Semantyka i weryfikacja programów

Bartosz Klin (slajdy Andrzeja Tarleckiego)

Instytut Informatyki Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin

pok. 5680

klin@mimuw.edu.pl

Strona tego wykładu:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics Faculty of Mathematics, Informatics and Mechanics University of Warsaw

http://www.mimuw.edu.pl/~klin
klin@mimuw.edu.pl

office: 5680

This course:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Universal algebra

Basics of universal algebra:

- signatures and algebras
- homomorphisms, subalgebras, congruences
- equations and varieties
- Birkhoff's theorem

Plus some hints on applications in

foundations of software semantics, verification, specification, development...

Signatures

Algebraic signature: a set of operation names, classified by arities:

$$\Sigma = \langle \Sigma_n \rangle_{n \in \mathbb{N}}$$

Alternatively:

$$\Sigma = (|\Sigma|, arity)$$

with operation names $|\Sigma|$ and arity function $arity: |\Sigma| \to \mathbb{N}$.

- We write $f \in \Sigma_n$ if arity(f) = n,
- and $f \in \Sigma$ if $f \in \Sigma_n$ for some n.

Compare the two notions

Names in Σ_0 are called *constants*.

Fix a signature Σ for a while.

• Σ -algebra:

$$A = (|A|, \langle f^A \rangle_{f \in \Sigma})$$

- carrier set |A|
- operations: $f^A \colon |A|^n \to |A|$, for $f \in \Sigma_n$
- the class of all Σ -algebras:

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite? Can $A \in \operatorname{Alg}(\Sigma)$ have an empty carrier?

Multi-sorted setting

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$ $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A \colon |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f \colon s_1 \times \ldots \times s_n \to s$

...and so on...

The algebra of TINY

Its signature Σ (syntax):

sorts	Int, Bool;
opns	0, 1: Int;
	plus, times, minus: $Int \times Int \rightarrow Int;$
	false, true: Bool;
	$lteq: Int \times Int \rightarrow Bool;$
	$not: Bool \rightarrow Bool;$
	and: $Bool \times Bool \rightarrow Bool;$

and Σ -algebra \mathcal{A} (semantics):

 $\begin{array}{ll} \mbox{carriers} & \mathcal{A}_{Int} = \mbox{Int}, \mathcal{A}_{Bool} = \mbox{Bool} \\ \mbox{operations} & 0_{\mathcal{A}} = 0, 1_{\mathcal{A}} = 1 \\ & plus_{\mathcal{A}}(n,m) = n + m, times_{\mathcal{A}}(n,m) = n * m \\ & minus_{\mathcal{A}}(n,m) = n - m \\ & false_{\mathcal{A}} = \mbox{ff}, true_{\mathcal{A}} = \mbox{tt} \\ & lteq_{\mathcal{A}}(n,m) = \mbox{tt} \mbox{ if } n \leq m \mbox{ else ff} \\ & not_{\mathcal{A}}(b) = \mbox{tt} \mbox{ if } b = \mbox{ff} \mbox{ else ff} \\ & and_{\mathcal{A}}(b,b') = \mbox{tt} \mbox{ if } b = b' = \mbox{tt} \mbox{ else ff} \end{array}$

Subalgebras

- for A ∈ Alg(Σ), a Σ-subalgebra A_{sub} ⊆ A is given by subset |A_{sub}| ⊆ |A| closed under the operations:
 - for $f \in \Sigma_n$ and $a_1, \ldots, a_n \in |A_{sub}|$, we require $f^A(a_1, \ldots, a_n) \in |A_{sub}|$ then define $f^{A_{sub}}(a_1, \ldots, a_n) = f^A(a_1, \ldots, a_n)$

• for
$$A \in \operatorname{Alg}(\Sigma)$$
 and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.

- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.
- **Fact:** For any $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A;
 or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

• for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ -homomorphism $h: A \to B$ is a function $h: |A| \to |B|$ that preserves the operations:

- for $f \in \Sigma_n$ and $a_1, \ldots, a_n \in |A|$, $h(f^A(a_1, \ldots, a_n)) = f^B(h(a_1), \ldots, h(a_n))$

Fact: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Fact: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $id_A : A \to A$. Composition of homomorphisms $h : A \to B$ and $g : B \to C$ is a homomorphism $h;g : A \to C$.

Isomorphisms

- for A, B ∈ Alg(Σ), a Σ-isomorphism is any Σ-homomorphism i: A → B that has an inverse, i.e., a Σ-homomorphism i⁻¹: B → A such that i;i⁻¹ = id_A and i⁻¹;i = id_B.
- Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Fact: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Fact: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is closed under the operations:

- for
$$f \in \Sigma_n$$
 and $a_1, b_1, \ldots, a_n, b_n \in |A|$,
if $a_1 \equiv b_1, \ldots, a_n \equiv b_n$ then $f^A(a_1, \ldots, a_n) \equiv f^A(a'_1, \ldots, a'_n)$.

Fact: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Fact: For any Σ -homomorphism $h: A \to B$, the kernel of h, $K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

Quotients

- for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra
 A/≡ is built in the natural way on the equivalence classes of ≡:
 - $\text{ for } |A/\equiv| = \{[a]_{\equiv} \mid a \in |A|\}, \text{ with } [a]_{\equiv} = \{a' \in |A| \mid a \equiv a'\}$

- for
$$f \in \Sigma_n$$
 and $a_1, \ldots, a_n \in |A|$,
 $f_{A/\equiv}([a_1]_{\equiv}, \ldots, [a_n]_{\equiv}) = [f_A(a_1, \ldots, a_n)]_{\equiv}$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv} : A \to A/\equiv$.

