Semantyka i weryfikacja programów

Bartosz Klin
(slajdy Andrzeja Tarleckiego)
Instytut Informatyki
Wydział Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin
pok. 5680
klin@mimuw.edu.pl

Strona tego wykładu:
http://www.mimuw.edu.pl/~klin/sem18-19.html

Program Semantics \& Verification

Bartosz Klin (slides courtesy of Andrzej Tarlecki)
Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

http://www.mimuw.edu.pl/~klin
office: 5680
klin@mimuw.edu.pl

This course:
http://www.mimuw.edu.pl/~klin/sem18-19.html

Input/output

TinY ${ }^{+++}$
$S \in \operatorname{Stmt}::=\ldots \mid$ read $x \mid$ write e

Semantic domains

```
Stream = Int }\times\mathrm{ Stream }+{\mathrm{ eof }
    Input = Stream
Output = Stream
    State = Store }\times\mathrm{ Input }\times\mathrm{ Output
```


Actually:

Stream $=\left(\right.$ Int \otimes_{L} Stream $) \oplus\{\text { eof }\}_{\perp}$
where:

$$
\mathbf{D} \otimes_{L} \mathbf{D}^{\prime}=\mathbf{D} \otimes \mathbf{D}_{\perp}^{\prime}
$$

Semantic functions

$$
\begin{aligned}
& \mathcal{E}: \operatorname{Exp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { State } \rightarrow(\text { Int }+\{?\}\})}_{\text {EXP }} \\
& \mathcal{B}: \operatorname{BExp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { State } \rightarrow(\text { Bool }+\{? ?\})}_{\text {BEXP }}
\end{aligned}
$$

Only one clause to modify here:

$$
\mathcal{E} \llbracket x \rrbracket \rho_{V}\langle s, i, o\rangle=s l \text { where } l=\rho_{V} x
$$

Semantics of statements

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { State } \rightarrow(\text { State }+\{? ?\})}_{\text {STMT }}
$$

Again, only one clause to change:

$$
\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\langle s[l \mapsto n], i, o\rangle \text { where } l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V}\langle s, i, o\rangle
$$

(plus a similar change in $\mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \ldots=\ldots$) and two clauses to add:

$$
\begin{aligned}
& \mathcal{S} \llbracket \text { read } x \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\left\langle s\left[l \mapsto n \rrbracket, i^{\prime}, o\right\rangle \text { where } l=\rho_{V} x,\left\langle n, i^{\prime}\right\rangle=i\right. \\
& \mathcal{S} \llbracket \text { write } e \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\langle s, i,\langle n, o\rangle\rangle \text { where } n=\mathcal{E} \llbracket e \rrbracket \rho_{V}\langle s, i, o\rangle
\end{aligned}
$$

Cheating a bit: writing out in the reverse order

Programs

New syntactic domain:

$$
\text { Prog }::=\operatorname{prog} S
$$

with obvious semantic function:

$$
\mathcal{P}: \text { Prog } \rightarrow \underbrace{\text { Input } \rightarrow(\text { Output }+\{? ?\})}_{\text {PROG }}
$$

given by:

$$
\begin{aligned}
& \mathcal{P} \llbracket \operatorname{prog} S \rrbracket i=o^{\prime} \text { where } \mathcal{S} \llbracket S \rrbracket \rho_{V}^{\emptyset} \rho_{P}^{\emptyset}\left\langle s^{\emptyset}, i, \text { eof }\right\rangle=\left\langle s^{\prime}, i^{\prime}, o^{\prime}\right\rangle \\
& \qquad \rho_{V}^{\emptyset} x=? ?, \rho_{P}^{\emptyset} p=? ?, s^{\emptyset} \text { next }=0, s^{\emptyset} l=? ?
\end{aligned}
$$

Okay, but...

Do we want to allow statements to erase output?

Changing philosophy

From: What happens now?

To:
What the overall answer will be?

