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Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G,
degree constraints d*,d~ : V(G) — Zxo.
Find: A subset F C E(G) and its orientation F such that:

o degf(v) < dT(v) for each v € V(G),
o degy(v) < d(v) for each v € V(G).
Maximize: |F]|
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Previous work: Gabow, SODA 2006
e Natural reduction to 3-SET PACKING
(3-DIMENSIONAL MATCHING),
o (3/2 + ¢)-approximation (since 1989),
o (4/3 + £)-approximation (since 2013).
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Previous work: Gabow, SODA 2006
e Natural reduction to 3-SET PACKING
(3-DIMENSIONAL MATCHING),
e (3/2 + €)-approximation (since 1989),
o (4/3 + £)-approximation (since 2013).
@ Natural LP relaxation,
o LP-rounding approximation algorithm (ratio 4/3),
o lower bound 5/4 for LP gap.

@ APX-hardness.

This work:
@ improved analysis of existing 3-SET PACKING algorithms
on instances coming from UDPO:

©3/24+ec—4/3+¢
o 4/34+ ¢ —> 5/4+ ¢ (best known for ratio UDPO)
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Input: a family F C 2V of sets of size at most k.
Goal: find a maximum-size subfamily of F of pairwise disjoint sets.
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Input: a family F C 2V of sets of size at most k.
Goal: find a maximum-size subfamily of F of pairwise disjoint sets.

3-DIMENSIONAL MATCHING

Input: a universe U=XW YW Z, afamily FC X x Y x Z.
Goal: find a maximum-size subfamily of F of pairwise disjoint sets.
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Reduction to 3-DIMENSIONAL MATCHING

V* d*(v) copies of each vertex v € V,
V= d~(v) copies of each vertex v € V,
E the set of (undirected) edges,

F (v, u; ,e) and (uft, v; ,e) for each e = uv.

E
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Local-Search Algorithm for k-SET PACKING

p-local search for k-SET PACKING

Set A = 0.
While there exists Y C F such that:

@ the symmetric difference AAY consists of disjoint sets,
o |AAY| > |A|,
o |[Y\Al <p.

Set A := AAY.
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Local-Search Algorithm for k-SET PACKING

p-local search for k-SET PACKING

Set A = 0.
While there exists Y C F such that:

@ the symmetric difference AAY consists of disjoint sets,
o |AAY| > |A|,
o |[Y\Al <p.

Set A := AAY.

We then call Y\ A a p-improving set.
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Approximation Ratios

Approximation ratios of p-local search for k-SET PACKING and

UPDO (upper bounds).

author p k-SP | UDPO
folklore 1 k
folklore 2 T(k+1)
Hurkens & Schrijver [1989] | O(1) T(k+e)
Cygan et al. [2013] O(logn) | 3(k+1+¢)
Cygan [2013] O(log n)* | 3(k+1+¢)

*Considering only special type of improving sets of size O(log n),
possible to find in polynomial time.
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Approximation Ratios

Approximation ratios of p-local search for k-SET PACKING and
UPDO (upper bounds).

author p k-SP | UDPO
folklore 1 k
folklore 2 %(k +1)
Hurkens & Schrijver [1989] 0(1) T(k+e) +e
Cygan et al. [2013] O(log n) %(k +1+¢)
Cygan [2013] O(logn)* | J(k+1+e) | 2+¢

*Considering only special type of improving sets of size O(log n),
possible to find in polynomial time.
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Local & Global Optima

Definition

A local optimum F has no improving set (satisfying considered
constraints), while a global optimum OPT is largest possible.
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Simple Instances

Definition

An instance of UDPO is simple if d*,d™ : V(G) — {0,1}.
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Simple Instances

Definition

An instance of UDPO is simple if d*,d™ : V(G) — {0,1}.

Motivation:
2006: Gabow UDPO on simple instances is already APX-hard.

Benefit:
@ sets in 3-SET PACKING bijectively map to edge orientations,
@ any feasible solution in a set of paths and cycles.
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Reduction to Simple Instances

For an arbitrary instance I, and two local optima A and B, there is
a simple instance I" with local optima A’ and B’ satisfying
|A| = |A’] and |B| = |B'|.

