Part I

Greatest Common Divisor Queries
Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in \{1, \ldots, n\}$ computes $\gcd(x, y)$.
Problem (Greatest Common Divisor)

For a positive integer \(n \) build a data structure that given integers \(x, y \in \{1, \ldots, n\} \) computes \(\gcd(x, y) \).

RAM model with word-size \(\Omega(\log n) \), i.e. constant-time arithmetic operations on \(O(\log n) \)-bit integers.
Problem (Greatest Common Divisor)

For a positive integer \(n \) build a data structure that given integers \(x, y \in \{1, \ldots, n\} \) computes \(\gcd(x, y) \).

RAM model with word-size \(\Omega(\log n) \), i.e. constant-time arithmetic operations on \(O(\log n) \)-bit integers.

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>construction</th>
<th>query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclid’s algorithm</td>
<td>-</td>
<td>-</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>precompute answers</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>use factorization</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O\left(\frac{\log n}{\log \log n}\right))</td>
</tr>
<tr>
<td>this work</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Computing $gcd(x, y)$ is sometimes easy:

- we can precompute $gcd[x', y']$ for every $x', y' \leq \sqrt{n}$ and then for $x \leq \sqrt{n}$ we can use the precomputed answer $gcd[x, y \mod x]$,
- if x is prime it suffices to check whether x divides y.

\[\textbf{Definition} \]

Let k be a positive integer. Then (k_1, k_2, k_3) is a special decomposition of k if $k = k_1 k_2 k_3$ and each k_i is prime or does not exceed \sqrt{k}.

Tomasz Kociumaka
Fast Algorithms for Abelian Periods and GCD Queries 4/17
Computing \(\gcd(x, y) \) is sometimes easy:

- we can precompute \(\gcd(x', y') \) for every \(x', y' \leq \sqrt{n} \) and then for \(x \leq \sqrt{n} \) we can use the precomputed answer \(\gcd(x, y \mod x) \),
- if \(x \) is prime it suffices to check whether \(x \) divides \(y \).

Definition

Let \(k \) be a positive integer. Then \((k_1, k_2, k_3) \) is a *special decomposition* of \(k \) if \(k = k_1 k_2 k_3 \) and each \(k_i \) is prime or does not exceed \(\sqrt{k} \).
Queries

The data structure consists of:

- precomputed answers for any \(x, y \leq \sqrt{n} \),
- a special decomposition of each \(x \in \{1, \ldots, n\} \).
The data structure consists of:

- precomputed answers for any \(x, y \leq \sqrt{n} \),
- a special decomposition of each \(x \in \{1, \ldots, n\} \).

Algorithm \(\gcd(x, y) \)

\[
(x_1, x_2, x_3) := \text{decomp}[x];
\]

\[
g := 1;
\]

for \(i := 1 \) **to** 3 **do**

- **if** \(x_i \leq \sqrt{n} \) **then**
 \[
d := \gcd[x_i, y \mod x_i];
 \]
- **else if** \(x_i \mid y \) **then** \(d := x_i; \)
- **else** \(d := 1; \)

\[
g := g \cdot d;
\]

\[
y := y / d;
\]

return \(g; \)
The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm $gcd(x, y)$

\[
(x_1, x_2, x_3) := \text{decomp}[x];
\]

\[
g := 1;
\]

\[
\text{for } i := 1 \text{ to } 3 \text{ do }
\]

\[
\quad \text{if } x_i \leq \sqrt{n} \text{ then }
\]

\[
\quad \quad d := gcd[x_i, y \mod x_i];
\]

\[
\quad \text{else if } x_i \mid y \text{ then } d := x_i;
\]

\[
\quad \text{else } d := 1;
\]

\[
\quad g := g \cdot d;
\]

\[
\quad y := y / d;
\]

\[
\text{return } g;
\]
The data structure consists of:
- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm $gcd(x, y)$

\[
(x_1, x_2, x_3) := \text{decomp}[x];
\]

\[
g := 1;
\]

\[
\text{for } i := 1 \text{ to } 3 \text{ do }
\]

\[
\text{if } x_i \leq \sqrt{n} \text{ then }
\]

\[
d := gcd[x_i, y \mod x_i];
\]

\[
\text{else if } x_i \mid y \text{ then } d := x_i;
\]

\[
\text{else } d := 1;
\]

\[
g := g \cdot d;
\]