Direct semantics

$$
\begin{aligned}
& \text { begin } \ldots ; \ldots ; \quad \ldots \text { end } \\
& s^{\emptyset} \xrightarrow{\mathcal{S} \llbracket \ldots \rrbracket} s_{i} \xrightarrow{\mathcal{S} \llbracket \ldots \rrbracket} s_{j} \xrightarrow{\mathcal{S} \llbracket . . \rrbracket} s^{\prime} \quad w{ }^{\prime \prime} \text { overall result"" }
\end{aligned}
$$

Continuation semantics

$$
\begin{aligned}
& \text { begin ... ; ... ; ... end }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{S}{\mathscr{L} \ldots . \rrbracket} \kappa_{i}:
\end{aligned}
$$

Continuations

$$
\text { Cont }=\text { State } \rightarrow \text { Ans }
$$

Now:

- states do not include outputs
- answers are outputs (or errors)

$$
\begin{aligned}
\text { State } & =\text { Store } \times \text { Input } \\
\text { Ans } & =\text { Output }
\end{aligned}
$$

- these are continuations for statements; semantics for statements is given by:

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }}
$$

That is: \quad STMT $=$ VEnv \rightarrow PEnv \rightarrow Cont \rightarrow State \rightarrow Ans

Expression and declaration continuations

- continuations for other syntactic categories should be additionally parameterised by whatever these pass on:
- expressions pass on values, so

$$
\begin{aligned}
& \text { Cont }_{\mathrm{E}}=\text { Int } \rightarrow \text { State } \rightarrow \text { Ans } \\
& \text { Cont }_{\mathrm{B}}=\text { Bool } \rightarrow \text { State } \rightarrow \text { Ans }
\end{aligned}
$$

- declarations pass on environments, so

$$
\begin{aligned}
& \text { Cont }_{\mathrm{D}_{\mathrm{V}}}=\text { VEnv } \rightarrow \text { State } \rightarrow \text { Ans } \\
& \text { Cont }_{\mathrm{D}_{\mathrm{P}}}=\text { PEnv } \rightarrow \text { State } \rightarrow \text { Ans }
\end{aligned}
$$

TinY ${ }^{+++}$

$$
\begin{aligned}
& N \in \operatorname{Num}::==0|1| 2 \mid \cdots \\
& x \in \operatorname{Var}::= \cdots \\
& p \in \operatorname{IDE}::= \cdots \\
& e \in \operatorname{Exp}::=N|x| e_{1}+e_{2}\left|e_{1} * e_{2}\right| e_{1}-e_{2} \\
& b \in \operatorname{BExp}::=\operatorname{true} \mid \text { false }\left|e_{1} \leq e_{2}\right| \neg b^{\prime} \mid b_{1} \wedge b_{2} \\
& S \in \operatorname{Stmt}::= x:=e \mid \text { skip }\left|S_{1} ; S_{2}\right| \text { if } b \text { then } S_{1} \text { else } S_{2} \mid \text { while } b \text { do } S^{\prime} \\
& \mid \operatorname{begin} D_{V} D_{P} S \text { end } \mid \text { call } p \mid \text { call } p(\operatorname{vr} x) \\
&|\operatorname{read} x| \text { write } e \\
& D_{V} \in \operatorname{VDecl}::= \operatorname{var} x ; D_{V} \mid \varepsilon \\
& D_{P} \in \operatorname{PDecl}::= \operatorname{proc} p \text { is }(S) ; D_{P} \mid \operatorname{proc} p(\operatorname{vr} x) \text { is }(S) ; D_{P} \mid \varepsilon \\
& \operatorname{Prog}::=\operatorname{prog} S
\end{aligned}
$$

Semantic domains

Int	$=\ldots$
Bool	$=\ldots$
Loc	$=\ldots$
Store	$=\ldots$
VEnv	$=\ldots$

$$
\begin{aligned}
\text { Input } & =\text { Int } \times \text { Input }+\{\text { eof }\} \\
\text { State } & =\text { Store } \times \text { Input } \\
\text { Output } & =\text { Int } \times \text { Output }+\{\text { eof }, ? ?\}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PROC}_{0} & =\text { Cont } \rightarrow \text { Cont } \\
\mathrm{PROC}_{1}^{\mathrm{vr}} & =\text { Loc } \rightarrow \mathrm{PROC}_{0}
\end{aligned}
$$

$$
\text { PEnv }=
$$

$$
\begin{aligned}
\text { Cont } & =\text { State } \rightarrow \text { Output } \\
\text { Cont }_{\mathrm{E}} & =\text { Int } \rightarrow \text { Cont } \\
\text { Cont }_{\mathrm{B}} & =\text { Bool } \rightarrow \text { Cont } \\
\text { Cont }_{\mathrm{D}_{\mathrm{V}}} & =\text { VEnv } \rightarrow \text { Cont } \\
\text { Cont }_{\mathrm{D}_{\mathrm{P}}} & =\text { PEnv } \rightarrow \text { Cont }
\end{aligned}
$$

$$
\operatorname{IDE} \rightarrow\left(\mathrm{PROC}_{0}+\mathrm{PROC}_{1}^{\mathrm{vr}}+\{? ?\}\right)
$$

