
Noname manuscript No.
(will be inserted by the editor)

Efficient Enumeration of Non-Equivalent Squares in
Partial Words with Few Holes

Panagiotis Charalampopoulos · Maxime
Crochemore · Costas S. Iliopoulos ·
Tomasz Kociumaka · Solon P. Pissis ·
Jakub Radoszewski · Wojciech Rytter ·
Tomasz Waleń

Received: date / Accepted: date

Abstract A word of the form WW for some word W ∈ Σ∗ is called a square.
A partial word is a word possibly containing holes (also called don’t cares).
The hole is a special symbol �♦ /∈ Σ which matches any symbol from Σ ∪ {�♦}.
A p-square is a partial word matching at least one square WW without holes.
Two p-squares are called equivalent if they match the same set of squares.
A p-square is called here unambiguous if it matches exactly one square WW
without holes. Such p-squares are natural counterparts of classical squares.
Let PSQUARESk(n) and USQUARESk(n) be the maximum number of non-
equivalent p-squares and non-equivalent unambiguous p-squares in T over all
partial words T of length n with at most k holes. We show asymptotically
tight bounds:

PSQUARESk(n) = Θ(min(nk2, n2)), USQUARESk(n) = Θ(nk).

We present an algorithm that reports all non-equivalent p-squares in O(nk3)
time for a partial word of length n with k holes, for an integer alphabet. In
particular, it runs in linear time for k = O(1) and its time complexity near-
matches the asymptotic bound for PSQUARESk(n). We also show an O(n)-
time algorithm that reports all non-equivalent p-squares of a given length.

The paper is a full and improved version of [8].

P. Charalampopoulos · M. Crochemore · C. S. Iliopoulos · S. P. Pissis
Department of Informatics, King’s College London, London, UK
E-mail: [panagiotis.charalampopoulos, maxime.crochemore, costas.iliopoulos,
solon.pissis]@kcl.ac.uk

T. Kociumaka · Jakub Radoszewski · W. Rytter · T. Waleń
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
E-mail: [kociumaka, jrad, rytter, walen]@mimuw.edu.pl

M. Crochemore
Also at Université Paris-Est, France

Keywords partial word · square in a word · approximate period · Lyndon
word

1 Introduction

A word is a sequence of letters from a given alphabet Σ. By Σ∗ we denote
the set of all words over Σ. A word of the form U2 = UU , for some word
U , is called a square. For a word W , a factor is a subword composed of some
number of consecutive letters and a square factor is a factor of W which is a
square. Enumeration of square factors in words is a well-studied topic, both
from a combinatorial and from an algorithmic perspective. Obviously, a word
W of length n may contain Θ(n2) square factors (e.g. W = an), however, it
is known that such a word contains only O(n) distinct square factors [14,18];
currently the best known upper bound is 11

6 n [11].
Moreover, all distinct square factors of a word over an integer alphabet can

be listed in O(n) time using the suffix tree [16,1] or the suffix array and the
structure of runs (maximal repetitions) in the word [9].

A partial word is a sequence of letters from Σ∪{�♦}, where �♦ denotes a hole,
that is, a don’t care symbol. Two symbols a, b ∈ Σ ∪ {�♦} are said to match
(denoted as a ≈ b) if they are equal or one of them is a hole; note that this
relation is not transitive. The relation of matching is extended in a natural
way to partial words of the same length.

A partial word UV is called a p-square if U ≈ V . Like in the context of
words, a p-square factor of a partial word T is a factor being a p-square; see
[2,7].

We introduce the notion of equivalence of p-square factors in partial words.
Let sq-val(UV) denote the set of squares that match the partial word UV :

sq-val(UV) = {WW : W ∈ Σ∗, WW ≈ UV }.

Example 1 Let Σ = {a, b}. Then:

sq-val(a�♦b a�♦�♦) = sq-val(a�♦�♦ �♦�♦b) = {(aab)2, (abb)2},
sq-val(a�♦�♦ �♦ab) = {(aab)2}.

The p-squares UV and U ′V ′ are called equivalent if sq-val(UV) = sq-val(U ′V ′)
(denoted as UV ≡ U ′V ′). For example,

a�♦b a�♦�♦ ≡ a�♦�♦ �♦�♦b, but a�♦b a�♦�♦ 6≡ a�♦�♦ �♦ab.

Let us assume that Σ is non-unary. We say that X2 = XX is the rep-
resentative (also called general form; see [6]) of a p-square UV , denoted as
repr(UV), if

XX ≈ UV and sq-val(XX) = sq-val(UV).

(In other words, X is the “most general” partial word that matches both U and
V .) It can be noted that the representative of a p-square is unique. Then UV ≡

2

U ′V ′ if and only if repr(UV) = repr(U ′V ′). A p-square is called unambiguous
if its representative does not contain the symbol �♦ and ambiguous otherwise.

Example 2
repr(a�♦b a�♦�♦) = (a�♦b)2 and the p-square is ambiguous.
repr(a�♦�♦ �♦ab) = (aab)2 and the p-square is unambiguous.

The set of non-equivalent p-square factors in a partial word T is denoted by
psquares(T). Thus, psquares(T) corresponds to the set of different representa-
tives of p-square factors of T .

Example 3 Let T = ab�♦�♦ba�♦aaba�♦b.
T contains 4 non-equivalent classes of p-squares of length 4:

1. a�♦aa with representative (aa)2,
2. ab�♦�♦ ≡ �♦ba�♦ ≡ aba�♦ with representative (ab)2,
3. �♦�♦ba ≡ ba�♦a with representative (ba)2, and
4. b�♦�♦b with representative (bb)2.

T contains 4 equivalence classes of p-squares of length 6 with representatives:
(aab)2, (aba)2, (baa)2, (ba�♦)2;

see also Fig. 1.

a b �♦ �♦ b a �♦ a a b a �♦ b

(aba)2 (baa)2

(ba�♦)2 (aab)2

Fig. 1 All non-equivalent p-square factors of length 6 with their representatives in an
example partial word.

Overall, we have |psquares(T)| = 14. The remaining 6 representatives are:
�♦�♦, aa, bb, (aaba�♦)2, (abaab)2, (baaba)2.

Our work is devoted to enumeration of non-equivalent p-square factors in
a partial word with a given number k > 0 of holes.

Previous results. Alongside [2,6,7], we define a solid square as a square of a
word and a square subword of a partial word T as a solid square that matches
a factor of T .

Previous studies on squares in partial words were mostly focused on combi-
natorics. They started with the case of k = 1 [6], in which case distinct square
subwords correspond to non-equivalent p-square factors. It was shown that a
partial word with one hole contains at most 7

2n distinct square subwords [4]
(3n for binary partial words [17]). Also a generalization of the three squares
lemma (see [10]) was proposed for partial words [5]. As for a larger number
of holes, the existing literature is devoted mainly to counting the number of

3

distinct square subwords of a partial word [6,2] or all occurrences of p-square
factors [3,2]. On the algorithmic side, [22] proved that the problem of counting
distinct square subwords of a partial word is #P-complete and [12,21] and [7]
showed quadratic- and nearly-quadratic-time algorithms for finding all occur-
rences of p-square factors and primitively-rooted p-square factors of a partial
word, respectively.

