSplit(E, k) {using Lemma 12}
F := Shorten(Reduce(E2), k + 1) {recursive call, Corollary 15}
F ′ := SimpleSplit(E1 ∪ F, k) {using Lemma 13}
return Reduce(F ′) {using Corollary 15}

Let us analyze its running time. By Fact 11(a), the size of any acyclic system
of k-special equations does not exceed ( 3

4 )kn. Consequently, we have |E| ≤ ( 3
4 )kn

and |F | ≤ ( 3
4 )k+1n. Lemmas 12 and 13 imply that split operations work in
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O(( 3
4 )kn) time and, in particular, return systems of this size. Thus, by Corol-

lary 15, the reduction also works in O(( 3
4 )kn) time. Consequently, the total time

to compute Shorten(E, 0) is O(
∑

k≥0( 3
4 )kn) = O(n).

Before we apply the Shorten procedure, we need to make sure the input
system is acyclic and consists of 0-special equations. The latter condition is
void, so we just perform a reduction.

Algorithm 2: MAIN. An O(|E|+ n)-time solution

Input: A system of equations E
Output: A generic solution Φ(E)

E′ := Reduce(E)

E′′ := Shorten(E′, 0) {E′′ is 1-short and E′′ ≡ E}
return Φ(E′′) {using Observation 4}

This way, we complete the proof of our main result.

Theorem 16. Let E be a system of m equations between substrings of a string
of length n. There exists an O(n+m)-time algorithm that finds the generic string
Φ(E) that satisfies E.

5 Practical implementation

The disadvantage of the algorithm presented in the previous section is that it
uses the algorithm of Fredman and Willard (Theorem 14), which is very efficient
in asymptotic terms but complicated and thus impractical. However, without
much effort we are able to restrict the weights to powers of 2 not exceeding n.
In this case, the MST can be computed using a simple solution based on the the
Dijkstra-Jarńık-Prim algorithm, which uses a priority queue as the underlying
data structure (rather than union-find in Kruskal’s algorithm). We maintain a
single instance of the queue designed to efficiently handle a small universe.

Lemma 17. In the standard word-RAM model of computation with word size
w = Ω(logN) (where N is a power of 2), one can implement a priority queue
for keys within {20, 21, . . . , 2logN−1} supporting standard operations (insert, find
maximum, delete maximum) in O(1) time after O(N)-time initialization.

Proof sketch. The idea behind the priority queue is to store an integer whose
bits represent keys present in the queue. Elements in the queue are stored in
lists with each list responsible for a single key. To implement this queue, we still
require word-RAM model, but we just use two standard bit operations. First,
given a non-negative integer x < N , we want to locate position of the highest bit
set to 1 in its binary representation, denoted msb(x). Second, given x < N and
k < logN , we want to flip the k-th bit of x. Details are left for the full version.

Corollary 18. After O(n)-time preprocessing, given an arbitrary system E of
equations whose lengths are powers of two, an equivalent acyclic subsystem F ⊆
E can be constructed in O(|E|) time.
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5.1 Adjusted algorithm

We modify the definition of a k-special equation as follows. An equation (i, j, `) is
strongly k-special if i, j ∈ Sk and additionally ` = 2p for some integer p ≥ 2k. In
particular, we may use Corollary 18 for any system of strongly special equations.
The lower bound ` ≥ 4k is useful to implement the split operations, both adjusted
below for strongly k-special equations. Due to space constraints, we omit the
proof of Lemma 19.

Lemma 19. Every strongly k-special equation can be split in O(1) time into a
constant number of strongly k-special equations each of which is strongly (k+1)-
special or 4k+1-short.

Lemma 20. Every strongly k-special equation of length up to 4k+1 can be split
in O(1) time into a constant number of 4k-short strongly k-special equations.

Proof. It suffices to split each equation equally into equations of length 4k. ut

Apart from slightly different implementation of subroutines, the procedure
Shorten remains unchanged. However, before we apply it for k = 0, we need
to take into account that while every equation is 0-special, it does not need to
by strongly 0-special. However, it is easy to split any equation into two strongly
0-special ones. This is exactly the UniformSplit operation of Section 3.

6 Applications

In this section we apply Theorem 16 for several string recovery problems. In
this class of problems, we are supposed to find an example string of a given
length n which satisfies certain properties, or state that no such string exists. We
assume an unbounded alphabet Σ = N. In each of the problems, the property is
expressible as a system of equations on substrings E= and a system of inequalities
(more precisely, non-equalities) of substrings E6= that the string should satisfy.

Lemma 21 provides a verification tool for the question whether there are
strings consistent with E= and E 6=. This is because either Φ(E=) is valid or
there are no solutions possible.

Lemma 21. Let E= and E 6= be sets of equations and inequalities over n posi-
tions. If Φ(E=) does not satisfy E6= then there exists no string of length n that
satisfies both E= and E6=. Moreover, one can check in O(n+ |E6=|) time if Φ(E=)
satisfies all inequalities E6=.