Semantic functions

$$
\begin{aligned}
& \mathcal{E}: \quad \operatorname{Exp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{E}} \rightarrow \text { Cont }}_{\text {EXP }} \\
& \mathcal{B}: \text { BExp } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{B}} \rightarrow \text { Cont }}_{\text {BEXP }} \\
& \mathcal{S}: \quad \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }} \\
& \mathcal{D}_{V}: \text { VDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{D}} \rightarrow \text { Cont }}_{\text {VDECL }} \\
& \mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont }_{\mathrm{D}_{\mathrm{P}}} \rightarrow \text { Cont }}_{\text {PDECL }} \\
& \mathcal{P}: \quad \text { Prog } \rightarrow \underbrace{\text { Input } \rightarrow \text { Output }}_{\text {PROG }}
\end{aligned}
$$

Sample semantic clauses

Programs:

$$
\begin{aligned}
& \mathcal{P} \llbracket \operatorname{prog} S \rrbracket i=\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\emptyset} \rho_{P}^{\emptyset} \kappa^{\emptyset}\left\langle s^{\emptyset}, i\right\rangle \\
& \quad \text { where } \rho_{V}^{\emptyset} x=? ?, \rho_{P}^{\emptyset} p=?, \kappa^{\emptyset} s=\text { eof }, s^{\emptyset} n e x t=0, s^{\emptyset} l=? ?
\end{aligned}
$$

$$
\mathcal{D}_{P} \llbracket \varepsilon \rrbracket \rho_{V} \rho_{P} \kappa_{P}=\kappa_{P} \rho_{P}
$$

$$
\mathcal{D}_{P} \llbracket \operatorname{proc} p \text { is }(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=
$$

Declarations:

$$
\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \text { where } P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P]
$$

$$
\mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \rho_{V} \kappa_{V}\langle s, i\rangle=
$$

$$
\begin{array}{r}
\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} \kappa_{V}\left\langle s^{\prime}, i\right\rangle \text { where } l=s \text { next }, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], \\
s^{\prime}=s[l \mapsto ?, n e x t \mapsto l+1]
\end{array}
$$

No continuations really used here, but: $\binom{$ may be rewritten to a more }{ standard continuation style }

Sample semantic clauses

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket \rho_{V} \kappa_{E}=\lambda\langle s, i\rangle: \text { State. } \kappa_{E} n\langle s, i\rangle \text { where } l=\rho_{V} x, n=s l \\
& \text { this means: ?? if } \rho_{V} x=? ? \text { or } s l=? ? \\
& \mathcal{E} \llbracket e_{1}+e_{2} \rrbracket \rho_{V} \kappa_{E}= \\
& \quad \mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} \lambda n_{1}: \text { Int. } \mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} \lambda n_{2}: \text { Int. } \kappa_{E}\left(n_{1}+n_{2}\right) \\
& \text { check the types! }
\end{aligned}
$$

Expressions:

Boolean expressions:

$$
\begin{aligned}
& \mathcal{B} \llbracket \text { true } \rrbracket \rho_{V} \kappa_{B}=\kappa_{B} \text { tt } \\
& \mathcal{B} \llbracket e_{1} \leq e_{2} \rrbracket \rho_{V} \kappa_{B}= \\
& \quad \mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} \lambda n_{1}: \text { Int. } \mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} \lambda n_{2}: \text { Int. } \\
& \qquad \quad \kappa_{B} \operatorname{ifte}\left(n_{1} \leq n_{2}, \mathrm{tt}, \mathrm{ff}\right)
\end{aligned}
$$

Back to declarations

Recall:

$$
\begin{aligned}
& \mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \rho_{V} \kappa_{V}\langle s, i\rangle= \\
& \qquad \begin{array}{l}
\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} \kappa_{V}\left\langle s^{\prime}, i\right\rangle \text { where } l=s \text { next }, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l] \\
\\
s^{\prime}=s[l \mapsto ?, \text { next } \mapsto l+1]
\end{array}
\end{aligned}
$$

What would happen if variable declarations included initializing expressions?