Our combinatorial results. Let PSQUARESk(n) and USQUARESk(n) be
the maximum number of non-equivalent p-squares and non-equivalent unam-
biguous p-squares in T over all partial words T of length n with at most k
holes. We show the following bounds:

PSQUARESk(n) = Θ(min(nk2, n2)), USQUARESk(n) = Θ(nk).

This work can be viewed as a generalization of the results on partial words
with one hole [6,4,17] to k holes.

Our algorithmic results. We present an algorithm that reports all elements
of the set psquares(T) in a partial word of length n with k holes in O(nk3)
time. In particular, our algorithm runs in linear time for k = O(1) and its time
complexity near-matches the maximum number of non-equivalent p-square
factors. We also show an O(n)-time algorithm that reports all non-equivalent
p-squares of a given length. The algorithms assume integer alphabet Σ ⊆
{1, . . . , nO(1)}. We use recently introduced advanced data structures from [19].

Comparison with the conference version. The paper is an extended ver-
sion of [8]. As far as combinatorics of p-squares is concerned, the conference
version of the paper derived the bound PSQUARESk(n) = Θ(min(n2, nk2)).
Let ASQUARESk(n) be the maximum number of non-equivalent ambiguous
p-squares in T over all partial words T of length n with at most k holes. The
bound was proved by showing that ASQUARESk(n) = Θ(min(n2, nk2)) and
that USQUARESk(n) = O(nk2). As a new contribution here, we present a
tight estimation USQUARESk(n) = Θ(nk). This lets us identify ambiguous
p-squares as the ones that attain the bound on PSQUARESk(n). On the al-
gorithmic side, [8] presented an algorithm computing the set psquares(T) in
O(nk3) time. Here the readability of the algorithm has been considerably im-
proved; we also show a linear-time algorithm that reports all non-equivalent
p-squares of a specified length.

Structure of the paper. After the Preliminaries comes the algorithmic part
of the paper, which is followed by the combinatorial part. In Section 3 we show
an O(n)-time algorithm that reports all non-equivalent p-squares of a specified
length and, as an immediate corollary, O(nk2)-time computation of all non-
equivalent ambiguous p-squares. Then in Section 4 we give an O(nk3)-time al-
gorithm for computing all non-equivalent unambiguous p-squares. Asymptotic
bounds for ambiguous p-squares and unambiguous p-squares are presented in
Sections 5 and 6, respectively.

4

2 Preliminaries

For a word W ∈ Σ∗, by |W | = n we denote the length of W , and by Wi,
for i = 1, . . . , n, the ith letter of W . For 1 ≤ i ≤ j ≤ n, by [i..j] and (i..j]
we denote integer intervals {i, . . . , j} and {i + 1, . . . , j}, respectively. W [i..j]
denotes the factor of W equal to Wi · · ·Wj ; we also use the notation W [I],
where I is an integer interval. A factor of the form W [1..j] is called a prefix, a
factor of the form W [i..n] is called a suffix.

For a partial word T we use the same notation as for words: |T | = n for
its length, Ti for the ith letter, T [i..j] for a factor. If T does not contain holes,
then it is called solid. The relation ≈ of matching on Σ ∪ {�♦} is defined as:
a ≈ a, �♦ ≈ a, and a ≈ �♦ for all a ∈ Σ ∪ {�♦}.

We define an operation � such that: a � a = a � �♦ = �♦ � a = a for all
a ∈ Σ ∪{�♦}, and otherwise a � b is undefined. Two equal-length partial words
S and T are said to match (denoted as S ≈ T) if Si ≈ Ti for all i = 1, . . . , n.
In this case, we denote

S � T = S1 � T1, . . . , Sn � Tn.

Also note that if UV is a p-square, then repr(UV) = (U � V)2.
If U ≈ T [i..i+ |U | − 1] for a partial word U , then we say that U occurs in

T at position i.
Two equal-length partial words U and V are called cyclic shifts if there

are partial words X,Y such that U = XY and V = Y X. We denote this as
rot(U, |X|) =W , where |X| is the shift value.

For a partial word X, by #�♦(X) we denote the number of holes in X. For
1 ≤ i ≤ n and 0 ≤ q ≤ log n, we denote Ti,q = T [i..min(n, i + 2q − 1)]. We
say that Ti,q is a q-basic factor of the partial word T . In other words, q-basic
factors are factors of T of length 2q and suffixes of T of length at most 2q. By
B(T) we denote the set of all basic factors of T .

Lemma 1 If T is a partial word of length n with k holes, then∑
W∈B(T)

#�♦(W) ≤ 2nk.

Proof The number of q-basic factors that contain a given position i ∈ {1, . . . , n}
is at most 2q. Thus the total number of basic factors that contain a given hole
position i is at most: ∑blognc

q=0 2q ≤ 2n. ut

We say that a p-square is an unambiguous p-square (u-square) if its repre-
sentative is solid and an ambiguous p-square (a-square) otherwise. By
asquares(T) and usquares(T) we denote the sets of non-equivalent factors of
T being a-squares and u-squares, respectively. Obviously:

Observation 1 psquares(T) = asquares(T) ∪ usquares(T)

5

2.1 Periods in Solid and Partial Words

A positive integer q is called a period of a word W if Wi = Wi+q for all i =
1, . . . , n− q. In this case, W [1..q] is called a string period of W . A word W is
called periodic if it has a period q such that 2q ≤ |W |.

A quantum period of a partial word T is a positive integer q such that
Ti ≈ Ti+q for all i = 1, . . . , n − q. A deterministic period of T is an integer q
such that there exists a word W such that W ≈ T and W has a period q.

The partial word T is called quantum (deterministically) periodic if it has
a quantum (deterministic) period q such that 2q ≤ n.

For a partial word U and integer δ > 0, we denote

Misδ(U) = {i ∈ [δ + 1..|U |] : Ui−δ 6≈ Ui},
Holes(U) = {i ∈ [1..|U |] : Ui = �♦}.

We say that p is a d-approximate quantum period of a partial word T
if |Misd(T)| ≤ d. Note that a 0-approximate quantum period is exactly a
quantum period.

Lemma 2 Assume that U ≈ V .

(a) If i ∈ Misδ(U), then i ∈ Misδ(V) or i ∈ Holes(V) or i− δ ∈ Holes(V).
(b) |Misδ(U)| ≤ |Misδ(V)|+ 2|Holes(V)|.
(c) If δ ≥ 1

2 |U |, then |Misδ(U)| ≤ |Misδ(V)|+ |Holes(V)|.

Proof (a): We have Vi−δ ≈ Ui−δ 6≈ Ui ≈ Vi. This means that Ui−δ, Ui ∈ Σ.
Hence, if i 6∈ Holes(V) and i − δ 6∈ Holes(V), then Vi−δ = Ui−δ and Vi = Ui,
so i ∈ Misδ(V).