Proof. By Observation 1, any string s satisfying E= must be an image of t =
Φ(E=) through a letter-to-letter morphism. Therefore, every substring inequality
satisfied by s is also satisfied by t. To check if t satisfies E6=, one can use longest
common extension queries (i.e., longest common prefix queries); see [8]. ut

We start the presentation of applications with two simpler examples. The
prefix array PREF[1..n− 1] stores in PREF[i] the length of the longest common
prefix of s and s[i..n− 1].
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Lemma 22. For every array A[1..n−1] with values in {0, . . . , n−1} there exists
a set of equations E= and a set of inequalities E6= such that A is the prefix array
of a string s if and only if s satisfies both E= and E6=. Moreover, |E=| ≤ n,
|E6=| ≤ n and both sets can be constructed in O(n) time.

Proof. We take the following equations: E= = {s[0..A[i]−1] = s[i..i+A[i]−1] :
i = 1, . . . , n − 1} and inequalities: E 6= = {s[A[i]] 6= s[i + A[i]] : i + A[i] < n ;
i = 1, . . . , n− 1}. ut

We say that a string u is a border of a string v, if u occurs both as a proper
prefix and as a proper suffix of v. The border array B[1..n−1] is an integer array
such that B[i] is the length of the longest border of s[0..i].

Lemma 23. For every array A[1..n−1] with values in {0, . . . , n−1} there exists
a set of equations E= and a set of inequalities E 6= such that A is the border array
of a string s if and only if s satisfies both E= and E6=. Moreover, |E=| ≤ n and
this set can be constructed in O(n) time.

Proof. We take the following equations: E= = {s[0..A[i]−1] = s[i−A[i] + 1..i] :
i = 1, . . . , n − 1}. The inequalities state in an analogous way that s[0..i] have
no border of length exceeding A[i]: E6= = {s[0..j − 1] 6= s[i − j + 1..i] : i =
1, . . . , n− 1; A[i] < j ≤ i}. ut

A period of a string v is such a positive integer p ≤ |v| that v[i] = v[i + p]
for 0 ≤ i < |v| − p. A run is a triple (i, j, p) such that p is the smallest period of
s[i..j], |s[i..j]| ≥ 2p and neither s[i− 1..j] nor s[i..j + 1] have period p (possibly
because i = 0 or j = |s| − 1). By Runs(s) we denote the set of all runs in s.
Every string of length n has less than n runs [2].

Lemma 24. For a set R (|R| < n) of integer triples (i, j, p), 0 ≤ i < j ≤ n− 1,
p ∈ {1, . . . , bn/2c}, there exists a set of equations E= and a set of inequalities
E6= such that R is the set of all runs of a string s of length n if and only if s
satisfies both E= and E 6=. Moreover, |E=| ≤ n and this set can be constructed
in O(n) time.

Proof. The fact that R is a set of runs of a string s can be described using
equations E= = {s[i..j − p] = s[i+ p..j] : (i, j, p) ∈ R}. Inequalities say that no
run is extendible or has a smaller period, and that no other runs exist in s. ut

A string v is called a palindrome if v is equal to its reverse vR = v|v|−1 . . . v1v0.
A substring s[i..j] is called a maximal palindrome if it is a palindrome, but
s[i−1..j+ 1] is not a palindrome. The set of maximal palindromes in s, denoted
as MaxPal(s), determines the structure of all palindromic substrings of s. Due
to space constraints we omit the proof of the following lemma.

Lemma 25. For a set P (|P | < 2n) of integer pairs (i, j), 0 ≤ i ≤ j ≤ n − 1,
there exists a set of equations E= and a set of inequalities E6= over 2n positions
such that P is the set of maximal palindromes of a string t of length n if and
only if there exists a string s of length 2n that satisfies both E= and E6= (then
s = ttR). Moreover, |E=| ≤ 3n, |E6=| = O(n) and both sets can be constructed
in O(n) time.
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Theorem 26. In O(n) time one can recover a string of length n from its prefix
array, its border array, its runs structure, or its maximal palindromes.

Proof. First, we apply one of Lemmas 22–25 to generate in O(n) time a system
of equations E= for the particular recovery problem. Using Theorem 16, we
compute a generic string s = Φ(E=). Lemma 21 guarantees that if a solution to
the recovery problem exists, then s is such a solution. Finally, we use a linear-time
algorithm to compute its prefix array/border array/runs/maximal palindromes
(see [2,24,10]), and check if the result matches the input. Note that for the
maximal palindromes recovery problem, this way we obtain s = ttR, so we need
to take the first half of s = Φ(E=) as the final solution t.

In the case of prefix array and maximal palindromes we have |E6=| = O(n).
Therefore in these cases we obtain a simpler algorithm to check if s is a solution
using Lemma 21. Either approach gives O(n)-time recovery. ut

Our linear-time algorithm to recover a string from its runs improves upon an
O(n2)-time algorithm by Matsubara et al. [25]. Finally, recovery from runs can
be extended to gapped repeats and subrepetitions [23] with running time equal
to the running time of the respective construction algorithms [23,22].
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