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 10/15



Reduction to Simple Instances

For an arbitrary instance I, and two local optima A and B, there is
a simple instance I" with local optima A’ and B’ satisfying
|A| = |A’] and |B| = |B'|.

Splitting vertices:

(1,0) @ 1,1)

o
.(0,2) (1, 1:)’/

(1,1) o= ®(2,1)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 10/15



Reduction to Simple Instances

For an arbitrary instance I, and two local optima A and B, there is
a simple instance I" with local optima A’ and B’ satisfying
|A| = |A’] and |B| = |B'|.

Splitting vertices:

(1,0) @ eo(1,1)
(0,1)e @ 1:)0/

(0,1)
(1,1) 0= e(2,1)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations



Reduction to Simple Instances

For an arbitrary instance I, and two local optima A and B, there is
a simple instance I" with local optima A’ and B’ satisfying
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Few Common Edges: Improved Analysis

Conflicts between edges in F and OPT are represented in a graph.
@ bipartite,

@ degrees between 1 and 3.

3|OPT| < #{t==)tF1 3(1 + <) |F| + |{e € F : deg(e) = 3}
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@ bipartite,

@ degrees between 1 and 3.

3|OPT| < #{t==)tF1 3(1 + <) |F| + |{e € F : deg(e) = 3}

What three conflicting edges may uv € F have in OPT?

@ an edge leaving u (at most one),
@ an edge entering v (at most one),
@ the reverse edge vu.
3|OPT| < 3(1 +¢)|F| +|F N OPT].

If |[FNOPT| < 3|F

, then F is a (5/4 + ¢)-approximate solution.
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Many Common Edges: Exploiting the Structure

What if we insist on adding an edge e € OPT \ F to F?
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Many Common Edges: 4-SET PACKING

HHH'

»—»0—»/ .

P

A

Build a conflict graph between OPT \ F and F \ OPT.
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Many Common Edges: 4-SET PACKING
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P

A

Build a conflict graph between OPT \ F and F \ OPT.

in conflict: incident to the same component of OPT N F,

degrees: between 1 and 4,

o

@ improving set requires reorienting adjacent component,
@ ignore edges incident to ©(e|F|) largest components,
o

constant-size (O(s~1)-size) components remain.
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Many Common Edges: 4-SET PACKING

HHH'

:—»0—»/ .

P

A

Build a conflict graph between OPT \ F and F \ OPT.
@ in conflict: incident to the same component of OPT N F,
@ degrees: between 1 and 4,
@ improving set requires reorienting adjacent component,
@ ignore edges incident to ©(e|F|) largest components,

e constant-size (O(c~1)-size) components remain.

Local search maximum F satisfies |O OPT \ F| < 2|F\ OPT| +5|F|.
|OPT| < (1+¢)|F|+|F\ OPT| < (3 +¢)|F| if[F\ OPT| < X|F|.
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Conclusions and Open Problems

Our results:

@ Local-search algorithms for 3-SET PACKING perform better
on UDPO instances:
o O(1)-local-search (Hurkens & Schrijver, 1989): 4/3 + ¢,
o restricted O(log n)-local-search (Cygan, 2013): 5/4 + ¢.
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Conclusions and Open Problems

Our results:

@ Local-search algorithms for 3-SET PACKING perform better
on UDPO instances:

o O(1)-local-search (Hurkens & Schrijver, 1989): 4/3 + ¢,
o restricted O(log n)-local-search (Cygan, 2013): 5/4 + ¢.
@ Improved state-of-the art approximation ratio.

© Reduction to simple instances for reasonable local-search rules.

Open problems:
o Tight example? Improved analysis?
e One can restrict to simple instances.
@ Improved approximation ratio?
o O(log n)-local search: (11/9+ ¢)! (not in the paper),
e quasipolynomial running time,
e polynomial-time (11/9 + ¢)-approximation?
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