
Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki

Wydzia l Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin pok. 5680

klin@mimuw.edu.pl

Strona tego wyk ladu:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 1 -

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course: http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 2 -

Program correctness and verification

Programs should be:

• clear; efficient; robust; reliable; user friendly; well documented; . . .

• but first of all, CORRECT

• don’t forget though: also, executable. . .

Correctness#
"

!

�
�

�
�

Program correctness makes sense only

w.r.t. a precise specification of the requirements.

Bartosz Klin: Semantics & Verification - 3 -

Defining correctness

We need:

• A formal definition of the programs in use

syntax and semantics of the programming language

• A formal definition of the specifications in use

syntax and semantics of the specification formalism

• A formal definition of the notion of correctness to be used

what does it mean for a program to satisfy a specification

Bartosz Klin: Semantics & Verification - 4 -

Proving correctness

We need:

• A formal system to prove correctness of programs w.r.t. specifications

a logical calculus to prove judgments of program correctness

• A (meta-)proof that the logic proves only true correctness judgements

soundness of the logical calculus

• A (meta-)proof that the logic proves all true correctness judgements

completeness of the logical calculus�
�

�

�
 �	under acceptable technical conditions

Bartosz Klin: Semantics & Verification - 5 -

A specified program

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do

(rt := rt + 1; sqr := sqr + 2 ∗ rt + 1)

{rt2 ≤ n < (rt + 1)2}

If we start with a non-negative n, and execute the program successfully,

then we end up with rt holding the integer square root of n

Bartosz Klin: Semantics & Verification - 6 -

Hoare’s logic

Correctness judgements:

{ϕ}S {ψ}

• S is a statement of Tiny

• the precondition ϕ and the postcondition ψ are first-order formulae with

variables in Var

Intended meaning:

�
�

�
�

�
�

�
�

Partial correctness:
termination not guaranteed!

Whenever the program S starts in a state satisfying the precondtion ϕ

and terminates successfully, then the final state satisfies the postcondition ψ

Bartosz Klin: Semantics & Verification - 7 -

Formal definition

Recall the simplest semantics of Tiny, with S : Stmt→ State ⇀ State

We add now a new syntactic category:

ϕ ∈ Form ::= b | ϕ1 ∧ ϕ2 | ϕ1⇒ ϕ2 | ¬ϕ′ | ∃x.ϕ′ | ∀x.ϕ′

with the corresponding semantic function:

F : Form→ State→ Bool

and standard semantic clauses.�
�

�
�

�
�

�
�

Also, the usual definitions of free variables of a formula
and substitution of an expression for a variable

Bartosz Klin: Semantics & Verification - 8 -

More notation

For ϕ ∈ Form:

{ϕ} = {s ∈ State | F [[ϕ]] s = tt}

For S ∈ Stmt, A ⊆ State:

A [[S]] = {s ∈ State | S[[S]] a = s, for some a ∈ A}

Bartosz Klin: Semantics & Verification - 9 -

Hoare’s logic: semantics

|= {ϕ}S {ψ}
iff

{ϕ} [[S]] ⊆ {ψ}

�
�

�

�
 �	Spelling this out:

The partial correctness judgement {ϕ}S {ψ} holds, written |= {ϕ}S {ψ},
if for all states s ∈ State

if F [[ϕ]] s = tt and S[[S]] s ∈ State

then F [[ψ]] (S[[S]] s) = tt

Bartosz Klin: Semantics & Verification - 10 -

Hoare’s logic: proof rules

{ϕ[x 7→ e]}x := e {ϕ}

{ϕ}S1 {θ} {θ}S2 {ψ}
{ϕ}S1;S2 {ψ}

{ϕ ∧ b}S {ϕ}
{ϕ}while b do S {ϕ ∧ ¬b}

{ϕ} skip {ϕ}

{ϕ ∧ b}S1 {ψ} {ϕ ∧ ¬b}S2 {ψ}
{ϕ} if b then S1 else S2 {ψ}

ϕ′⇒ ϕ {ϕ}S {ψ} ψ⇒ ψ′

{ϕ′}S {ψ′}

Bartosz Klin: Semantics & Verification - 11 -

Example of a proof

We will prove the following partial correctness judgement:

