MATHEMATICAL MODEL OF THE TURBULENT FLOW BY MAREK BURNAT

In the simplest case the equations of the model are as follows

(1)
$$\frac{\partial \rho}{\partial t}(t,\underline{x},\underline{\alpha}) + \underline{\alpha}\nabla_{\underline{x}}\rho(t,\underline{x},\underline{\alpha}) - \nu\Delta_{\underline{x}}\rho(t,\underline{x},\underline{\alpha}) + -\kappa \int_{\mathcal{A}} M(t,\underline{x},\underline{\alpha},\underline{\beta},\rho(t,\underline{x},\underline{\alpha}),\rho(t,\underline{x},\underline{\beta}))d\underline{\beta} = 0.$$

Clearly the above equations have to be completed by certain convenient initial and boundary conditions. The function to be found is $\rho(t, \underline{x}, \underline{\alpha})$, it is the α -mass density function. So called 'Euler mass density function' can be computed by integration

$$\rho(t,\underline{x}) = \int_{\mathcal{A}} \rho(t,\underline{x},\underline{\alpha}) d\underline{\alpha}.$$

The independent variables of the model are

t- time, $\underline{x} \in \Omega \subset \mathbb{R}^3$ - space variables, $\underline{\alpha} \in \mathcal{A} \subset \mathbb{R}^3$ - " α -velocities". The nonlinear function M of several variables is called *the mixer*. It serves to mix together various elements of the set

$$\{\rho(t, \underline{x}, \underline{\alpha}) | \underline{x} \in \Omega, \underline{\alpha} \in \mathcal{A}\}$$

in such a way that the most important conservation laws are satisfied. Some details of this model and of its first one-dimensional numerical approximation can be found in [1].

Now, from the beginning of 2010 the new 2-dimensional approximation of the model have been implemented on the cluster halo2 (ICM U.W.) It is worth to note that in two-dimensional model the sets Ω and \mathcal{A} are of the dimension 2. This means that the problem (if we don't take into consideration the time variable t) is of the dimension 4.

References

 Marek Burnat, Krzysztof Moszyski "ON SOME PROBLEMS IN MATHEMATICAL MODELING OF TURBULENT FLOW", Journal of Technical Physics, 48, 3-4, 171-192, 2007.