Point (b) follows from point (a). Also point (c) follows from point (a).
Indeed, if i ∈ Misδ(U) in this case, then for each of the positions i, i− δ in V ,
if it contains a hole, then it is counted only for the index i. ut

3 Computing All p-Squares of Specified Length and
Non-Equivalent Ambiguous p-Squares

In this section we develop an O(n)-time algorithm that enumerates all non-
equivalent p-squares of a half length d in a partial word T of length n. As
a corollary, we obtain a simple computation of all non-equivalent ambiguous
p-squares in optimal time.

For a partial word T , we denote by T ′ a partial word of length n− d such
that T ′[i] = T [i]�T [i+d] for each i = 1, . . . , n−d. If T [i]�T [i+d] is undefined
(since T [i] 6≈ T [i+ d]), we set the value to a symbol # 6∈ Σ.

Observation 2 (a) T [i..i+ 2d− 1] is a p-square if and only if T ′[i..i+ d− 1]
does not contain the symbol #.

(b) If T [i..i+2d−1] is a p-square, then repr(T [i..i+2d−1]) = (T ′[i..i+d−1])2.

6

Proof (a) If T ′[i..i + d − 1] contains the symbol #, this means that T [j] 6≈
T [j + d] for some j ∈ [i..i + d − 1]. Hence, T [i..i + 2d − 1] is not a p-square.
Otherwise, T [j] ≈ T [j+d] for all j ∈ [i..i+d−1]. Hence, T [i..i+2d−1] indeed
is a p-square.

(b) If T [i..i+ 2d− 1] is a p-square, then

(T ′[i..i+d−1])2 = (T [i..i+d−1]�T [i+d..i+2d−1])2 = repr(T [i..i+2d−1]).

ut

Example 4 Let us consider the partial word T = ab�♦�♦ba�♦aaba�♦b from Exam-
ple 3. For d = 2 we construct the following partial word T ′:

abbabaa#ab#

from which we conclude that T contains p-squares of half length 2 with rep-
resentatives:

(ab)2, (bb)2, (ba)2, (ab)2, (ba)2, (aa)2, (ab)2.

For d = 3 we construct the partial word T ′:

aba�♦#abaab

which means that T contains p-squares of half length 3 with representatives:

(aba)2, (ba�♦)2, (aba)2, (baa)2, (aab)2.

Theorem 3 All non-equivalent p-squares of half length d in a partial word of
length n can be reported (as factors of the partial word) in O(n) time.

Proof Let T be a partial word of length n. In O(n) time we compute T ′. Let
S1, . . . , Sq be a partition of T ′ into maximal factors that do not contain the
symbol #. By Observation 2, our task is equivalent to reporting all distinct
factors of length d of the partial words Sj . This can be performed by listing
all nodes (implicit and explicit) at depth d in the generalized suffix tree T of
S1, . . . , Sq, that is, in the suffix tree of S1#1 . . . Sq#q, where #1, . . . ,#q 6∈ Σ
are distinct symbols. For details, see [15]. As the suffix tree of a word of length
n can be constructed in O(n) time [13], the whole algorithm works in O(n)
time. ut

As a corollary we obtain efficient computation of non-equivalent a-squares.

Theorem 4 For a partial word T of length n with k holes, all elements of the
set asquares(T) can be reported in O(nk2) time.

Proof There are at most k2 possible lengths of ambiguous p-squares. For each
length we use the algorithm of Theorem 3 to report all non-equivalent p-
squares. This takes O(nk2) time. In the end, for each length we need to filter
out unambiguous p-squares. For a specified half length d, it suffices to check,
for each p-square T [i..i + 2d − 1] found, if T ′[i..i + d − 1] contains a hole.
This condition can be checked in O(1) time if the prefix sums of the sequence
ai = [T ′[i] = �♦] are stored. ut

7

4 Computing All Non-Equivalent Unambiguous p-Squares

We start the description of the algorithm by an abstract lemma that lets us
efficiently generate all distinct squares induced by a special family of (solid)
words.

4.1 Computing Squares Induced by a Family of Words

For a word S, we define its primitive root U as the shortest word such that
Uk = S for some integer k ≥ 1. The Lyndon root λ of a word U is the minimal
cyclic shift of the shortest string period of U . The notion of a Lyndon root
was introduced in the context of runs in [9].

Example 5 The Lyndon root of U = abaababaababa is aabab. The word U is
periodic and its shortest period is 5.

For a word W and its period q, by squares(W, q) we denote the set of square
factors of W of length 2q. We say that squares(W, q) is the set of squares
induced by the word W with the period q. Each square factor in squares(W, q)
can be represented in O(1) space by specifying its occurrence in W .

Lemma 3 Assume we have a family of possibly unknown words
W1,W2, . . . ,WN with periods q1, . . . , qN , a positive integer k and positive in-
tegers ni,first i, `i for i = 1, . . . , N , such that:

(1) ni ≤ n is the length of Wi and 2qi ≤ ni;
(2) all the words Wi for which 2qi = ni (so-called short words) are distinct;
(3) for a given qi, the number of words Wi for which 2qi < ni (so-called long

words) is at most k;
(4) first i is the starting position of the first occurrence of the Lyndon root λi

of Wi in Wi and `i is its length;
(5) any two Lyndon roots λi, λj can be compared in O(k) time.

Then we can compute the cardinality of the set SQ =
⋃
i squares(Wi, qi) and

its representation (as sets of intervals in Wi’s) in O(Nk2 + nk3 + |SQ|) time.

Proof Let us start with the following observation; see also Fig. 2. The same
type of observation was used in [9].

Observation 5 For every i, the set squares(Wi, qi) equals

{rot(λ
2qi/`i
i , a) : a = (1− first i) mod `i, . . . , (1 + ni − 2qi − first i) mod `i}.

The above set of integers is denoted by Ii. Note that it forms one cyclic subin-
terval of [0..`i− 1] (composed of up to two standard intervals) and that it can
be computed in O(1) time. Each of the elements a ∈ Ii represents a unique
square that is induced by Wi and qi.

We make two transformations of the set of intervals Ii so that, in the end,
each square from the set SQ is induced by exactly one wordWi with period qi.

8

λi λi λi λi

rot(λ2i , 5) rot(λ2i , 5)

Fig. 2 In this case ni = 32, qi = 14, `i = 7, firsti = 3. Hence, Wi induces 5 squares being
cyclic shifts of λ4i , that is, Ii = [0, 2] ∪ [5, 6].

If any of the intervals is made empty, this corresponds to removing the word
as unnecessary. The first transformation deals with the long words Wi; by
definition, at most k of them share the same period qi.

First transformation: For every pair Wi, qi and Wj , qj of long words such
that i 6= j and qi = qj , we check if λi = λj . If Ii ⊆ Ij , we dispose of Wi.
Likewise, if Ij ⊆ Ii, we remove Wj . If none of the two cases holds and still
Ii ∩ Ij 6= ∅, we trim Ij to make it disjoint with Ii.