{n ≥ 0}
rt := 0;

sqr := 1;

while sqr ≤ n do

rt := rt + 1;

sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

�
�

�
�

�
�

�
�

Consequence rule will be used implicitly
to replace assertions by equivalent ones of a simpler form

Bartosz Klin: Semantics & Verification - 12 -

Step by step

• {n ≥ 0} rt := 0 {n ≥ 0 ∧ rt = 0}

• {n ≥ 0 ∧ rt = 0} sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}

• {n ≥ 0} rt := 0; sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}

• {n ≥ 0} rt := 0; sqr := 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}'

&

$

%

#
"

!

EUREKA!!!
We have just invented

the loop invariant

Bartosz Klin: Semantics & Verification - 13 -

Loop invariant

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n} rt := rt + 1 {sqr = rt2 ∧ sqr ≤ n}

• {sqr = rt2 ∧ sqr ≤ n} sqr := sqr + 2 ∗ rt + 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n}
rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{sqr = (rt + 1)2 ∧ rt2 ≤ n}

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ ¬(sqr ≤ n)}

Bartosz Klin: Semantics & Verification - 14 -

Finishing up

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

•
{n ≥ 0}

rt := 0; sqr := 1;

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

QED

Bartosz Klin: Semantics & Verification - 15 -

A fully specified program

{n ≥ 0}
rt := 0;

{n ≥ 0 ∧ rt = 0}
sqr := 1;

{n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
while {sqr = (rt + 1)2 ∧ rt2 ≤ n} sqr ≤ n do

rt := rt + 1;

{sqr = rt2 ∧ sqr ≤ n}
sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n < (rt + 1)2}

Bartosz Klin: Semantics & Verification - 16 -

The first-order theory in use

In the proof above, we have used quite a number of facts concerning the underlying

data type, that is, Int with the operations and relations built into the syntax of

Tiny. Indeed, each use of the consequence rule requires such facts.

Define the theory of Int

T H(Int)

to be the set of all formulae that hold in all states.

The above proof shows:

T H(Int) `

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Bartosz Klin: Semantics & Verification - 17 -

Soundness

Fact: Hoare’s proof calculus (given by the above rules) is sound, that is:

if T H(Int) ` {ϕ}S {ψ} then |= {ϕ}S {ψ}

So, the above proof of a correctness judgement validates the following semantic

fact:

|=

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Bartosz Klin: Semantics & Verification - 18 -

Proof

(of soundness of Hoare’s proof calculus)

By induction on the structure of the proof in Hoare’s logic:

assignment rule: Easy, but we need a lemma (to be proved by induction on the

structure of formulae):

F [[ϕ[x 7→ e]]] s = F [[ϕ]] s[x 7→ E[[e]] s]

Then, for s ∈ State, if s ∈ {ϕ[x 7→ e]} then

S[[x := e]] s = s[x 7→ E[[e]] s] ∈ {ϕ}.

skip rule: Trivial.

composition rule: Assume {ϕ} [[S1]] ⊆ {θ} and {θ} [[S2]] ⊆ {ψ}. Then

{ϕ} [[S1;S2]] = ({ϕ} [[S1]]) [[S2]] ⊆ {θ} [[S2]] ⊆ {ψ}.

if-then-else rule: Easy.

consequence rule: Again the same, given the obvious observation that

{ϕ1} ⊆ {ϕ2} iff ϕ1⇒ ϕ2 ∈ T H(Int).