\[
y := y/d;
\]

\[
\text{return } g;
\]

\[
\text{Algorithm example:}
\]

\[
x_1 = 28
\]

\[
x_2 = 30
\]

\[
x_3 = 853
\]

\[
g = 1
\]

\[
y = 337788
\]

\[
d = 4
\]

\[
x_1 = 28
\]

\[
x_2 = 30
\]

\[
x_3 = 853
\]
The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm $gcd(x, y)$

$$(x_1, x_2, x_3) := \text{decomp}[x];$$

$g := 1;$

for $i := 1$ to 3 do

- if $x_i \leq \sqrt{n}$ then

 $d := gcd[x_i, y \mod x_i]$;

- else if $x_i \mid y$ then $d := x_i$;

- else $d := 1$;

$g := g \cdot d$;

$y := y / d$;

return g;

$x_1 = 28$

$x_2 = 30$

$x_3 = 853$

$y = 84447$

$g = 4$
The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm gcd (x, y)

$$(x_1, x_2, x_3) := \text{decomp}[x];$$

$g := 1$;

for $i := 1$ to 3 do

- if $x_i \leq \sqrt{n}$ then

 $d := \text{gcd}[x_i, y \mod x_i]$;

- else if $x_i \mid y$ then

 $d := x_i$;

- else

 $d := 1$;

$g := g \cdot d$;

$y := y / d$;

return g;
The data structure consists of:
- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm $\text{gcd}(x, y)$

$(x_1, x_2, x_3) := \text{decomp}[x];$

g := 1;

for $i := 1$ to 3 do

if $x_i \leq \sqrt{n}$ then

$d := \text{gcd}[x_i, y \mod x_i];$

else if $x_i | y$ then $d := x_i;$

else $d := 1;$

$g := g \cdot d;$

$y := y/d;$

return $g;$
The data structure consists of:

- precomputed answers for any \(x, y \leq \sqrt{n} \),
- a special decomposition of each \(x \in \{1, \ldots, n\} \).

Algorithm \(\text{gcd}(x, y) \)

\[
(x_1, x_2, x_3) := \text{decomp}[x];
\]

\[
g := 1;
\]

for \(i := 1 \) **to** 3 **do**

- **if** \(x_i \leq \sqrt{n} \) **then**
 \[
d := \text{gcd}[x_i, y \mod x_i];
 \]
- **else if** \(x_i \mid y \) **then** \(d := x_i; \)
- **else** \(d := 1; \)

\[
g := g \cdot d;
\]

\[
y := y / d;
\]

return \(g; \)
The data structure consists of:
- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Algorithm $gcd(x, y)$

\[
(x_1, x_2, x_3) := decomp[x];
\]

$g := 1$;

for $i := 1$ to 3 do

 if $x_i \leq \sqrt{n}$ then
 \[d := gcd[x_i, y \mod x_i];\]
 else if $x_i \mid y$ then $d := x_i$;
 else $d := 1$;

$g := g \cdot d$;

$y := y / d$;

return g;

\[x_3 = 853\]
\[x_2 = 30\]
\[x_1 = 28\]
\[y = 33\]

\[2 \quad 2 \quad 3 \quad 853\]

\[g = 10236\]
Lemma

Let $\ell > 1$ be a positive integer, p be the smallest prime divisor of ℓ and $k = \frac{\ell}{p}$. A decomposition of ℓ can be obtained from a decomposition of k by multiplying the smallest factor by p.
Lemma

Let \(\ell > 1 \) be a positive integer, \(p \) be the smallest prime divisor of \(\ell \) and \(k = \frac{\ell}{p} \). A decomposition of \(\ell \) can be obtained from a decomposition of \(k \) by multiplying the smallest factor by \(p \).

Theorem (Gries & Misra, 1978)

The smallest prime divisors for all positive integers up to \(n \) can be computed in \(O(n) \) time.
Part II

Abelian Periods
Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $P(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$w = a \ b \ b \ a \ c \quad P(w) = (2, 2, 1)$$
Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$w = a\,b\,b\,a\,c \quad \mathcal{P}(w) = (2, 2, 1)$$
Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $P(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

\[w = a \ b \ b \ a \ c \quad P(w) = (2, 2, 1) \]
Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$w = a\ b\ b\ a\ c \quad \mathcal{P}(w) = (2, 2, 1)$$

$$a\ b\ b\ a\ c \approx a\ c\ b\ a\ b\ b\ a\ b \not\approx a\ b\ a$$

Tomasz Kociumaka

Fast Algorithms for Abelian Periods and GCD Queries 8/17
Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$w = a \, b \, b \, a \, c \quad \mathcal{P}(w) = (2, 2, 1)$$