$$
\begin{aligned}
& \mathcal{D}_{V} \llbracket \operatorname{var} x=e ; D_{V} \rrbracket \rho_{V} \kappa_{V}\langle s, i\rangle= \\
& \mathcal{E} \llbracket e \rrbracket \rho_{V}\left(\lambda n: \operatorname{Int} . \mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} \kappa_{V}\left\langle s^{\prime}, i\right\rangle\right) \text { where } l=s \text { next }, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], \\
& s^{\prime}=s[l \mapsto n, \text { next } \mapsto l+1]
\end{aligned}
$$

Statements

$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{E} \llbracket e \rrbracket \rho_{V}(\lambda n:$ Int. $\lambda\langle s, i\rangle:$ State. $\kappa\langle s[l \mapsto n], i\rangle)$ where $l=\rho_{V} x$
$\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V} \rho_{P}=i d_{\text {Cont }}$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P}\left(\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \kappa\right)$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V} \rho_{P} \kappa=$
$\mathcal{B} \llbracket b \rrbracket \rho_{V} \lambda v: \operatorname{Bool} . i f t e\left(v, \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \kappa, \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \kappa\right)$
$\mathcal{S} \llbracket$ while b do $S \rrbracket \rho_{V} \rho_{P} \kappa=$
$\mathcal{B} \llbracket b \rrbracket \rho_{V} \lambda v:$ Bool.ifte $\left(v, \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}\left(\mathcal{S} \llbracket\right.\right.$ while b do $\left.\left.S \rrbracket \rho_{V} \rho_{P} \kappa\right), \kappa\right)$
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P$ where $P=\rho_{P} p$
$\mathcal{S} \llbracket$ call $p(\operatorname{vr} x) \rrbracket \rho_{V} \rho_{P}=P l$ where $P=\rho_{P} p \in \operatorname{PROC}_{1}^{\mathrm{vr}}, l=\rho_{V} x$
$\mathcal{S} \llbracket$ read $x \rrbracket \rho_{V} \rho_{P} \kappa\langle s, i\rangle=\kappa\left\langle s[l \mapsto n], i^{\prime}\right\rangle$ where $l=\rho_{V} x,\left\langle n, i^{\prime}\right\rangle=i$
$\mathcal{S} \llbracket$ write $e \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{E} \llbracket e \rrbracket \rho_{V} \lambda n:$ Int. $\lambda\langle s, i\rangle$:State. $\langle n, \kappa\langle s, i\rangle\rangle$

Blocks

$\mathcal{S} \llbracket$ begin $D_{V} D_{P} S$ end $\rrbracket \rho_{V} \rho_{P} \kappa=$ $\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} \lambda \rho_{V}^{\prime}:$ VEnv. $\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V}^{\prime} \rho_{P} \lambda \rho_{P}^{\prime}:$ PEnv. $\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} \kappa$

This got separated, because we will want to add jumps...

Abrupt termination

Let us forget input/output for now, fall back to the language Tiny ${ }^{++}$with (paremeterless) procedures.

Extend it with:

```
S\in Stmt ::= . . | abort
```

The killer application of continuations is non-local control flow.
This is the simplest example.

Semantic domains

$$
\begin{aligned}
\text { Ans } & =\text { Store } \\
\text { Cont } & =\text { Store } \rightarrow \text { Ans } \\
\text { Cont }_{\mathrm{E}} & =\text { Int } \rightarrow \text { Ans } \\
\text { Cont }_{\mathrm{B}} & =\text { Bool } \rightarrow \text { Ans } \\
\text { Cont }_{\mathrm{D}_{\mathrm{V}}} & =\text { VEnv } \rightarrow \text { Cont } \\
\text { Cont }_{\mathrm{D}_{\mathrm{P}}} & =\text { PEnv } \rightarrow \text { Ans } \\
\text { PROC } & =\text { Cont } \rightarrow \text { Cont } \\
\text { PEnv } & =\mathrm{IDE} \rightarrow(\text { PROC }+\{? ?\})
\end{aligned}
$$

Most continuation types got simplified, since expressions or procedure declarations do not produce new Store's. We could have done that previously, too.