Bartosz Klin: Semantics & Verification - 19 -

Soundness of the loop rule

loop rule: We need to show that the least fixed point of the operator

Φ(F) = cond(B[[b]],S[[S]];F, idState)

satisfies

fix(Φ)({ϕ}) ⊆ {ϕ ∧ ¬b}

Proceed by fixed point induction. Suppose that F ({ϕ}) ⊆ {ϕ ∧ ¬b} for some

F : State ⇀ State, and consider s ∈ {ϕ} with s′ = Φ(F)(s) ∈ State. Two

cases are possible:

• If B[[b]] s = ff then s′ = s ∈ {ϕ ∧ ¬b}.
• If B[[b]] s = tt then s′ = F (S[[S]] s). We get s′ ∈ {ϕ ∧ ¬b} by the

assumption on F , since {ϕ ∧ b} [[S]] ⊆ {ϕ} by the assumption on S, which

implies S[[S]] s ∈ {ϕ}.
So, Φ(F)({ϕ}) ⊆ {ϕ ∧ ¬b}, and the proof is completed.

Bartosz Klin: Semantics & Verification - 20 -

Problems with completeness

• If T ⊆ Form is r.e. then the set of all Hoare’s triples derivable from T is r.e.

as well.

• |= {true}S {false} iff S loops for all initial states.

• Since the halting problem is not decidable for Tiny, the set of all judgements

of the form {true}S {false} such that |= {true}S {false} is not r.e.

Nevertheless:

T H(Int) ` {ϕ}S {ψ} iff |= {ϕ}S {ψ}

Bartosz Klin: Semantics & Verification - 21 -

Specification as a development task

Given precondition ϕ and postcondition ψ

develop a program S such that

{ϕ}S {ψ}

Bartosz Klin: Semantics & Verification - 22 -

For instance

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

One correct solution:

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Bartosz Klin: Semantics & Verification - 23 -

Hoare’s logic: trouble #1

Another correct solution:

{n ≥ 0}
while true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}

since `
{n ≥ 0}

while {true} true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}'

&

$

%

#
"

!

Partial correctness:
termination not guaranteed,

and hence not requested!

Bartosz Klin: Semantics & Verification - 24 -

Total correctness�
�

�

�
 �	Total correctness = partial correctness + successful termination

Total correctness judgements:

[ϕ]S [ψ]

Intended meaning:

Whenever the program S starts in a state satisfying the precondition ϕ

then it terminates successfully in a final state that satisfies the postcondition ψ

Bartosz Klin: Semantics & Verification - 25 -

Total correctness: semantics

|= [ϕ]S [ψ]

iff

{ϕ} ⊆ [[S]] {ψ}

where for S ∈ Stmt, A ⊆ State:

[[S]]A = {s ∈ State | S[[S]] s = a, for some a ∈ A}�
�

�

�
 �	Spelling this out:

The total correctness judgement [ϕ]S [ψ] holds, written |= [ϕ]S [ψ],

if for all states s ∈ State

if F [[ϕ]] s = tt then S[[S]] s ∈ State and F [[ψ]] (S[[S]] s) = tt

Bartosz Klin: Semantics & Verification - 26 -

Total correctness: proof rules

[ϕ[x 7→ e]]x := e [ϕ]

[ϕ]S1 [θ] [θ]S2 [ψ]

[ϕ]S1;S2 [ψ]

???

[???] while b do S [???]

[ϕ] skip [ϕ]

[ϕ ∧ b]S1 [ψ] [ϕ ∧ ¬b]S2 [ψ]

[ϕ] if b then S1 else S2 [ψ]

ϕ′⇒ ϕ [ϕ]S [ψ] ψ⇒ ψ′

[ϕ′]S [ψ′]

�
 �	Adjustments are necessary if expressions may generate errors!