Definition

Words u, w are **commutatively equivalent** if $\mathcal{P}(u) = \mathcal{P}(w)$.

$$a \, b \, b \, a \, c \approx a \, c \, b \, a \, b \quad b \, a \, b \not\approx a \, b \, a$$
Abelian Periods

Definition

Let w be a word. An integer q is:

- a *full* Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,

\[
\begin{array}{cccccccc}
 a & b & a & b & a & c & a & b \\
\end{array}
\begin{array}{cccccccc}
 a & a & b & c & b & a & a & b \\
\end{array}
\]

\[
q = 8 \quad \mathcal{P} = (4, 3, 1)
\]
Abelian Periods

Definition
Let w be a word. An integer q is:

- a full Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,

- an Abelian period of w if q is a full Abelian period of some extension to the right of w,

\[
\begin{align*}
\text{a b a b a c | a b a a b c | b a a b a c} \\
q = 6 \quad \mathcal{P} = (3, 2, 1)
\end{align*}
\]
Definition

Let w be a word. An integer q is:

- a **full** Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,
- an Abelian period of w if q is a full Abelian period of some extension *to the right* of w,
- a **weak** Abelian period of w if q is a full Abelian period of some extension of w.

\[
\begin{array}{cccccccccccccccccccc}
\text{b} & \text{c} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{c} & \text{a} & \text{b} & \text{a} & \text{b} & \text{c} & \text{b} & \text{a} & \text{a} & \text{b} & \text{b} & \text{c}
\end{array}
\]

$q = 5 \quad \mathcal{P} = (2, 2, 1)$
Previous results

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Variant</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Fici et al.</td>
<td>weak</td>
<td>$O(n^2\sigma)$</td>
</tr>
<tr>
<td>2012</td>
<td>Fici et al.</td>
<td>standard</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>full</td>
<td>$O(n \log \log n)$</td>
</tr>
<tr>
<td>2013</td>
<td>Crochemore et al.</td>
<td>weak</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Variant</td>
<td>Time complexity</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2011</td>
<td>Fici et al.</td>
<td>weak</td>
<td>$O(n^2 \sigma)$</td>
</tr>
<tr>
<td>2012</td>
<td>Fici et al.</td>
<td>standard</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>full</td>
<td>$O(n \log \log n)$</td>
</tr>
<tr>
<td>2013</td>
<td>Crochemore et al.</td>
<td>weak</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>this work</td>
<td>standard</td>
<td>$O(n \log \log n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>randomized</td>
<td>$O(n \log \log n + n \log \sigma)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deterministic</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Assumptions:

$\Sigma = \{1, \ldots, \sigma\}$

standard RAM model (arrays, arithmetic of $O(\log n)$-bit integers)
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Variant</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Fici et al.</td>
<td>weak</td>
<td>$O(n^2\sigma)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Fici et al.</td>
<td>standard</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>full</td>
<td>$O(n \log \log n)$</td>
</tr>
<tr>
<td>2013</td>
<td>Crochemore et al.</td>
<td>weak</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>this work</td>
<td>standard</td>
<td>$O(n \log \log n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>randomized $O(n \log \log n + n \log \sigma)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>full</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Assumptions:

- $\Sigma = \{1, \ldots, \sigma\}$
- standard RAM model
 (arrays, arithmetic of $O(\log n)$-bit integers)
Proportionality

Definition

Let P_i be the Parikh vector of $w[1..i]$. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $P_i[s] = cP_j[s]$ for each $s \in \Sigma$.

![Diagram](image-url)
Definition

Let \mathcal{P}_i be the Parikh vector of $w[1..i]$. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $\mathcal{P}_i[s] = c\mathcal{P}_j[s]$ for each $s \in \Sigma$.

\[5 \sim 10\]
Lemma

After $O(n)$ randomized or $O(n \log \sigma)$ deterministic time preprocessing \sim can be tested in constant time.

