
LECTURE 9

NEW HINT
NEW HIT

TIME SPLITTING1

Instead of introduction: a very simple example.
Consider the initial value problem for Ordinary Di�erential Equations (ODE)

(1)
du

dt
= f(u) + g(u), t ∈ [tn, tn + τ ], u(tn) = a

and the following two initial value problems:

(2)
dv

dt
= f(v), t ∈ [tn, tn + τ ], v(tn) = a

(3)
dw

dt
= g(w), t ∈ [tn, tn + τ ], w(tn) = v(tn + τ ).

What can we expect concerning the di�erence:

u(t)− w(t), t ∈ [tn, tn + τ ]?

May be it is small? Answer is:

YES! and in many cases,
providing that the time step τ is reasonably small.

Sometimes, for certain reasons it may be better, to solve the system (2)(3),
than to solve the equation (1). We can try, in such a case, to approximate
the solution u of the equation (1), by the solution w of the equation (3)!

THIS IS THE TIME SPLITTING METHOD

1In, fact idea of the method here described is relatively old: probably it was applied

for the �rst time by D.W.Paceman and H.H Rachford jr. in 1955.
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Look at the SPLITTING DIAGRAM:

time level n + 1 v(tn + τ ) w(tn + τ ) ≈ u(tn + τ )
↑ ↘ ↑

time level n v(tn) v(tn + τ )

The left uparrow corresponds to solving (2), while right one corresponds to
solving (3).

EXAMPLE.

The TIME SPLITTING may be applied for partial di�erential equations.
Let us consider the transport equation in two space dimensions:

(4) ut + α∇u = 0, α = [α1, α2], u = u(t, x1, x2).

Here x1 ∈ [0, L1], x2 ∈ [0, L2], and ∇u = [ux1, ux2]
T . Let us rewrite

the equation (4) in the following equivalent form

(5) ut + α1ux1 + α2ux2 = 0.

For equation (4)(5) we have the initial condition:

u(0, x1, x2) = φ(x1, x2).

The boundary conditions (depending on the sign of α1 and α2) are also
needed.

We can split equation (4)(5) in the followig way:

•

(6) u1,t(t, x1, x2) + α1u1,x1(t, x1, x2) = 0,

We have initial condition for (6): u1(0, x1, x2) = φ(x1, x2) This
equation needs the boundary condition at one of ends of the interval
[0, L1]. Observe that x1 is an 'active' variable of di�erential equation,
while x2 is a parameter. It runs over the interval [0, L2].
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•

(7) u2,t(t, x1, x2) + α2u2,x2(t, x1, x2) = 0.

For (7) we have the same initial conddition as for (6): u2(0, x1, x2) =
φ(x1, x2). Here also the boundary condition at one of ends but of the
interval [0, L2] is necessary; now x1 is a parameter runing over [0, L1],
while x2 is the active variable of the di�erential equation.

A TEOREM ON APPROXIMATION
The theorem below concerns the case of spliting: (1)=>(2)(3).

THEOREM.
Let:

• (X, | · |) be a linear normed space

• f, g : X → X

• u, v, w : [tn, tn+1]→ X, tn+1 = tn + τ , τ > 0

• (Xτ , ‖ · ‖∞) be a linear, B-space of functions x : [tn, tn+1] → X,

such that ‖x‖∞ = supt∈[tn,tn+1]
|x(t)| <∞

We assume about (1), (2), (3) that:

• u, v, w ∈ Xτ

• there exist positive constants Lf , Lg, Kf , Kg such that if x =
u, v, w then ‖f(x)‖∞ ≤ Kf , ‖g(x)‖∞ ≤ Kg, and that for all

x, y ∈ X the following Lipschitz conditions

|f(x)− f(y)| ≤ Lf |x− y|, |g(x)− g(y)| ≤ Lg|x− y|

are satis�ed.

Under above conditions, for solutions o u, v, w of equations (1)(2)(3)
following estimates hold:

(8) ‖u− v‖∞ ≤
τKg

1− τLf
,

3



(9) ‖u− w‖∞ ≤ τ
Kf

1− τLg
+ τ 2

KgLf

(1− τLf)(1− τLg)
= O(τ ).

However it is to note that:

(10) |u(tn+1)− w(tn+1)| ≤

≤ τ 2
KgLf

1− τLf
+ τ 2

LgKf

1− τLg
+ τ 3

KgLfLg

(1− τLf)(1− τLg)
= O(τ 2).

The inequqlity (10) says that at the point tn+1 the 'SUPER-CONVER-
GENCE' occurs. This means that the order of approximation at the
point tn+1 is greater then the order of approximation in norm.

CONCLUSION. From above investigations it follows, that for the time
spplitting

(1) ≈ (3)(2)

the choice w(tn+1) is not only the most intuitive, but really the best!

Proof. We have:

(1′) u(t) = a+
∫ t

tn
f(u(s))ds+

∫ t

tn
g(u(s)ds

(2′) v(t) = a+
∫ t

tn
f(v(s))ds

(3′) w(t) = a+
∫ tn+1

tn
f(v(s))ds+

∫ t

tn
g(w(s))ds

To prove (8) observe that

u(t)− v(t) =
∫ t

tn
[f(u(s)− f(v(s))]ds+

∫ t

tn
g(u(s))ds

hence ∀t ∈ [tn, tn+1]

|u(t)− v(t)| ≤ τLf‖u− v‖∞ + τKg.
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hence

(8) ‖u− v‖∞ ≤
τKg

1− τLf
.

Now

w(t)− u(t) =
∫ tn+1

tn
f(v(s))ds+

∫ t

tn
g(w(s))ds

−
∫ t

tn
f(u(s))ds−

∫ t

tn
g(u(s))ds

−
∫ t

tn
f(v(s))ds+

∫ t

tn
f(v(s))ds

this gives

w(t)− u(t) =
∫ tn+1

t
f(v(s))ds+

∫ t

tn
[f(v(s))− f(u(s))]ds

+
∫ t

tn
[g(w(s))− g(u(s))]ds

Now applying (8) we get

(∗) |w(t)− u(t)| ≤ |tn+1 − t|Kf + τ 2
KgLf

1− τLf
+ τLg‖u− w‖∞

Tacking 'sup' over both sides of this last inequality we get:

‖w − u‖∞ ≤ τKf + τ 2
KgLf

1− τLf
+ τLg‖u− w‖∞

Finally:

(9) ‖u− w‖∞ ≤ τ
Kf

1− τLg
+ τ 2

KgLf

(1− τLf)(1− τLg)
= O(τ )

Let us go back to the formula (∗). If we put t = tn+1, then the �rst term
on the RHS desapears. Now applying (9), we get (10). 2
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