Bartosz Klin: Semantics & Verification - 27 -

Total-correctness rule for loops

(nat(l) ∧ ϕ(l + 1))⇒ b [nat(l) ∧ ϕ(l + 1)]S [ϕ(l)] ϕ(0)⇒¬b
[∃l.nat(l) ∧ ϕ(l)] while b do S [ϕ(0)]

where

− ϕ(l) is a formula with a free variable l that does not occur in while b do S,

− nat(l) stands for 0 ≤ l, and

− ϕ(l + 1) and ϕ(0) result by substituting, respectively, l + 1 and 0 for l in ϕ(l).'

&

$

%
#
"

!

�
�
�

�
 �	Informally: l is a counter

that indicates the number of iterations of the loop body

Bartosz Klin: Semantics & Verification - 28 -

Soundness

(of the proof rules for total correctness for the statements of Tiny)

if T H(Int) ` [ϕ]S [ψ] then |= [ϕ]S [ψ]

Proof: By induction on the structure of the proof tree: all the cases are as for

partial correctness, except for the rule for loops.

loop rule: Consider s ∈ {nat(l) ∧ ϕ(l)}. By induction on s(l) (which is a natural

number) show that S[[while b do S]] s = s′ for some s′ ∈ {ϕ(0)} (easy!). To

complete the proof, notice that if a variable x does not occur in a statement

S′ ∈ Stmt and two states differ at most on x, then whenever S′ terminates

successfully starting in one of them, then so it does starting in the other, and

the result states differ at most on x.

Bartosz Klin: Semantics & Verification - 29 -

Completeness

(of the proof system for total correctness for the statements of Tiny)

It so happens that:

T H(Int) ` [ϕ]S [ψ] iff |= [ϕ]S [ψ]

Proof (idea): Only loops cause extra problems: here, for ϕ(l) take the conjunction

of the (partial correctness) loop invariant with the formula

“the loop terminates in exactly l iterations”

It so happens that the latter can indeed be expressed here (since finite tuples of

integers and their finite sequences can be coded as natural numbers)!

Bartosz Klin: Semantics & Verification - 30 -

For example

To prove:

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

[rt2 ≤ n ∧ n < (rt + 1)2]

use the following invariant with the iteration counter l:

sqr = (rt + 1)2 ∧ rt2 ≤ n ∧ l = b
√
nc − rt'

&

$

%

'

&

$

%
Cheating here, of course:

“l = b
√
nc − rt” has to be captured by

a first-order formula in the language of Tiny

Luckily: this can be done!

Here, this is quite easy:
(rt + l)2 ≤ n < (rt + l + 1)2

Bartosz Klin: Semantics & Verification - 31 -

Well-founded relations

A relation � ⊆W ×W is well-founded if there is no infinite chain

a0 � a1 � . . . � ai � ai+1 � . . .

Typical example:

〈Nat, >〉

A few other examples:

• Natn with component-wise (strict) ordering;

• A∗ with proper prefix ordering;

• Natn with lexicographic (strict) ordering generated by the usual ordering on

Nat;

• any ordinal with the natural (strict) ordering; etc.

Bartosz Klin: Semantics & Verification - 32 -

Total correctness = partial correctness + successful termination

Proof method

To prove

[ϕ] while b do S [ϕ ∧ ¬b]

• show “partial correctness”: [ϕ ∧ b]S [ϕ]

• show “termination”: find a set W with a well-founded relation � ⊆W ×W
and a function w : State→W such that for all states s ∈ {ϕ ∧ b},

w(s) � w(S[[S]] s)

BTW: w : State ⇀W may be partial as long as it is defined on {ϕ}.

Bartosz Klin: Semantics & Verification - 33 -

Example

Prove:

[x ≥ 0 ∧ y ≥ 0]

while x > 0 do

if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true]

where f yields a natural number for any natural argument.

• If one knows nothing more about f , then the previous proof rule for the total

correctness of loops is useless here.

• BUT: termination can be proved easily using the function

w : State→ Nat×Nat, where w(s) = 〈s x, s y〉:
after each iteration of the loop body the value of w decreases w.r.t. the

(well-founded) lexicographic order on pairs of natural numbers.