Complexity: All long words can be sorted by their periods in O(N+n) time
by bucket sort. There are n/2 buckets and each bucket contains at most k
words. For each of the k(k − 1)/2 pairs of long words in a bucket, we check
equality of their Lyndon roots, which takes O(k) time per pair and O(nk3)
time overall. The time complexity of trimming of cyclic intervals is dominated
by this step.

Second transformation: For every short word Wi with period qi and long
word Wj with period qj = qi, we check if λi = λj . If so and Ii ⊆ Ij , we
remove Wi. Note that Ii is a singleton.

Complexity: All words can be sorted by their periods in O(N + n) time by
bucket sort. For each short word Wi, we need to inspect at most k long words
and check if their Lyndon roots are equal. This takes O(k2) time per short
word, O(Nk2) time overall. Checking inclusion of elements in cyclic intervals
is dominated by this step.

The two transformations take O(Nk2+nk3) time in total. Afterwards each
square is induced by exactly one interval Ii for a word Wi and period qi, so
we can list all the distinct squares in O(|SQ|) time. ut

For a partial word T , by ssquares(T) we denote the set of distinct solid
factors of T being squares. The following fact was already mentioned in the
Introduction.

Fact 6 ([1,9,16]) All distinct squares in a word of length n can be computed
in O(n) time.

9

By substituting all holes in a partial word with distinct symbols#1, . . . ,#k,
we obtain the following corollary.

Corollary 1 For partial word T of length n, the set ssquares(T) can be com-
puted in O(n) time.

The algorithm of [9] actually computes the set ssquares(T) together with
all the data in assumption of Lemma 3. These are the short words in the
construction.

In the following section we construct a family F of words (called sealed frag-
ments) that represent the u-squares that contain a hole and compute for them
the data required in Lemma 3. These are the long words in the construction.
Afterwards we list all distinct representatives of u-squares using Lemma 3.
Then non-equivalent u-squares are extracted from their representatives.

4.2 Computing a Special Family of Sealed Fragments

If T is a partial word, then U is a sealed fragment of T if U is a factor of T
with holes substituted by solid symbols. By unseal(U) we denote the original
factor of the partial word.

A sealed fragment is always solid. Obviously, a sealed fragment can be
represented in space proportional to the number of holes that were substituted.
For example, if T [i..i + 2q − 1] is a u-square, then repr(T [i..i + 2q − 1]) is a
sealed fragment.

If W is a (solid) word, then by a d-fragment we mean a concatenation of d
factors W [i1..j1] . . .W [id..jd]. A d-fragment can be represented in O(d) space.
In [19] it was shown that several types of operations on d-fragments can be
performed in O(d) or O(d2) time after O(n)-time preprocessing. We notice
here that a sealed fragment of a partial word T with k holes corresponds to a
d-fragment with d = O(k) in a word that corresponds to T where �♦ is treated
as an alphabet symbol. Thus the following simple fact is a consequence of
Observation 18 from [19] that was stated in terms of d-fragments.

Fact 7 ([19]) For a partial word of length n with k holes, after O(n)-time
preprocessing, the length of the longest common prefix (or suffix) of any two
sealed fragments can be computed in O(k) time. In particular, equality of sealed
fragments can be checked within the same time complexity.

Definition 1 A family of pairs (Wi, qi), where each Wi is a sealed fragment
of a partial word T of length n with k holes and qi is a positive integer, is
called an S-family if it satisfies the following properties:

(a) For every i, qi is a period of Wi and |Wi| ≥ 2qi.
(b) For every i, there are no two holes in unseal(Wi) at distance qi.
(c) For every q = 1, . . . , n, there are O(k) sealed fragments with qi = q.
(d) If X is a non-solid u-square in T , then X is a factor of unseal(Wi) for some

Wi with qi = 1
2 |X|.

10

The size of an S-family follows from point (c).

Observation 8 An S-family contains O(nk) elements and thus can be repre-
sented in O(nk2) space.

In the following lemma we provide an algorithm for constructing an
S-family. Our approach resembles computing anchored squares in the Main-
Lorentz algorithm [20].

Lemma 4 For a partial word T of length n with k holes, an S-family can be
computed in O(nk2) time.

Proof Each non-solid u-square X contains a hole in the first half or in the
second half. Below, we construct an S-family for u-squares containing a hole
in the second half. A symmetric procedure deals with the u-squares containing
a hole in the first half.

For a hole h and integer q, we define the family S(q, h) of u-squares of
length 2q, which contain h as the leftmost hole in the second half. For each
non-empty set S(q, h), we shall construct a sealed fragment W with period q
so that each u-square X ∈ S(q, h) is a factor of unseal(W).

T �♦ �♦ �♦ �♦ �♦

q

a
b

c d

T a c d b $

h

Fig. 3 A partial word T with 5 holes and the corresponding sealed text T with holes sealed
by 5 (solid) symbols implied by the value of q. The rightmost hole is filled by a special unique
marker denoted by $.

First, let us seal the text consistently with the representatives of u-squares
in S(q, h). A hole at position i < hmay only be contained in the first half, while
a hole at position i ≥ h may only be contained in the second half of such a
u-square. Thus, we seal the hole T [i] = �♦ with T [i+q] if i < h, and with T [i−q]
if i ≥ h. Any remaining hole is sealed with a unique marker (distinct for every
hole). This produces a sealed fragment T that covers the whole partial word T ;
see Fig. 3. Let z be the distance between h and the position of the preceding
hole (z = +∞ if there is none). We defineW as a maximal fragment of T which
contains T [h− q..h], is contained in T [h− q−min(q− 1, z− 1)..h+ q− 1], and
has period q. If |W | < 2q, there is no u-square of the desired type and we can
discard W .

The fragmentW is unique and it can be retrieved inO(k) time using Fact 7.
Indeed, it suffices to compute the longest common prefix P of T [h− q..n] and
T [h..n], the longest common suffix S of T [1..h − q] and T [1..h], and take the
possibly trimmed fragment S T [h− q+1..h− 1]P ; see Fig. 4. We may need to

11

T
h

q

P P

S S

W

Fig. 4 The fragment W with period q anchored at h is computed using an operation of
modified longest common extension and its reversed version. We have |S| ≤ min(q−1, z−1),
where z is the distance between h and the position of the preceding hole, and |P | ≤ q − 1.

trim S so that its length exceeds neither q − 1 (so that the hole at position h
is contained in the right half of the square) nor z− 1 (so that h is the leftmost
hole in the right half). Similarly, we may need to trim P to the length q − 1.
In total, the construction takes O(nk2) time.

