LECTURE 6

SOME FINITE DIFFERENCE SCHEMES FOR TRANSPORT AND HEAT EQUATIONS IN 1D

TRANSPORT EQUATION $u_t + \alpha u_x = 0$. Grid functions: $u_k^n \approx u(t_n, x_k), t_n = \tau n, x_k = kh, \lambda = \frac{\tau}{h}$.

1. BOX LEFT=>RIGHT (implicit-explicit)

(6.1)
$$au_{k+1}^{n+1} + bu_k^{n+1} = bu_{k+1}^n + au_k^n$$

where $a = (1+\alpha\lambda)$, $b = (1-\alpha\lambda)$. For $\alpha > 0$ equation (6.1) is solved in u_{k+1}^n . Scheme of order $O(\tau) = O(h)$, stability test $u_k^n = \gamma^n e^{-isk}$ unconditionally succesful.

2. UPWIND SCHEMES (explicit)

(6.2)
$$u_k^{n+1} = u_k^n (1 + \alpha \lambda) - \alpha \lambda u_{k+1}^n, \ \alpha < 0$$

(6.3)
$$u_k^{n+1} = u_k^n (1 - \alpha \lambda) + \alpha \lambda u_{k-1}^n, \ \alpha \ge 0$$

Schemes of order $O(\tau) = O(h)$. Stability test $u_k^n = \gamma^n e^{-isk}$ succesful if $\lambda \leq \frac{1}{|\alpha|}$.

3. LAX-FRIEDRICHS (explicit)

(6.4)
$$\frac{1}{\tau}(u_k^{n+1} - \frac{u_{k-1}^n + u_{k+1}^n}{2}) + \alpha \frac{u_{k+1}^n - u_{k-1}^n}{2h} = 0$$

or

(6.5)
$$u_k^{n+1} = \frac{(1+\alpha\lambda)}{2}u_{k-1}^n + \frac{(1-\alpha\lambda)}{2}u_{k+1}^n = 0$$

Scheme is of order $O(\tau) = O(h)$, stability test $u_k^n \gamma^n e^{-isk}$ is succesful if $\lambda \leq \frac{1}{|\alpha|}$, independently of the sign of α .

4. Be careful! In the following scheme

(6.6)
$$\frac{u_k^{n+1} - u_k^n}{\tau} + \alpha \frac{u_{k+1}^n - u_{k-1}^n}{2h} = 0$$

the derivative u_x is approximated by the so called **central finite difference of the order** $O(h^2)$, hence it seems to be "beter" then, for example, the schemes of the type "upwind" (6.2) (6.3). Unfortunatelly, the stability test $u_k^n = \gamma^n e^{-isk}$ for the scheme (6.6) never passes with succes.

HEAT EQUATION $u_t = \nu u_{xx}, \, \nu > 0$ (will follow)