
A LITLE BIT ABOUT NONLINEAR PROBLEMS

SOME IMPORTANT EXAMPLES

• BURGERS EQUATION

(1) ut + uux = 0

or

ut + (
u2

2
)x = 0

may by considered as a kind of nonlinear transport equation, when u
is interpreted as velocity.

• STOKES OPERATOR AND STOKES EQUATION

∂

∂t
+ v∇

(2)
∂v

∂t
+ v∇v = 0

For v = [vx, vy, vz] equation (2) may be writen as follows

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
= 0

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
= 0

∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
= 0

Equation (2) may be treated as 3-dimensional version of the Burgers
equation.

• The Burgers equation (1) is a typical equation in the so called 'form
of conservation law'. General form of such an equation is as follows:

(3) ut + F (u)x = 0,
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where F is a given function. To the equation (3) in one-dimensional
case, the Box-scheme may be applied. In order to get the Box-scheme
for (1) let us form the grid xk = kh, tn = nτ with the space-step
h > 0 and the time-step τ > 0 on the t − x plane. Integrating (3)
over the grid-box

n+ 1 −
| |

n k − k + 1∫ tn+1

tn

∫ xk+1

xk

[ut + F (u)x]dxdt = 0,

and approximating one integral of each term using the trapezoidal rule
we get for example (if we want to compute un+1

k+1 ) the nonlinear equation
of the form

(4) un+1
k+1 + λF (un+1

k+1) = A, λ =
τ

h

where A stands for the sum of all known terms (see the linear version
of the Box-scheme). Of course this version of the Box-scheme is ap-
plicable only under certain conditions concerning function F (compare
the L => R and R => L versions in the linear case)

How to solve approximately this nonlinear equation?

1. In the scalar case the Bisection Method may be applied

2. If the function F is su�ciently regular (for example if the Lipschitz
condition is satis�ed) the Simple Iteration Method (Banach
Fixed Point Theorem) can be applied. Put

(5) xp+1 = A− λF (xp)

If x = A − λF (x) (the solution x of (5) does exist because of
the Lipschitz condition) hence we have for the error at the p+ 1
-st step of iteration ep+1 = x− xp+1:

|ep+1| = λ|F (x)− F (xp)| ≤ λL|ep|

where L is the Lipschitz constant. Choosing the steps h and τ
so that λ = τ

h
is small enough we get convergence ep → 0 when
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p → ∞. In dependece of the properties of the function F the
version L => R or R => L of the BOX algorithm has to be
applied. What can we say about the Burgers equation in this
context?

• The very important in applications, generalization of Burgers and Sto-
kes equations, is the Navier-Stokes equation:

ρ
∂v

∂t
+ ρv∇v = ∇P + ρf

here ρ is the mass density function, v is the velocity vector, at the right
hand side is the stress tensor and the body forces.

• The very universal in its applications Ludwik Boltzmann Equation
have to be mentioned here. Also because its linear part de�nes exactely
the well known for us, linear transport equation.

ρt + α∇ρ =
∫
A
M(·, α, β)dβ

Here ρ(t, x, α) is some kind of mass density function where t is the
time, x ∈ Ω ⊂ R3, is the space point, α, β ∈ A ⊂ R3 is the velocity
vector which here is one of independent variables, (β is an 'additional
copy of α') used for integration in the right hand side term. This term
is called 'collision term'. Similar in the form but with di�erent function
M in the right hand side term is the turbulent �ow model equation of
Prof. Marek Burnat from our department of the Warsaw University.
In this last model the right hand side term de�nes the so calledmixer.
The Marek Burnat equation is as follows

ρt + α∇ρ− ν∆ρ =
∫
A
M(·, α, β)dβ

where ν > 0 is the small positive coe�cient of the laplasian ∆. La-
plasian is the added viscosity term, helpful in numerical realization of
this model.

• Perhaps it is a good moment to analyse the results of application of the
Laplace Operator to a given function f . Consider a function f and its
Fourier Transform

f̂(ξ) =
∫ ∞
−∞

f(x)e−2πixξdx

3



as well as its retransform

f(x) =
∫ ∞
−∞

f̂(ξ)e2πiξxdξ =
1

2π

∫ ∞
−∞

f̂(
s

2π
)eisxds

where s = 2πξ. Observe that c(s) = f̂( s
2π

) is a 'Fourrier coe�cient'
of the function f , depending on the frequency s ∈ R. Apply now the
Laplace operator to f :

fxx(x) =
∫ ∞
−∞

f̂(ξ)(−s2)dξ =
1

2π

∫ ∞
−∞

f̂(
s

2π
)eisx(−s2)ds

Finally

(6) fxx(x) =
1

2π

∫ ∞
−∞

c(s)(−s2)eisxds.