Let us verify that this construction indeed satisfies the condition of Def-
inition 1. For each hole we construct just one sealed fragment, so the con-
dition (c) is satisfied. Clearly, W has period q and |W | ≥ 2q, which yields
point (a). Moreover, if X = T [i..j] ∈ S(q, h), then repr(X) = T [i..j], so (by
maximality) repr(X) is contained in W , and X is contained in unseal(W).
This gives point (d). Finally, we shall prove that unseal(W) does not contain
two holes at distance q (condition (b)). Suppose that the holes are at positions
i and i+q. Observe that one of the holes is sealed with a unique marker, which
contradicts T [i] = T [i+ q]. This completes the proof. ut

Example 6 Consider the partial word T = ab�♦�♦ba�♦aaba�♦b from Example 3
and q = 2. For the first hole we obtain the following word T :

ab|abbabaababb
with the original positions of holes underlined. The computed sealed fragment
is W = abab. For the second hole we obtain the word T :

abb|bbabaababb
and the sealed fragment bbbb. For the third hole T equals:

abbaba|baababb
and the sealed fragment is ababa so S(2, 8) = {�♦ba�♦, ba�♦a}. Finally, for the
fourth hole T equals:

abbabaaaaba|bb
and the sealed fragment is abab.

Henceforth we denote by F the S-family constructed in Lemma 4. In order
to transform it into an instance of Lemma 3, we need to compute the Lyndon
roots of the sealed fragments Wi (that is, the values first i and `i).

12

4.3 Lyndon Roots of Sealed Fragments

We will show how to compute Lyndon roots λi of sealed fragments (Wi, qi) ∈
F . Obviously, a Lyndon root of a sealed fragment can be represented in the
same space complexity as the sealed fragment itself.

Let us start with the following fact that encapsulates Theorems 20 and 23
from [19].

Fact 9 ([19]) For a word of length n, after O(n)-time preprocessing,

(a) the length of the lexicographically minimal suffix of a d-fragment can be
computed in O(d2) time;

(b) the shift value of the minimal cyclic shift of a d-fragment can be computed
in O(d2) time.

As a consequence of Fact 9(a) we obtain:

Observation 10 For a word of length n, after O(n)-time preprocessing, the
length of the lexicographically maximal suffix of a d-fragment can be computed
in O(d2) time.

Proof To compute the maximal suffix instead of the minimal suffix, we reverse
the lexicographic order on the alphabet and append the d-fragment in question
with a letter that is greater than all the letters from Σ. ut

Fact 9(a) and Observation 10 provide us with the following toolbox for
sealed fragments.

Lemma 5 ([19]) For a partial word of length n with k holes, after O(n)-time
preprocessing,

(a) the length of the lexicographically maximal suffix of a sealed fragment can
be computed in O(k2) time.

(b) the shift value of the minimal cyclic shift of a sealed fragment can be com-
puted in O(k2) time.

Lemma 6 If W is a periodic sealed fragment and q is its period (not neces-
sarily shortest) such that 2q ≤ |W |, then the length of the Lyndon root of W
and its first occurrence in W can be computed in O(k2) time after O(n)-time
preprocessing.

Proof Let s ∈ [0..q−1] be the shift value of the minimal cyclic shift ofW [1..2q]
and i = s+1. It can be computed in O(k2) time using Lemma 5(a). We know
that the Lyndon root λ of W starts at the position s and that its length `
divides q.

We then use Lemma 5(b) to find the starting position i′ of the maximal
suffix of W [i + 1..|W |] with the reversed lexicographic order of the alphabet.
If W [i′..|W |] is a prefix of W [i..|W |], then ` = i′ − i, and otherwise ` = q. We
check this condition in O(k) time using Fact 7. Finally, we return s mod ` and
`; see Fig. 5. ut

13

c b a b c b a b c b a b c b a b c b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 5 We have |W | = 18 and q = 8. The minimal cyclic shift of W [1..16] is (abcb)4

and starts, e.g., at position i = 7, so the shift value is s = 6. Then, the maximal suffix
over reversed alphabet of W [8..18] starts at position i′ = 11. We have ` = i′ − i = 4 and
s mod ` = 2. The Lyndon root of W is abcb.

By point (a) of the definition of an S-family we immediately obtain:

Corollary 2 The Lyndon roots of all sealed fragments (Wi, qi) ∈ F can be
computed in O(nk3) time after O(n)-time preprocessing.

With this missing puzzle we are ready to conclude the algorithm for re-
porting all unambiguous p-square factors of a partial word.

Theorem 11 For a partial word T of length n with k holes, all elements of
the set usquares(T) can be reported in O(nk3) time.

Proof We construct a family of sealed fragments that consists of the solid p-
squares ssquares(T) and an S-family F . By Corollary 1 and Lemma 4, this
family can be constructed in O(nk2) time. We compute Lyndon roots of all
the sealed fragments in O(nk3) time using Corollary 2. For each solid p-square
we may compute its Lyndon root in O(k2) time using Lemma 6; we can also
use the Lyndon roots as computed in [9].

The constructed family satisfies the assumption of Lemma 3 with N =
O(nk). (Actually, if for any sealed factor (Wi, qi) of the S-family F we have
|Wi| = 2qi, we need to check if it equals any of the solid squares of the same
length and, if so, remove it, so that no two short words repeat.) This lemma
lets us report all the distinct representatives of u-squares in O(nk3 + |SQ|)
time. The total number of u-squares that will be generated is O(nk) due to
Theorem 16. This gives the final complexity of the algorithm. ut

5 Combinatorial Bounds for Ambiguous p-Squares

Let T be a partial word of length n with k holes. The upper bound in the case
of a-squares is straightforward.

Theorem 12 If T is a partial word of length n with k holes, then asquares(T) =
O(nk2).

Proof The number of possible lengths of a-squares is at most
(
k
2

)
, since we

have
(
k
2

)
possible distances between the k holes. Consequently, the number of

p-squares with such lengths is at most nk2. ut

Let us proceed to the lower bound proof. We say that a set A of positive
integers is an (m, t)-cover if the following conditions hold:

14

(1) For each d ≥ m, A contains at most one pair of elements with difference d;
(2) | { |j − i| ≥ m : i, j ∈ A } | ≥ t.

Example 7
{1, 2, 3, 6, 9, 12} is a (3, 9)-cover.
{1, 2, 3, 11, 14, 17} is a (8, 9)-cover.

For a set A ⊆ [1..n] we denote by WA,n the partial word of length n over
the alphabet Σ such that WA,n[i] = �♦⇔ i ∈ A, and WA,n[i] = a otherwise.

Lemma 7 Assume that A ⊆ [1..n] is an (m, t)-cover such that m = Θ(n),
|A| = k, and t = Ω(k2). Let Σ = {a, b} be the alphabet. Then

asquares(an−2 ·WA,n · an−2) = Ω(n · k2).

Proof Each even-length factor of an−2 ·WA,n ·an−2 is a p-square. Let Z be the
set of these factors X which contain two positions i < j containing holes with
j − i ≥ m and |X| = 2(j − i). As A is an (m, t)-cover, i and j are determined
uniquely by d = j − i. Then all elements of Z are pairwise non-equivalent
a-squares. The size of Z is Ω(mt) which is Ω(n · k2). ut

Theorem 13 For every positive integer n and k ≤
√
2n, there is a partial

word of length n with k holes that contains Ω(nk2) non-equivalent a-square
factors.