Semantic functions

As before:

$$
\begin{aligned}
& \mathcal{E}: \quad \operatorname{Exp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{E}} \rightarrow \text { Cont }}_{\text {EXP }} \\
& \mathcal{B}: \text { BExp } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{B}} \rightarrow \text { Cont }}_{\text {BEXP }} \\
& \mathcal{S}: \quad \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }} \\
& \mathcal{D}_{V}: \text { VDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Cont }_{\mathrm{D}_{\mathrm{V}}} \rightarrow \text { Cont }}_{\text {VDECL }} \\
& \mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont }_{\mathrm{D}_{\mathrm{P}}} \rightarrow \text { Cont }}_{\text {PDECL }}
\end{aligned}
$$

Sample semantic clauses

Roughly as before. A few get simpler because of simpler continuation types, e.g.:

$$
\mathcal{E} \llbracket x \rrbracket \rho_{V} \kappa_{E} s=\kappa_{E} n \text { where } l=\rho_{V} x, n=s l
$$

But a few get more complicated because the simpler types require more explicit state passing, e.g.:

$$
\mathcal{E} \llbracket e_{1}+e_{2} \rrbracket \rho_{V} \kappa_{E} s=\mathcal{E} \llbracket e_{1} \rrbracket \rho_{V}\left(\lambda n_{1}: \operatorname{Int} . \mathcal{E} \llbracket e_{2} \rrbracket \rho_{V}\left(\lambda n_{2}: \text { Int. } \kappa_{E}\left(n_{1}+n_{2}\right)\right) s\right) s
$$

One new clause:

$$
\mathcal{S} \llbracket \text { abort } \rrbracket \rho_{V} \rho_{P} \kappa=i d_{\text {Store }}
$$

Compare it to:

$$
\mathcal{S} \llbracket \text { skip } \rrbracket \rho_{V} \rho_{P}=i d_{\text {Cont }}
$$

Exceptions

Exception throwing is a more fancy kind of abrupt termination, where only part of a program gets terminated.

We will throw and catch named exceptions without parameters.

$$
\begin{aligned}
& S \in \operatorname{Stmt}::=\ldots\left|\operatorname{try} S_{1} \operatorname{catch}(\chi) S_{2}\right| \text { throw } \chi \\
& \chi \in \mathbf{E X N}::=\ldots
\end{aligned}
$$

- A thrown exception may erase a part of the procedure-call stack, but it does not erase changes to the store.

Semantic domains

- A new kind of environment:

$$
\mathbf{X E n v}=\mathbf{E X N} \rightarrow(\text { Cont }+\{?\}\})
$$

- The appropriate semantic functions get another environment parameter:

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { XEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { XEnv } \rightarrow \text { Cont }_{D_{\mathrm{P}}} \rightarrow \text { Cont }}_{\text {PDECL }}
\end{gathered}
$$

Semantic clauses

- Semantic clauses for declarations and statements of the "old" forms take the extra environment parameter and disregard it (passing it "down").
- New clauses:

$$
\begin{aligned}
& \mathcal{S} \llbracket \operatorname{try} S_{1} \operatorname{catch}(\chi) S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa= \\
& \quad \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{X}\left[\chi \mapsto \kappa^{\prime}\right] \kappa \text { where } \kappa^{\prime}=\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa \\
& \mathcal{S} \llbracket \text { throw } \chi \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa=\rho_{X} \chi
\end{aligned}
$$

Goto's

- Let's replace exceptions by the full control-flow catastrophe.

$$
\begin{aligned}
& S \in \operatorname{Stmt}::=\ldots|L: S| \text { goto } L \\
& L \in \mathbf{L A B}::=\ldots
\end{aligned}
$$

- Labels are visible inside the block in which they are declared
- No jumps into a block are allowed; jumps into other statements are okay

Semantics - sketch

- Yet another environment:

$$
\text { LEnv }=\mathbf{L A B} \rightarrow(\text { Cont }+\{? ?\})
$$

- Semantic functions get another environment parameter as before:

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont }_{D_{P}} \rightarrow \text { Cont }}_{\text {PDECL }}
\end{gathered}
$$

- Semantic clauses for declarations and statements of the "old" forms take the extra parameter and disregard it (passing it "down").

Goto's - sketch of the semantics continues

- We add a declaration-like semantics for statements:

$$
\mathcal{D}_{S}: \text { Stmt } \rightarrow \text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont } \rightarrow \text { LEnv }
$$

- With a few trivial clauses, like:

$$
\mathcal{D}_{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\rho_{L}
$$

and similarly for skip, call p etc., and for goto L, where no visible labels can be introduced. Since we cannot jump into blocks, also:

$$
\mathcal{D}_{S} \llbracket \text { begin } D_{V} D_{P} S \text { end } \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\rho_{L}
$$