We can read the the formula (6) in the following way: for low frequ-
encies |s| < 1 the corresponding Fourier coe�cients −c(s)s2 of the
Laplace Operator fxx of f diminish with respect to the Fourier coe�-
cients of the original function f . However for high frequencies |s| > 1,
the corresponding Fourier coe�cients grows. In other words, taking
the Laplace Operator of f , we �lter out the low frequency Fourier
components while we amplify the high frequecy ones.

• How to menage with the nonlinear, non di�erential term in
our evolution equation?

We met such a term in Boltzmann equation and in Burnat Model e-
quation. If the Time-Splitting Method is applied, we have to solve
the initial value problem for nonlinear ordinary di�erential equation
(ODE). For example

(7) ut(t, ·) = F (t, ·, u), u(tn, ·) = φ(tn, ·)

In many applications, this simple problem may have nasty properties:
for example our ODE can be STIFF.

In order to explain what the STIFFNESS is, consider the following
simple example. Let λ1 and λ2 be two complex numbers, both with
negative real parts. Assume that |<(λ1)| � |<(λ2)|.
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Suppose that we are interested in the behaviour of solution for t ∈
[0, T ] for some T > 0 Take now the system of two ODE's:

du1

dt
= λ1u1

(8)
du2

dt
= λ2u2

Solution of this system is as follows

u1(t) = C1e
λ1t, u2(t) = C2e

λ2t.

But if |<(λ1)| is much greater than |<(λ2)|, the function u1 very
quickly desapears, and then the solution of our system can be repre-
sented by the function u2 alone. On the other hand the right hand
side of the system contains λ1, and very large |λ1| may badly in�uence
stability of the whole system. Similar situation may occur also in many
cases of the equation not of the form (8), and when it occurs, we say
that such ODE is STIFF.

• What can we do to not have stability problems if the sti�ness
occurs? The question is in the right choice of the numerical method.
Let us look shortly at this problem.

There is lot of various numerical methods for solving initial value pro-
blems of ODE. A large class are so called Multistep Methods. Sup-
pose we are solving following initial value problem:

(9)
dx

dt
= f(t, x), x(0) = x0

The general q-step method for problem (8) is as follows:

(10)
q∑
j=0

αjxk+j = h
q∑
j=0

βjfk+j

where xi ≈ x(ih), and fi = f(ti, xi), ti = ih. Since we are intere-
sted in STIFFNESS we observe what happens if we put f(t, x) = ax
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for any complex a, such that <(a) < 0 (see (8)). Now we get from
(10)

(11)
q∑
j=0

(αj − zβj)xk+j = 0

where z = ah is an arbitrary complex number with <(z) < 0. It is
known that the general solution of the �nite di�erence equation (11)
can be expressed with help of so called characteristic equation of
(11) which is of the following form

(12)
q∑
j=0

(αj − zβj)ξj = 0

Assume that the roots ξj, j = 1, 2, · · · q of the polinomial equation
(12) are all single. In this case

xi =
q∑
j=1

cjξ
i
j

with arbitrary constants c1, c2, · · · , cq.

DEFINITION 1. We say that the q-step method (10) is absolutly
stable for given complex z if

|ξj| ≤ 1, j = 1, 2, · · · , q

DEFINITION 2 Let Ω ⊂ C be some subset of the complex plane

C. We say that Ω is the domain of absolute stability of (10) i�
∀z ∈ Ω the q-step method (10) is absolutly stable.

DEFINITION 3 The q-step method (10) is A-stable if its domain

of absolute stability Ω contains the set Re(z) ≤ 0.

Comment. A-stable q-step method is resistant against the
sti�ness.
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Consider the 1-step implicit method "the Trapezoidal Rule":

(12) uk+1 − uk =
h

2
(fk + fk+1).

It is easy to �nd its domain of absolute stability.

We have in this case:

α0 = −1, α1 = 1

β0 = β1 =
1

2

and if z = r + is with r ≤ 0 then

ξ =
2 + z

2− z
, |ξ|2 =

(r + 2)2 + s2

(r − 2)2 + s2
≤ 1

this means that the Trapezoidal Rule is A-stable. It can be proven
that it is the unique A-stable method in his class.

Moreover observe that if f satis�es the Lipschitz Condition, then it
is allways possible to chose the step h so that the simple iteration
method for iterative solution of the nonlinear equation (12) converges.
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