Proof Due to Lemma 7, it is enough to construct a suitable set A. By mono-
tonicity, we may assume that k and n are even. We take:

A = [1..k2] ∪ {j ·
k
2 + n

2 : 1 ≤ j ≤ k
2}.

We claim that A is an (n2 , t)-cover for t = Ω(k2). Indeed, take any i, j ∈ [1..k2].
Then j · k2 + n

2 − i ≥
n
2 and all such values are distinct; hence, t = k2

4 . The
thesis follows from the claim. ut

Example 8 Let us consider the (8, 9)-cover from Example 7, which is a subset
of [1..n] for n = 17, and the partial word an−2 ·WA,n · an−2:

a15�♦�♦�♦aaaaaaa�♦aa�♦aa�♦a15.

This partial word contains all a-squares with representatives being cyclic shifts
of (�♦ai) for i = 7, . . . , 15.

6 Combinatorial Bounds for Unambiguous p-Squares

The following theorem shows a lower bound construction. Afterwards we de-
sign an upper bound that asymptotically matches this lower bound.

Theorem 14 For every positive integers n and k, k ≤ 1
3n, there is a partial

word of length n with k holes that contains Ω(nk) non-equivalent u-square
factors.

15

Proof Let us consider the following partial word over the alphabet {a, b}:

Wm = am−1bam−k�♦kam−1.

Then for every i ∈ [1..k], Wm has m − k + i u-square factors of half length
m − k + i containing the letter b; see also Fig. 6. Altogether the number of
such u-squares is:

k∑
i=1

m− k + i = Ω(nk),

where n = 3m− 1 = |Wm|. If n gives a different remainder modulo 3, we can
pad Wm with the letter a. ut

b a a �♦ �♦ a a a
a b a a �♦ �♦ a a

a a b a a �♦ �♦ a
a a a b a a �♦ �♦

Wm: a a a b a a �♦ �♦ a a a

Fig. 6 The u-square factors of half length 4 with the letter b inWm = am−1bam−k�♦kam−1

for m = 4, k = 2.

If X is a partial word, then by LONG(X) we denote the set of all p-squares
of length at least 1

2 |X| which occur in X as a prefix.
If A is a set of numbers, |A| ≥ 2, then we denote

mingap(A) = min{|b− a| : a, b ∈ A, a 6= b}.

If Z is a set of partial words, then mingap(Z) denotes mingap({|S| : S ∈ Z}).

Lemma 8 (Three p-Squares Lemma) Let X be a partial word with k
holes. Assume that the set LONG(X) contains at least three elements. Then
δ = mingap(LONG(X))/2 is a 12k-approximate quantum period of the longest
p-square in LONG(X).

Proof Let B,C ∈ LONG(X) be p-squares such that |B|− |C| = 2δ. Also let A
and D be the longest and the shortest element of LONG(X), respectively. Let
|A| = 2a, |B| = 2b, |C| = 2c, |D| = 2d. We aim to show that Misδ(A) ≤ 12k.
We consider two cases, depending on whether B 6= A or B = A.

Case B 6= A: Let us consider the following intervals (see Fig. 7):

I1 = (0..c] I2 = (c− δ..b] I3 = (c..b+ c] I4 = (2c..2b] I5 = (b+ c..2a].

Let mq = |{i ∈ Iq : i− δ ∈ Iq, Xi−δ 6≈ Xi}|. We show the following inequali-
ties:

16

C

B

A

I1

I2

I3

I4

I5

δ

δ

≥ δ

c− δ c b a 2c b+ c 2b 2a

Fig. 7 B 6= A

(I) m1 ≤ k:
Assume that i ∈ Misδ(A)∩ I1. Note that Xi ≈ Xi+c ≈ Xi+c−b = Xi−δ due
to p-squares B and C, respectively. Hence, Xi 6≈ Xi−δ may hold only if
Xi+c = �♦.

(II) m3 ≤ k:
Assume that i ∈ Misδ(A)∩I3. Note that b < i ≤ b+c. Hence, Xi ≈ Xi−b ≈
Xi−b+c = Xi−δ due to p-squares B and C, respectively. Consequently,
Xi 6≈ Xi−δ may hold only if Xi−b = �♦.

(III) m4 ≤ m1 + k:
Assume that i ∈ Misδ(A) ∩ I4. Note that a < i − δ < i ≤ 2a. Let J =
(2c − a..2b − a]. Note that X[I4] ≈ X[J] due to p-square A and that
J ⊆ I1. We apply Lemma 2(c) to X[I4] and X[J] to conclude.

(IV) m2 ≤ m4 + k:
Assume that i ∈ Misδ(A) ∩ I2. Note that c − δ < i − δ < i ≤ b. Note
that X[I2] ≈ X[I4] due to p-square B. We apply Lemma 2(c) to X[I2] and
X[I4] to conclude.

(V) m4 +m5 ≤ m1 +m2 +m3 + 2k:
Assume that i ∈ Misδ(A) ∩ (I4 ∪ I5). Note that a < i − δ < i ≤ 2a. Let
J = (2c − a..a]. Note that X[I4 ∪ I5] ≈ X[J] due to p-square A and that
J ⊆ I1∪ I2∪ I3. We apply Lemma 2(b) to X[I4∪ I5] and X[J] to conclude.

We conclude that |Misδ(A)| = m1+m2+m3+(m4+m5) ≤ k+3k+k+7k = 12k.

Case B = A: Let us consider the following intervals (see Fig. 8):

I ′1 = (0..c] I ′2 = (c− δ..b] I ′3 = (c..b+ c] I ′4 = (2c..2b].

Let m′q = |{i ∈ I ′q : i− δ ∈ I ′q, Xi−δ 6≈ Xi}|. We show the following inequali-
ties:

17

D

C

A = B

I′1

I′2

I′3

I′4

δ

≥ δ

δ

d c− δ c b 2c b+ c 2b

Fig. 8 B = A

(I) m′1 ≤ k:
Assume that i ∈ Misδ(A)∩ I ′1. Note that Xi ≈ Xi+c ≈ Xi+c−b = Xi−δ due
to p-squares B and C, respectively. Hence, Xi 6≈ Xi−δ may hold only if
Xi+c = �♦.

(II) m′3 ≤ k:
Assume that i ∈ Misδ(A)∩I ′3. Note that b < i < b+c. Hence, Xi ≈ Xi−b ≈
Xi−b+c = Xi−δ due to p-squares B and C, respectively. Consequently,
Xi 6≈ Xi−δ may hold only if Xi−b = �♦.

(III) m′2 ≤ m′1 + k:
Assume that i ∈ Misδ(A) ∩ I ′2. Note that d < c − δ < i − δ < i ≤ b ≤ 2d.
Let J = (c− δ − d..b− d]. Note that X[I ′2] ≈ X[J] due to p-square D and
that J ⊆ I ′1. We apply Lemma 2(c) to X[I ′2] and X[J] to conclude.

