LECTURE 9
 NEW HINT
 NEW HIT
 TIME SPLITTING ${ }^{1}$

Instead of introduction: a very simple example.
Consider the initial value problem for Ordinary Differential Equations (ODE)

$$
\begin{equation*}
\frac{d u}{d t}=f(u)+g(u), \quad t \in\left[t_{n}, t_{n}+\tau\right], \quad u\left(t_{n}\right)=a \tag{1}
\end{equation*}
$$

and the following two initial value problems:

$$
\begin{equation*}
\frac{d v}{d t}=f(v), \quad t \in\left[t_{n}, t_{n}+\tau\right], \quad v\left(t_{n}\right)=a \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d w}{d t}=g(w), \quad t \in\left[t_{n}, t_{n}+\tau\right], \quad w\left(t_{n}\right)=v\left(t_{n}+\tau\right) \tag{3}
\end{equation*}
$$

What can we expect concerning the difference:

$$
u(t)-w(t), \quad t \in\left[t_{n}, t_{n}+\tau\right] ?
$$

May be it is small? Answer is:

> YES! and in many cases, providing that the time step τ is reasonably small.

Sometimes, for certain reasons it may be better, to solve the system (2)(3), than to solve the equation (1). We can try, in such a case, to approximate the solution \boldsymbol{u} of the equation (1), by the solution \boldsymbol{w} of the equation (3)!

THIS IS THE TIME SPLITTING METHOD

[^0]Look at the SPLITTING DIAGRAM:

The left uparrow corresponds to solving (2), while right one corresponds to solving (3).

EXAMPLE.

The TIME SPLITTING may be applied for partial differential equations. Let us consider the transport equation in two space dimensions:

$$
\begin{equation*}
u_{t}+\underline{\alpha} \nabla u=0, \quad \underline{\alpha}=\left[\alpha_{1}, \alpha_{2}\right], \quad u=u\left(t, x_{1}, x_{2}\right) \tag{4}
\end{equation*}
$$

Here $\boldsymbol{x}_{\mathbf{1}} \in\left[0, \boldsymbol{L}_{\mathbf{1}}\right], \boldsymbol{x}_{\mathbf{2}} \in\left[\mathbf{0}, \boldsymbol{L}_{\mathbf{2}}\right]$, and $\boldsymbol{\nabla} \boldsymbol{u}=\left[\boldsymbol{u}_{\boldsymbol{x}_{1}}, \boldsymbol{u}_{\boldsymbol{x}_{2}}\right]^{\boldsymbol{T}}$. Let us rewrite the equation (4) in the following equivalent form

$$
\begin{equation*}
u_{t}+\alpha_{1} u_{x_{1}}+\alpha_{2} u_{x_{2}}=0 \tag{5}
\end{equation*}
$$

For equation (4)(5) we have the initial condition:

$$
u\left(0, x_{1}, x_{2}\right)=\phi\left(x_{1}, x_{2}\right)
$$

The boundary conditions (depending on the sign of $\boldsymbol{\alpha}_{\boldsymbol{1}}$ and $\boldsymbol{\alpha}_{\boldsymbol{2}}$) are also needed.

We can split equation (4)(5) in the followig way:

$$
\begin{equation*}
u_{1, t}\left(t, x_{1}, x_{2}\right)+\alpha_{1} u_{1, x_{1}}\left(t, x_{1}, x_{2}\right)=0 \tag{6}
\end{equation*}
$$

We have initial condition for (6): $\boldsymbol{u}_{1}\left(\mathbf{0}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\boldsymbol{\phi}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}\right)$ This equation needs the boundary condition at one of ends of the interval [$\mathbf{0}, \boldsymbol{L}_{\mathbf{1}}$]. Observe that $\boldsymbol{x}_{\mathbf{1}}$ is an 'active' variable of differential equation, while $\boldsymbol{x}_{\mathbf{2}}$ is a parameter. It runs over the interval $\left[\mathbf{0}, \boldsymbol{L}_{\mathbf{2}}\right]$.

$$
\begin{equation*}
u_{2, t}\left(t, x_{1}, x_{2}\right)+\alpha_{2} u_{2, x_{2}}\left(t, x_{1}, x_{2}\right)=0 . \tag{7}
\end{equation*}
$$

For (7) we have the same initial conddition as for (6): $\boldsymbol{u}_{\mathbf{2}}\left(\mathbf{0}, \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}\right)=$ $\boldsymbol{\phi}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$. Here also the boundary condition at one of ends but of the interval $\left[\mathbf{0}, \boldsymbol{L}_{\mathbf{2}}\right]$ is necessary; now $\boldsymbol{x}_{\mathbf{1}}$ is a parameter runing over $\left[\mathbf{0}, \boldsymbol{L}_{\mathbf{1}}\right]$, while $\boldsymbol{x}_{\boldsymbol{2}}$ is the active variable of the differential equation.

A TEOREM ON APPROXIMATION

The theorem below concerns the case of spliting: (1) $=>(2)(3)$.

THEOREM.

