LECTURE 9
NEW HINT
NEW HIT
TIME SPLITTING!

Instead of introduction: a very simple example.
Consider the initial value problem for Ordinary Differential Equations (ODE)

(1) W= P+ ), L€ [ttt T, ultn) = a

and the following two initial value problems:

dv
(2) E = f(v)a t e [tn’ tn + T], U(tn) = a
3 dw = t t,,t t,) = v(t
(3) E—g(w)a € [tnstn + 7], w(t,) =v(t, + 7).

What can we expect concerning the difference:
u(t) — w(t), tE€ [tp,t, + 7|7
May be it is small? Answer is:

YES! and in many cases,
providing that the time step 7 is reasonably small.

Sometimes, for certain reasons it may be better, to solve the system (2)(3),
than to solve the equation (1). We can try, in such a case, to approximate
the solution w of the equation (1), by the solution w of the equation (3)!

THIS IS THE TIME SPLITTING METHOD

'In, fact idea of the method here described is relatively old: probably it was applied
for the first time by D.W.Paceman and H.H Rachford jr. in 1955.



Look at the SPLITTING DIAGRAM:

time level n+1 v(¢t, + 1) wt, +7) =~ u(t,+71)
T N T
time level n v(tn) v(t, +7)

The left uparrow corresponds to solving (2), while right one corresponds to
solving (3).

EXAMPLE.

The TIME SPLITTING may be applied for partial differential equations.
Let us consider the transport equation in two space dimensions:

(4) u+aVu =0, a=[a,a], u=u(tz,z2).

Here ; € [0, L1], x2 € [0, Ls], and Vu = [ug,, uz,]T. Let us rewrite
the equation (4) in the following equivalent form

(5) U + AUy, + Uy, = 0.
For equation (4)(5) we have the initial condition:
u(0, 1, x2) = P(x1,x2).
The boundary conditions (depending on the sign of a; and asz) are also

needed.

We can split equation (4)(5) in the followig way:

(6) u1,t(t, 1, T2) + Q1U1 4, (T, 1, 22) = 0,

We have initial condition for (6): w1(0,x1,x2) = ¢(x1,x2) This
equation needs the boundary condition at one of ends of the interval
[0, L1]. Observe that x; is an ’active’ variable of differential equation,
while x5 is a parameter. It runs over the interval [0, Lo].



(7) ’Ll,27t(t, i, wz) + a2u2,m2 (t, T, $2) = O.

For (7) we have the same initial conddition as for (6): uz(0, x1,x2) =
¢(x1, x2). Here also the boundary condition at one of ends but of the
interval [0, Ls] is necessary; now & is a parameter runing over [0, L4],
while x5 is the active variable of the differential equation.

A TEOREM ON APPROXIMATION
The theorem below concerns the case of spliting: (1)=>(2)(3).

THEOREM.
Let:

e (X,|-]|) be alinear normed space
e f,g: X - X
® UuU,v,w : [tnatn—}—l] — Xa tn+1 — tn+7-; T>0

o (X |l |loo) be a linear, B-space of functions x : [tp,tni1] — X,

such that ||z]lcoc = SUPe(t, 1,1 1Z(E)] < 00

We assume about (1), (2), (3) that:
o u, v, weE X,

o there ewist positive constants Ly, Lo, Ky, K, such that if =
u, v, w then ||f(x)|lo < Ky, ||9(x)]|lcc < K, and that for all

x, y € X the following Lipschitz conditions

|f(x) — fF(y)| < Lylz —y|, |g(x) —g(y)| < Lg|lx — y|

are satisfied.

Under above conditions, for solutions o w, v, w of equations (1)(2)(3)
following estimates hold:

TK
(8) lu —v]loo < ———
1—TLf

9



K K, L
9  fu—wlow <7 + 72 e = O().
1—-7L, (1—7Ls)(1 — 7Ly)
However it 1s to note that:
(10) [u(tnt1) — w(tny1)| <
K, L L. K K, L:L
< 72 gf +7_2 g™ f +7_3 gt ftg :O(Tz).
- 1—171Ly 1—7Lg (1 —7Lg)(1 —TLy)

The inequglity (10) says that at the point t,41 the ’'SUPER-CONVER-
GENCE’ occurs. This means that the order of approximation at the
point t,,, is greater then the order of approximation in norm.

CONCLUSION. From above investigations it follows, that for the time

spplitting
(1) = (3)(2)

the choice w(t,41) is not only the most intuitive, but really the best!

Proof. We have:

) ut) =a+ [ Fu@)ds+ [ glu(s)ds
(2) o®) =a+ [ F(u(s)ds
) w®) =a+ [T fwE)ds+ [ glw(s)ds

To prove (8) observe that

a(t) = o(t) = [ [Fu(s) = F()ds+ | glu(s)ds
hence Vt € [t,, tni1]

[u(t) —v(t)| < TLfllu — vl + 7K.



hence

TK
(8) [t — )| < ——.
1—‘7'Lf

w(t) —u(t) = /:1“ f(v(s))ds + /ti g(w(s))ds
— [ fu()ds — [ glu(s)ds
— [ fsnds+ [ fw(s)ds

this gives

w(t) - u(t) = [ Fo(s)ds + [ 1((s)) = Flu(s))ds

+ [ lo(w(s) - gluls))lds

Now applying (8) we get

K L
(*)  Jw(t) — w(@®)| < |tnp1 — t1K; + 7220 4 7Ly|lu — wl|e
1 — TLf

Tacking 'sup’ over both sides of this last inequality we get:

K, L
lw — ulloo < TK; +72—20 4 7Lyllu — wl|o
1 —TLf

Finally:

K K,L
9) Jlu—w|e <T ;472 9—f

ST oeL, T a—rLpi—rL,) 0T

Let us go back to the formula (). If we put ¢ = ¢,,41, then the first term
on the RHS desapears. Now applying (9), we get (10). O