Fact: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \rightarrow A/\equiv'$ such that $[-]_{\equiv}; h = [-]_{\equiv'}$.

Fact: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

Products

• for $A_i \in \operatorname{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:

$$- |\prod_{i \in \mathcal{I}} A_i| = \prod_{i \in \mathcal{I}} |A_i|$$

- for
$$f \in \Sigma_n$$
 and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|$, for $i \in \mathcal{I}$,
 $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Fact: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

> Define the product of the empty family of Σ -algebras. When the projection π_i is an isomorphism?

Terms

Consider a set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Σ in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $X \subseteq |T_{\Sigma}(X)|$
 - for $f \in \Sigma_n$ and $t_1, \ldots, t_n \in |T_{\Sigma}(X)|$, $f(t_1, \ldots, t_n) \in |T_{\Sigma}(X)|$
- for any Σ -algebra A and valuation $v: X \to |A|$, the value $t^A[v]$ of a term $t \in |T_{\Sigma}(X)|$ in A under v is determined inductively:

$$- x^A[v] = v(x)$$
, for $x \in X$

- $(f(t_1, \dots, t_n))^A[v] = f_A((t_1)^A[v], \dots, (t_n)^A[v])$, for $f \in \Sigma_n$ and $t_1, \dots, t_n \in |T_{\Sigma}(X)|$

Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider a set X of variables.

 The term algebra T_Σ(X) has the set of terms as the carrier and operations defined "syntactically":

- for $f \in \Sigma_n$ and $t_1, \ldots, t_n \in |T_{\Sigma}(X)|$, $f^{T_{\Sigma}(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Fact: For any set X of variables, Σ -algebra A and valuation $v: X \to |A|$, there is a unique Σ -homomorphism $v^{\#}: T_{\Sigma}(X) \to A$ that extends v. Moreover, for $t \in |T_{\Sigma}(X)|, v^{\#}(t) = t^{A}[v].$

Equations

• Equation:

$$\fbox{} \forall X.t = t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|$ are terms.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t^A[v] = t'^A[v]$.

Semantic entailment

$$\Phi \models_{\Sigma} \varphi$$

 $\begin{array}{l} \Sigma \text{-equation } \varphi \text{ is a semantic consequence of a set of } \Sigma \text{-equations } \Phi \\ \\ \text{if } \varphi \text{ holds in every } \Sigma \text{-algebra that satisfies } \Phi. \end{array}$

BTW:

- Models of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$
- Mod and Th form a Galois connection

Equational calculus

$$\frac{\forall X.t = t}{\forall X.t = t} \quad \frac{\forall X.t = t'}{\forall X.t' = t} \quad \frac{\forall X.t = t'}{\forall X.t = t''} \quad \frac{\forall X.t = t''}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \quad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a = b does *not* follow from a = f(x) and f(x) = b, unless...

Proof-theoretic entailment

 $\Sigma\text{-equation }\varphi$ is a proof-theoretic consequence of a set of $\Sigma\text{-equations }\Phi$

if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness & completeness

Fact: The equational calculus is sound and complete:

$$\Phi\models\varphi\iff\Phi\vdash\varphi$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

Proof (idea):

- soundness: easy!
- completeness: not so easy!

One motivation

Software systems (data types, modules, programs, databases...):

sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, ...
- Focusing on: CORRECTNESS

Universal algebra from rough analogy:

module interface \rightsquigarrow signature module \rightarrow algebra module specification \rightarrow class of algebras

Example

 $\begin{aligned} \text{spec STACK} &= \text{sorts } Elem, Stack \\ \text{opns } empty: Stack; \\ push: Elem \times Stack \rightarrow Stack; \\ pop: Stack \rightarrow Stack; \\ top: Stack \rightarrow Elem \\ \text{axioms } \forall s: Stack. \forall e: Elem. top(push(e, s)) = e; \\ \forall s: Stack. \forall e: Elem. pop(push(e, s)) = s; \\ & \cdots \end{aligned}$

Problem:

There are models $M \in Mod(STACK)$ such that $M \models empty = push(empty, e)$, or even:

$$M \models \forall s, t: Stack.s = t$$

Equational specifications

$$\langle \Sigma, \Phi \rangle$$

- signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

Birkhoff's HSP Theorem:

Fact: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Solution: allow more powerful specification formalisms

Wrapping up

Message to take home

- Programming languages have a lot in common
- Some basic semantic notions that keep popping up:
 - state vs. environment
 - static vs. dynamic scope
 - parameter passing modes
 - Continuations!
- We may try to prove that programs are correct
 - Very little can be done!
 - But so much it at stake that making even tiny progress is very useful

Your (near) future

- Jezyki i Paradygmaty Programowania (JiPP):
 - very cool programming languages totally unlike TINY
 - writing an interpreter (in Haskell) for a language of your own design
 - Hint: just recall your denotational semantics!
- Metody Realizacji Jezykow Programowania (MRJP):
 - writing a full-fledged compiler
 - lexing, parsing, code generation, the works
- But first...
 - Good luck at the exam!