(IV) m′4 ≤ m′2 + k:
Assume that i ∈ Misδ(A)∩ I ′4. Note that X[I ′4] ≈ X[I ′2] due to p-square B.
We apply Lemma 2(c) to X[I ′4] and X[I ′2] to conclude.

We conclude that |Misδ(A)| = m′1+m
′
2+m

′
3+m

′
4 ≤ k+2k+k+3k = 7k. ut

Recall that a deterministic period of a partial word X is an integer q such
that there exists a (solid) word W such that W ≈ X and W has a period q. In
the following lemma we show that if the set LONG(X) is large enough, then
the majority of its elements have strong periodic properties.

Lemma 9 Let X be a partial word with k holes. Assume that the set LONG(X)
contains at least 16k+3 elements. Then δ = mingap(LONG(X))/2 is a deter-
ministic period of all p-squares from LONG(X) excluding possibly the 2k + 1
longest ones.

Proof Let LONG ′(X) be the set LONG(X) without the 2k + 1 longest ele-
ments, A be the longest p-square in LONG(X), and B be the longest p-square
in LONG ′(X). We start by a proof of a weaker property. In the proof we will
use the fact that |Misδ(A)| ≤ 12k (Lemma 8).

18

Claim δ is a quantum period of B.

Proof Assume to the contrary that B does not have quantum period δ, i.e.,
that Misδ(B) 6= ∅. Let i be the minimum index in Misδ(B).

1. Let us count the p-squares from LONG(X) that contain the position
i in the first half. Let C ∈ LONG(X), |C| = 2c, be such a p-square. Then
Xi+c ≈ Xi 6≈ Xi−δ ≈ Xi+c−δ. Hence, either at least one of the positions Xi+c

and Xi+c−δ contains a hole (2k possibilities), or Xi+c 6≈ Xi+c−δ which means
that i ∈ Misδ(A) (12k possibilities due to Lemma 8). Therefore, there can be
at most 14k such p-squares.

2. Let us count the p-squares from LONG(X) that contain i − δ in the
first half and i in the second half. There can be at most one such p-square.
Otherwise there would be two p-squares in LONG(X) whose halves’ lengths
differ by less than δ, contradicting the definition of δ.

3. Let us count the p-squares from LONG(X) that contain both positions
i−δ and i in the second half. Let C ∈ LONG(X), |C| = 2c, be such a p-square.
Then Xi−c ≈ Xi 6≈ Xi−δ ≈ Xi−c−δ. Hence, at least one of the positions Xi−c
and Xi−c−δ contains a hole (they cannot form a mismatch, as i was selected
as the minimal index). This gives 2k possibilities for such a p-square.

4. We will show that there are no p-squares from LONG(X) that do not
contain the position i. If such a p-square existed, then we would have |X|/2 <
i−δ < i ≤ |B|, so i−δ and i would be contained in right halves of all p-squares
that are at least as long as B. There are 2k + 1 of them, which contradicts
point 3.

Each p-square in LONG(X) accounts to one of the categories 1-4. We
have shown that there can be at most 16k + 1 p-squares in LONG(X) which
contradicts the assumptions of the lemma. This completes the proof of the
claim. ut

Now we strengthen the previous claim and prove that δ is a deterministic
period of B. This will conclude the proof since all the p-squares in LONG ′(X)
are prefixes of B.

Assume that this is not true and let d be minimal such that Bi−dδ 6≈ Bi
and let i be the minimal such index i. Hence, Bi−δ = . . . = Bi−(d−1)δ = �♦.
Therefore, d ≤ k + 1, and by the claim, d ≥ 2. Moreover, k > 0.

1. Let us count the p-squares C ∈ LONG(X), |C| = 2c, that contain i in
the first half. Let j = i + c. If j > |B|, then C ∈ LONG(X) \ LONG ′(X)
and there are 2k + 1 such p-squares. Otherwise, there can be at most 3k p-
squares C ∈ LONG ′(X) for which any of the positions j−dδ, j−δ, j contains
a hole. Assume otherwise. Then Bj−dδ = Bi−dδ 6≈ Bi = Bj and Bj−δ 6= �♦.
Hence, Bj−δ 6≈ Bj−dδ or Bj−δ 6≈ Bj , either of which contradicts the way d
was selected. In total, there can be 5k + 1 of the considered p-squares.

2. Let us count the p-squares from LONG(X) that contain i − dδ in the
first half and i in the second half. There can be at most d of them, as otherwise
there would be two p-squares in LONG(X) whose halves’ lengths differ by less
than δ, a contradiction. Hence, the number of such p-squares is at most k+1.

19

3. Let us count the p-squares C ∈ LONG(X), |C| = 2c, that contain both
positions i− dδ and i in the second half. Let j = i− c. There can be at most
2k such p-squares C for which any of the positions j − dδ, j contains a hole.
Assume otherwise. Then Bj−dδ 6≈ Bj which contradicts the definition of i.

4. Let us count the p-squares that contain the position i−dδ in the second
half and do not contain the position i. Using the same argument as in 2, we
see that there are at most k + 1 of them.

5. Finally, we will show that there are no p-squares in LONG(X) that do
not contain the position i− dδ. If such a p-square existed, then both positions
i−dδ and i would be contained in right halves of all p-squares from LONG(X)\
LONG ′(X). There are 2k + 1 of them, which contradicts point 3.

Each p-square in LONG(X) accounts to one of the categories 1-5. We
have shown that there can be at most 9k + 3 p-squares in LONG(X) which
contradicts the assumptions of the lemma, as k > 0. This completes the proof
of the lemma. ut

By U-Pref (X) we denote the set of unambiguous p-squares in LONG(X)
that occur in X only as a prefix.

Lemma 10 Let X be a partial word with k holes. Then |U-Pref (X)| < 16k+3.

Proof Assume to the contrary that |U-Pref (X)| ≥ 16k + 3. Let us recall that
U-Pref (X) ⊆ LONG(X) so the assumptions of Lemma 9 are satisfied.

Let U-Pref ′(X) be the set U-Pref (X) without the 2k+1 longest elements.
By Lemma 9, each p-square in U-Pref ′(X) has a deterministic period δ =
mingap(LONG(X))/2.

Let us assume that B = X[1..2a] ∈ U-Pref ′(X) and let W 2 be its (solid)
representative. Then C = X[1+ δ..2a+ δ] is a p-square, as it matches W 2 due
to the deterministic period δ. If X[2a+1..2a+ δ] did not contain a hole, then
C would be another occurrence of a u-square with representative W 2. This
would contradict the assumption that B ∈ U-Pref (X).

Note that the fragments of the form X[2a + 1..2a + δ] for X[1..2a] ∈
U-Pref ′(X) are pairwise disjoint due to the definition of δ. What follows is
that |U-Pref ′(X)| ≤ k and |U-Pref (X)| ≤ 3k + 1, a contradiction. ut

We say that a solid square W 2 has a solid occurrence in T if T contains a
factor equal to W 2. By the following fact, there are at most 2n non-equivalent
p-square factors of T with solid occurrences.