Goto's - sketch of the semantics continues

- And then a few not quite so trivial clauses follow:

$$
\begin{aligned}
& \mathcal{D}_{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad \mathcal{D}_{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{L}\left(\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right)+\mathcal{D}_{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa \\
& \mathcal{D}_{S} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad \mathcal{D}_{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa+\mathcal{D}_{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa \\
& \mathcal{D}_{S} \llbracket \text { while } b \text { do } S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad \mathcal{D}_{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L}\left(\mathcal{S} \llbracket \text { while } b \text { do } S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right) \\
& \mathcal{D}_{S} \llbracket L: S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad\left(\mathcal{D}_{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right)\left[L \mapsto \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa \rrbracket\right.
\end{aligned}
$$

The only extra thing to explain here is "updating":

$$
\left(\rho_{L}+\rho_{L}^{\prime}\right) L= \begin{cases}\rho_{L} L & \text { if } \rho_{L}^{\prime} L=? \\ \rho_{L}^{\prime} L & \text { if } \rho_{L}^{\prime} L \neq ?\end{cases}
$$

Goto's - sketch of the semantics continues

- And finally we need new clauses for the (usual) semantics of labelled statements, of jumps (trivial now) and of blocks - rather complicated:

$$
\begin{aligned}
& \mathcal{S} \llbracket L: S \rrbracket=\mathcal{S} \llbracket S \rrbracket \\
& \mathcal{S} \llbracket \text { goto } L \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\kappa_{L} \text { where } \kappa_{L}=\rho_{L} L \\
& \mathcal{S} \llbracket \text { begin } D_{V} D_{P} S \text { end } \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad \mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} \lambda \rho_{V}^{\prime}: \text { VEnv. } \mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V}^{\prime} \rho_{P} \rho_{L} \lambda \rho_{P}^{\prime}: \text { PEnv. } \\
& \qquad \mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} \rho_{L}^{\prime} \kappa \text { where } \rho_{L}^{\prime}=\mathcal{D}_{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime}\left(\rho_{L}+\rho_{L}^{\prime}\right) \kappa
\end{aligned}
$$

... and perhaps not quite right?

- one should really check if the labels within a block are unique
- labels within a block should be visible within procedure declarations in this block

callcc

- short for call-with-current-continuation
- goto on steroids
- featured in Scheme, SML, Haskell, Ruby, but also in fancy libraries for C++
- We shall not define its semantics, as it does not mix very well with Tiny, an imperative language with a trivial type system.
- Instead, we will explain how it works, rather informally and by example.
- This illustrates how knowledge of semantic concepts can help the programmer to learn a programming language concept.

Taxonomy of jumps

	Static (lexical)	Dynamic
Outward only	break return	throw
	setjmp ()$/$ longjmp ()	
Arbitrary	goto	callcc

callcc explained

- callcc is a function that takes one argument.
- As a programmer, you typically need to prepare such an argument (call it f).
- Your \mathbf{f} should be a function that takes one argument (call it \mathbf{k}).
- Normally you never need to prepare \mathbf{k}; your \mathbf{f} should be prepared to get one.
- You can expect \mathbf{k} to be a function that takes one argument.
- If you call callcc f:
- \mathbf{f} is called with a magical argument \mathbf{k}
- if at some point you call \mathbf{k} with an argument \mathbf{v}, then \mathbf{f} is immediately terminated and callcc \mathbf{f} takes value \mathbf{v}.
- if \mathbf{f} terminates normally and returns a value \mathbf{v}, then callcc \mathbf{f} takes value \mathbf{v}.
- The above works even if \mathbf{f} returns \mathbf{k} ! If \mathbf{k} is called after exiting from \mathbf{f}, the call stack may need to be rebuilt.

Examples (in a functional-like pseudocode)

```
let f k = k 42
in callcc f
let f k = (k 42) + 25
in callcc f
let f k =
    for x in L do
        if test x then k x
in callcc f
z := ...;
let f k = (z := k; 1)
in (callcc f) + 1;
```


The yin-yang puzzle

Even the author of this program could not understand why it does what it does.

```
let
    yin = ((\c -> (print 0) c) (callcc id))
    yang = ((\c -> (print 1) c) (callcc id))
in
    (yin yang)
```

So, what does this thing do and why?

"Standard semantics"

- continuations (to handle jumps of various kinds, and simplify notation)
- careful classification of various domains of values (assignable, storable, output-able, closures, etc) with the corresponding semantics of expressions (of various kinds)
- Scott domains and domain equations
- continuous functions only