Fact

The set $[n]_\sim = \{k : k \sim n\}$ can be constructed in $O(n)$ time.
Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

\[A = \{2, 4, 6, 8, 12\} \]
Fact

Let \(A = \{ k : k \sim n \} \). Then \(q \) is a full Abelian period \(\iff \) there \(q \mid k \) and \(k \leq n \) implies \(k \in A \).

\[
A = \{2, 4, 6, 8, 12\}
\]

4 is a full Abelian period.
Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

$A = \{2, 4, 6, 8, 12\}$

6 is a full Abelian period.
Fact

Let \(A = \{ k : k \sim n \} \). Then \(q \) is a full Abelian period \(\iff \) there \(q \mid k \) and \(k \leq n \) implies \(k \in A \).

\[
A = \{2, 4, 6, 8, 12\}
\]

2 is not a full Abelian period.
Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff
there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k$ \iff there is no
q' such that $q \mid q'$ and $q' = \gcd(k, n)$ for some $k \notin A$.
Full Abelian Periods

Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \iff$ there is no q' such that $q \mid q'$ and $q' = \gcd(k, n)$ for some $k \notin A$.

1. $A' := \{k : k \not\sim n\}$
2. $X := \{q' : \exists_{k \notin A} \gcd(k, n) = q'\}$
 (iterating over $k \notin A$ and using fast gcd queries)
3. For each $q \mid n$ check whether there exists $q' \in X$ such that $q \mid q'$
Full Abelian Periods

Fact

Let \(A = \{ k : k \sim n \} \). Then \(q \) is a full Abelian period \(\iff \) there \(q \mid k \) and \(k \leq n \) implies \(k \in A \).

Observation

There is no \(k \not\in A \) such that \(q \mid k \iff \) there is no \(q' \) such that \(q \mid q' \) and \(q' = \gcd(k, n) \) for some \(k \not\in A \).

1. \(A' := \{ k : k \not\sim n \} \)
2. \(X := \{ q' : \exists_{k \not\in A} \gcd(k, n) = q' \} \)
 (iterating over \(k \not\in A \) and using fast gcd queries)
3. For each \(q \mid n \) check whether there exists \(q' \in X \) such that \(q \mid q' \)

The number of pairs \((q, q')\) is \(o(n) \), since the number of divisors of \(n \) is \(o(n^\varepsilon) \).
A positive integer $q \leq n$ is a candidate if $q \sim kq$ for each $k \in \{1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor \}$.

10 is a candidate.
A positive integer \(q \leq n \) is a candidate if \(q \sim kq \) for each
\[
k \in \left\{ 1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor \right\}.
\]

8 is a candidate.
Definition

A positive integer \(q \leq n \) is a candidate if \(q \sim kq \) for each \(k \in \{1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor \} \).

9 is not a candidate
A simple application of the techniques from weak Abelian periods algorithm gives an $O(n)$ time algorithm computing the set of Abelian periods given the set of candidates.

10 is an Abelian period
A simple application of the techniques from weak Abelian periods algorithm gives an $O(n)$ time algorithm computing the set of Abelian periods given the set of candidates.

8 is not an Abelian period
Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.
Computing candidates

Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$q \in C \iff \forall k \in \mathbb{Z}_+: kq \leq n \quad q \sim kq \iff \forall p \in \text{Primes} : pq \leq n \quad (q \sim pq \land pq \in C)$.

Recall that primes up to n can be generated in $O(n)$ time.
Computing candidates

Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$q \in C \iff \forall k \in \mathbb{Z}_+ : kq \leq n \quad q \sim kq \iff \forall p \in \text{Primes} : pq \leq n \quad (q \sim pq \land pq \in C)$.

Recall that primes up to n can be generated in $O(n)$ time. A fixed $p \in \text{Primes}$ is processed for at most $\frac{n}{p}$ values of q, so the total number of operations is bounded by

$$
\sum_{p \in \text{Primes}, p \leq n} \frac{n}{p} = O(n \log \log n).
$$
Conclusions

Theorem

Let \(w \) be a word of length \(n \) over the alphabet \(\{1, \ldots, \sigma\} \). Full Abelian periods of \(w \) can be computed in \(O(n) \) time.

Theorem

Let \(w \) be a word of length \(n \) over the alphabet \(\{1, \ldots, \sigma\} \). There exist an \(O(n \log \log n + n \log \sigma) \) time deterministic and an \(O(n \log \log \log n) \) time randomized algorithm that compute all Abelian periods of \(w \). Both algorithms require \(O(n) \) space.
Thank you

Thank you for your attention!