Fact 15 ([14,18,11]) Every position of a (solid) word contains at most two
rightmost occurrences of squares.

In the proof of the upper bound on the number of u-squares we separately
count u-squares that have a solid occurrence and those that do not. In the
latter case, we use Lemma 10, which lets us bound |U-Pref (X)| by 19k in case
that k > 0.

Theorem 16 If T is a partial word of length n with k holes, then usquares(T) =
O(nk).

20

Proof Let us recall that by B(T) we denote the set of all basic factors of T . If
T [i..i+ `− 1] is a rightmost occurrence of a u-square V , then V ∈ U-Pref (W)
for some W ∈ B(T). (In particular, W = Ti,q for q = dlog `e.) This lets us
bound usquares(T) as follows:

usquares(T) ≤
∑

W∈B(T)

|U-Pref (W)|

{Fact 15} ≤ 2n+
∑

W∈B(T):#�♦(W)>0

|U-Pref (W)|

{Lemma 10} < 2n+ 19
∑

W∈B(T)

#�♦(W)

{Lemma 1} ≤ 2n+ 38nk.

This concludes the proof. ut

Acknowledgements. Tomasz Kociumaka is supported by Polish budget funds
for science in 2013-2017 as a research project under the ‘Diamond Grant’ pro-
gram, grant no. DI2012 017942. Jakub Radoszewski, Wojciech Rytter, and
Tomasz Waleń are supported by the Polish National Science Center, grant no.
2014/13/B/ST6/00770.

References

1. Bannai, H., Inenaga, S., Köppl, D.: Computing all distinct squares in linear time for
integer alphabets. In: J. Kärkkäinen, J. Radoszewski, W. Rytter (eds.) 28th Annual
Symposium on Combinatorial Pattern Matching, CPM 2017, LIPIcs, vol. 78, pp. 22:1–
22:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). DOI 10.4230/LIPIcs.
CPM.2017.22

2. Blanchet-Sadri, F., Bodnar, M., Nikkel, J., Quigley, J.D., Zhang, X.: Squares and prim-
itivity in partial words. Discrete Applied Mathematics 185, 26–37 (2015). DOI
10.1016/j.dam.2014.12.003

3. Blanchet-Sadri, F., Jiao, Y., Machacek, J.M., Quigley, J., Zhang, X.: Squares in
partial words. Theoretical Computer Science 530, 42–57 (2014). DOI 10.1007/
978-3-642-31653-1_36

4. Blanchet-Sadri, F., Mercaş, R.: A note on the number of squares in a partial word
with one hole. Informatique Théorique et Applications 43(4), 767–774 (2009). DOI
10.1051/ita/2009019

5. Blanchet-Sadri, F., Mercaş, R.: The three-squares lemma for partial words with one
hole. Theoretical Computer Science 428, 1–9 (2012). DOI 10.1016/j.tcs.2012.01.012

6. Blanchet-Sadri, F., Mercaş, R., Scott, G.: Counting distinct squares in partial words.
Acta Cybernetica 19(2), 465–477 (2009)

7. Blanchet-Sadri, F., Nikkel, J., Quigley, J.D., Zhang, X.: Computing primitively-rooted
squares and runs in partial words. In: J. Kratochvíl, M. Miller, D. Froncek (eds.)
Combinatorial Algorithms, IWOCA 2014, Lecture Notes in Computer Science, vol. 8986,
pp. 86–97. Springer (2014). DOI 10.1007/978-3-319-19315-1_8

8. Charalampopoulos, P., Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P.,
Radoszewski, J., Rytter, W., Waleń, T.: Efficient enumeration of non-equivalent
squares in partial words with few holes. In: Y. Cao, J. Chen (eds.) Computing and
Combinatorics - 23rd International Conference, COCOON 2017, Proceedings, Lec-
ture Notes in Computer Science, vol. 10392, pp. 99–111. Springer (2017). DOI
10.1007/978-3-319-62389-4_9

21

9. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.:
Extracting powers and periods in a word from its runs structure. Theoretical Computer
Science 521, 29–41 (2014). DOI 10.1016/j.tcs.2013.11.018

10. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string searching.
Algorithmica 13(5), 405–425 (1995). DOI 10.1007/BF01190846

11. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discrete Applied Mathematics 180, 52–69 (2015). DOI 10.1016/j.dam.2014.08.016

12. Diaconu, A., Manea, F., Tiseanu, C.: Combinatorial queries and updates on partial
words. In: M. Kutyłowski, W. Charatonik, M. Gębala (eds.) Fundamentals of Compu-
tation Theory, FCT 2009, Lecture Notes in Computer Science, vol. 5699, pp. 96–108.
Springer (2009). DOI 10.1007/978-3-642-03409-1_10

13. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS, pp. 137–
143. IEEE Computer Society (1997)

14. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? Journal of Com-
binatorial Theory. Series A 82(1), 112–120 (1998). DOI 10.1006/jcta.1997.2843

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press (1997)

16. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tan-
dem repeats in a string. Journal of Computer and System Sciences 69(4), 525–546
(2004). DOI 10.1016/j.jcss.2004.03.004

17. Halava, V., Harju, T., Kärki, T.: On the number of squares in partial words. RAIRO
– Theoretical Informatics and Applications 44(1), 125–138 (2010). DOI 10.1051/ita/
2010008

18. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares. Journal of
Combinatorial Theory. Series A 112(1), 163–164 (2005). DOI 10.1016/j.jcta.2005.01.006

19. Kociumaka, T.: Minimal suffix and rotation of a substring in optimal time. In: R. Grossi,
M. Lewenstein (eds.) Combinatorial Pattern Matching, CPM 2016, LIPIcs, vol. 54, pp.
28:1–28:12. Schloss Dagstuhl (2016). DOI 10.4230/LIPIcs.CPM.2016.28

20. Main, M.G., Lorentz, R.J.: An O(n logn) algorithm for finding all repetitions in a
string. Journal of Algorithms 5(3), 422 – 432 (1984). DOI https://doi.org/10.1016/
0196-6774(84)90021-X

21. Manea, F., Mercaş, R., Tiseanu, C.: An algorithmic toolbox for periodic partial words.
Discrete Applied Mathematics 179, 174–192 (2014). DOI 10.1016/j.dam.2014.07.017

22. Manea, F., Tiseanu, C.: Hard counting problems for partial words. In: A. Dediu, H. Fer-
nau, C. Martín-Vide (eds.) Language and Automata Theory and Applications, LATA
2010, Lecture Notes in Computer Science, vol. 6031, pp. 426–438. Springer (2010). DOI
10.1007/978-3-642-13089-2_36

22

	Introduction
	Preliminaries
	Computing All p-Squares of Specified Length and Non-Equivalent Ambiguous p-Squares
	Computing All Non-Equivalent Unambiguous p-Squares
	Combinatorial Bounds for Ambiguous p-Squares
	Combinatorial Bounds for Unambiguous p-Squares