Bartosz Klin: Semantics & Verification - 34 -

A fully specified program

[x ≥ 0 ∧ y ≥ 0]

while [x ≥ 0 ∧ y ≥ 0] x > 0 do decr 〈x, y〉 in Nat×Nat wrt �
if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true] '

&

$

%

#
"

!

. . . with various notational variants
assuming some external definitions for
the well-founded set and function into it

Bartosz Klin: Semantics & Verification - 35 -

Hoare’s logic: trouble #2

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

Another correct solution:

{n ≥ 0}
rt := 0;n := 0

{rt2 ≤ n ∧ n < (rt + 1)2}
OOOOPS?!

A number of techniques to avoid this:

• variables that are required not to be used in the program;

• binary postconditions;

• various forms of algorithmic/dynamic logic, with program modalities.

Bartosz Klin: Semantics & Verification - 36 -

Binary postconditions

Sketch

• New syntactic category BForm of binary formulae, which are like the

usual formulae, except they can use both the usual variables x ∈ Var and their

“past” copies x̂ ∈ V̂ar.

For any syntactic item ω, we write ω̂ for ω with each variable x replaced by x̂.

• Semantic function: BF : BForm→ State× State→ Bool

BF [[ψ]] 〈s0, s〉 is defined as usual, except that the state s0 is used to evaluate

“past” variables x̂ ∈ V̂ar and s is used to evaluate the usual variables x ∈ Var.

Bartosz Klin: Semantics & Verification - 37 -

Correctness judgements

preϕ; S post ψ

where ϕ ∈ Form is a (unary) precondition; S ∈ Stmt is a statement (as usual);

and ψ ∈ BForm is a binary postcondition.

Semantics:

The judgement preϕ; S post ψ holds, written |= preϕ; S post ψ,

if for all states s ∈ State

if F [[ϕ]] s = tt then S[[S]] s ∈ State and BF [[ψ]] 〈s,S[[S]] s〉 = tt

Bartosz Klin: Semantics & Verification - 38 -

Proof rules

preϕ; x := e post (ϕ̂ ∧ x = ê ∧ ~y = ~̂y)

where ~y are variables other than x.

preϕ; skip post (ϕ ∧ ~y = ~̂y)

preϕ1; S1 post (ψ1 ∧ ϕ2) preϕ2; S2 post ψ2

preϕ1; S1;S2 post ψ1 ∗ψ2

where ψ1 ∗ψ2 is ∃~z.(ψ1[~x 7→ ~z] ∧ ψ2[~̂x 7→ ~z]), with all the variables free

in ψ1 or ψ2 are among ~x or ~̂x, and ~z are new variables.

Bartosz Klin: Semantics & Verification - 39 -

Further rules

preϕ ∧ b; S1 post ψ preϕ ∧ ¬b; S2 post ψ

preϕ; if b then S1 else S2 post ψ

preϕ ∧ b; S post (ψ ∧ ê � e) ψ⇒ ϕ (ψ ∗ψ)⇒ ψ

preϕ; while b do S post ((ψ ∨ (ϕ ∧ ~y = ~̂y)) ∧ ¬b)

where � is well-founded, and all the free variables are among ~y or ~̂y.

ϕ′⇒ ϕ preϕ; S post ψ ψ⇒ ψ′

preϕ′; S post ψ′
preϕ; S post ψ

preϕ; S post (ϕ̂ ∧ ψ)

�
�

�

�
 �	The rules can (have to?) be polished. . .

Bartosz Klin: Semantics & Verification - 40 -

Example

We have now:

|=

pre n ≥ 0;

rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

post rt2 ≤ n̂ ∧ n̂ < (rt + 1)2

BUT : 6|=
{n ≥ 0}

rt := 0;n := 0

{rt2 ≤ n̂ ∧ n̂ < (rt + 1)2}

Bartosz Klin: Semantics & Verification - 41 -