Let:

- $(\boldsymbol{X},|\cdot|)$ be a linear normed space
- $f, g: X \rightarrow X$
- $u, v, w:\left[t_{n}, t_{n+1}\right] \rightarrow X, t_{n+1}=t_{n}+\tau, \tau>0$
- $\left(\boldsymbol{X}_{\tau},\|\cdot\|_{\infty}\right)$ be a linear, B-space of functions $\boldsymbol{x}:\left[\boldsymbol{t}_{n}, \boldsymbol{t}_{n+1}\right] \rightarrow \boldsymbol{X}$, such that $\|x\|_{\infty}=\sup _{t \in\left[t_{n}, t_{n+1}\right]}|\boldsymbol{x}(t)|<\infty$

We assume about (1), (2), (3) that:

- $u, v, w \in X_{\tau}$
- there exist positive constants $\boldsymbol{L}_{\boldsymbol{f}}, \boldsymbol{L}_{\boldsymbol{g}}, \boldsymbol{K}_{\boldsymbol{f}}, \boldsymbol{K}_{\boldsymbol{g}}$ such that if $\boldsymbol{x}=$ $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ then $\|\boldsymbol{f}(\boldsymbol{x})\|_{\infty} \leq \boldsymbol{K}_{\boldsymbol{f}},\|\boldsymbol{g}(\boldsymbol{x})\|_{\infty} \leq \boldsymbol{K}_{\boldsymbol{g}}$, and that for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{X}$ the following Lipschitz conditions

$$
|f(x)-f(y)| \leq L_{f}|x-y|, \quad|g(x)-g(y)| \leq L_{g}|x-y|
$$

are satisfied.
Under above conditions, for solutions o $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of equations (1)(2)(3) following estimates hold:

$$
\begin{equation*}
\|u-v\|_{\infty} \leq \frac{\tau K_{g}}{1-\tau L_{f}} \tag{8}
\end{equation*}
$$

(9) $\|u-w\|_{\infty} \leq \tau \frac{K_{f}}{1-\tau L_{g}}+\tau^{2} \frac{K_{g} L_{f}}{\left(1-\tau L_{f}\right)\left(1-\tau L_{g}\right)}=O(\tau)$.

However it is to note that:

$$
\begin{equation*}
\left|u\left(t_{n+1}\right)-w\left(t_{n+1}\right)\right| \leq \tag{10}
\end{equation*}
$$

$$
\leq \tau^{2} \frac{K_{g} L_{f}}{1-\tau L_{f}}+\tau^{2} \frac{L_{g} K_{f}}{1-\tau L g}+\tau^{3} \frac{K_{g} L_{f} L_{g}}{\left(1-\tau L_{f}\right)\left(1-\tau L_{g}\right)}=O\left(\tau^{2}\right)
$$

The inequqlity (10) says that at the point \boldsymbol{t}_{n+1} the 'SUPER-CONVERGENCE' occurs. This means that the order of approximation at the point t_{n+1} is greater then the order of approximation in norm.

CONCLUSION. From above investigations it follows, that for the time spplitting

$$
(1) \approx(3)(2)
$$

the choice $\boldsymbol{w}\left(\boldsymbol{t}_{n+1}\right)$ is not only the most intuitive, but really the best!
Proof. We have:

$$
u(t)=a+\int_{t_{n}}^{t} f(u(s)) d s+\int_{t_{n}}^{t} g(u(s) d s
$$

$$
v(t)=a+\int_{t_{n}}^{t} f(v(s)) d s
$$

$$
w(t)=a+\int_{t_{n}}^{t_{n+1}} f(v(s)) d s+\int_{t_{n}}^{t} g(w(s)) d s
$$

To prove (8) observe that

$$
u(t)-v(t)=\int_{t_{n}}^{t}\left[f(u(s)-f(v(s))] d s+\int_{t_{n}}^{t} g(u(s)) d s\right.
$$

hence $\forall t \in\left[t_{n}, t_{n+1}\right]$

$$
|u(t)-v(t)| \leq \tau L_{f}\|u-v\|_{\infty}+\tau K_{g} .
$$

hence

$$
\begin{equation*}
\|u-v\|_{\infty} \leq \frac{\tau K_{g}}{1-\tau L_{f}} \tag{8}
\end{equation*}
$$

Now

$$
\begin{aligned}
w(t)- & u(t)=\int_{t_{n}}^{t_{n+1}} f(v(s)) d s+\int_{t_{n}}^{t} g(w(s)) d s \\
& -\int_{t_{n}}^{t} f(u(s)) d s-\int_{t_{n}}^{t} g(u(s)) d s \\
& -\int_{t_{n}}^{t} f(v(s)) d s+\int_{t_{n}}^{t} f(v(s)) d s
\end{aligned}
$$

this gives

$$
\begin{aligned}
w(t)-u(t)= & \int_{t}^{t_{n+1}} f(v(s)) d s+\int_{t_{n}}^{t}[f(v(s))-f(u(s))] d s \\
& +\int_{t_{n}}^{t}[g(w(s))-g(u(s))] d s
\end{aligned}
$$

Now applying (8) we get
(*) $|w(t)-u(t)| \leq\left|t_{n+1}-t\right| K_{f}+\tau^{2} \frac{K_{g} L_{f}}{1-\tau L_{f}}+\tau L_{g}\|u-w\|_{\infty}$
Tacking 'sup' over both sides of this last inequality we get:

$$
\|w-u\|_{\infty} \leq \tau K_{f}+\tau^{2} \frac{K_{g} L_{f}}{1-\tau L_{f}}+\tau L_{g}\|u-w\|_{\infty}
$$

Finally:
(9) $\|u-w\|_{\infty} \leq \tau \frac{K_{f}}{1-\tau L_{g}}+\tau^{2} \frac{K_{g} L_{f}}{\left(1-\tau L_{f}\right)\left(1-\tau L_{g}\right)}=O(\tau)$

Let us go back to the formula $(*)$. If we put $\boldsymbol{t}=\boldsymbol{t}_{\boldsymbol{n + 1}}$, then the first term on the RHS desapears. Now applying (9), we get (10).

[^0]: ${ }^{1}$ In, fact idea of the method here described is relatively old: probably it was applied for the first time by D.W.Paceman and H.H Rachford jr. in 1955.

