
Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki

Wydzia l Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin pok. 5680

klin@mimuw.edu.pl

Strona tego wyk ladu:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 1 -

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course: http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 2 -

Universal algebra

Basics of universal algebra:

• signatures and algebras

• homomorphisms, subalgebras, congruences

• equations and varieties

• Birkhoff’s theorem

Plus some hints on applications in

foundations of software semantics, verification, specification, development. . .

Bartosz Klin: Semantics & Verification - 3 -

Signatures

Algebraic signature: a set of operation names, classified by arities:

Σ = 〈Σn〉n∈N

Alternatively:

Σ = (|Σ|, arity)

with operation names |Σ| and arity function arity : |Σ| → N.

• We write f ∈ Σn if arity(f) = n,

• and f ∈ Σ if f ∈ Σn for some n.

Compare the two notions

Names in Σ0 are called constants.

Bartosz Klin: Semantics & Verification - 4 -

Fix a signature Σ for a while.

Algebras

• Σ-algebra:

A = (|A|, 〈fA〉f∈Σ)

• carrier set |A|
• operations: fA : |A|n → |A|, for f ∈ Σn

• the class of all Σ-algebras:

Alg(Σ)

Can Alg(Σ) be empty? Finite?

Can A ∈ Alg(Σ) have an empty carrier?

Bartosz Klin: Semantics & Verification - 5 -

Multi-sorted setting

Algebraic signature:

Σ = (S,Ω)

• sort names: S

• operation names, classified by arities and result sorts: Ω = 〈Ωw,s〉w∈S∗,s∈S
f : s1 × . . .× sn → s stands for s1, . . . , sn, s ∈ S and f ∈ Ωs1...sn,s

• Σ-algebra:

A = (|A|, 〈fA〉f∈Ω)

• carrier sets: |A| = 〈|A|s〉s∈S
• operations: fA : |A|s1 × . . .× |A|sn → |A|s, for f : s1 × . . .× sn → s

...and so on...

Bartosz Klin: Semantics & Verification - 6 -

The algebra of Tiny

Its signature Σ (syntax): sorts Int ,Bool ;
opns 0, 1: Int ;

plus, times,minus : Int × Int → Int ;
false, true : Bool ;
lteq : Int × Int → Bool ;
not : Bool → Bool ;
and : Bool × Bool → Bool ;and Σ-algebra A (semantics):

carriers AInt = Int,ABool = Bool
operations 0A = 0, 1A = 1

plusA(n,m) = n+m, timesA(n,m) = n ∗m
minusA(n,m) = n−m
falseA = ff , trueA = tt
lteqA(n,m) = tt if n ≤ m else ff
notA(b) = tt if b = ff else ff
andA(b, b′) = tt if b = b′ = tt else ff

Bartosz Klin: Semantics & Verification - 7 -

Subalgebras

• for A ∈ Alg(Σ), a Σ-subalgebra Asub ⊆ A is given by subset |Asub | ⊆ |A|
closed under the operations:

− for f ∈ Σn and a1, . . . , an ∈ |Asub |, we require fA(a1, . . . , an) ∈ |Asub |
then define

fAsub (a1, . . . , an) = fA(a1, . . . , an)

• for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A generated by X, 〈A〉X , is

the least subalgebra of A that contains X.

• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Fact: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.

Proof (idea):

• generate the generated subalgebra from X by closing it under operations in A;

or

• the intersection of any family of subalgebras of A is a subalgebra of A.

Bartosz Klin: Semantics & Verification - 8 -

Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

− for f ∈ Σn and a1, . . . , an ∈ |A|,
h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

Fact: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub of

B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Fact: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Fact: Identity function on the carrier of A ∈ Alg(Σ) is a homomorphism

idA : A→ A. Composition of homomorphisms h : A→ B and g : B → C is a

homomorphism h;g : A→ C.

Bartosz Klin: Semantics & Verification - 9 -

Isomorphisms

• for A,B ∈ Alg(Σ), a Σ-isomorphism is any Σ-homomorphism i : A→ B that

has an inverse, i.e., a Σ-homomorphism i−1 : B → A such that i;i−1 = idA and

i−1;i = idB .

• Σ-algebras are isomorphic if there exists an isomorphism between them.

Fact: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (“1-1” and “onto”).

Fact: Identities are isomorphisms, and any composition of isomorphisms is an

isomorphism.

Bartosz Klin: Semantics & Verification - 10 -

Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f ∈ Σn and a1, b1 . . . , an, bn ∈ |A|,
if a1 ≡ b1, . . . , an ≡ bn then fA(a1, . . . , an) ≡ fA(a′1, . . . , a

′
n).

Fact: For any relation R ⊆ |A| × |A| on the carrier of a Σ-algebra A, there exists

the least congruence on A that contains R.

Fact: For any Σ-homomorphism h : A→ B, the kernel of h, K(h) ⊆ |A| × |A|,
where a K(h) a′ iff h(a) = h(a′), is a Σ-congruence on A.

Bartosz Klin: Semantics & Verification - 11 -

Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:

− for |A/≡| = {[a]≡ | a ∈ |A|}, with [a]≡ = {a′ ∈ |A| | a ≡ a′}
− for f ∈ Σn and a1, . . . , an ∈ |A|,

fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Fact: The above is well-defined; moreover, the natural map that assigns to every

element its equivalence class is a Σ-homomorphisms []≡ : A→ A/≡.

Fact: Given two Σ-congruences ≡ and ≡′ on A, ≡ ⊆ ≡′ iff there exists a

Σ-homomorphism h : A/≡ → A/≡′ such that []≡;h = []≡′ .

Fact: For any Σ-homomorphism h : A→ B, A/K(h) is isomorphic with h(A).

Bartosz Klin: Semantics & Verification - 12 -

Products

• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏

i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:

− |
∏

i∈I Ai| =
∏

i∈I |Ai|
− for f ∈ Σn and a1 ∈ |

∏
i∈I Ai|, . . . , an ∈ |

∏
i∈I Ai|, for i ∈ I,

f∏
i∈I Ai

(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

Fact: For any family 〈Ai〉i∈I of Σ-algebras, projections πi(a) = a(i), where i ∈ I
and a ∈

∏
i∈I |Ai|, are Σ-homomorphisms πi :

∏
i∈I Ai → Ai.

Define the product of the empty family of Σ-algebras.

When the projection πi is an isomorphism?

Bartosz Klin: Semantics & Verification - 13 -

Terms

Consider a set X of variables.

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Σ

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f ∈ Σn and t1, . . . , tn ∈ |TΣ(X)|, f(t1, . . . , tn) ∈ |TΣ(X)|

• for any Σ-algebra A and valuation v : X → |A|, the value tA[v] of a term

t ∈ |TΣ(X)| in A under v is determined inductively:

− xA[v] = v(x), for x ∈ X
− (f(t1, . . . , tn))A[v] = fA((t1)A[v], . . . , (tn)A[v]), for f ∈ Σn and

t1, . . . , tn ∈ |TΣ(X)|

Above and in the following: assuming unambiguous “parsing” of terms!

Bartosz Klin: Semantics & Verification - 14 -

Term algebras

Consider a set X of variables.

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f ∈ Σn and t1, . . . , tn ∈ |TΣ(X)|, fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

Fact: For any set X of variables, Σ-algebra A and valuation v : X → |A|, there is

a unique Σ-homomorphism v# : TΣ(X)→ A that extends v. Moreover, for

t ∈ |TΣ(X)|, v#(t) = tA[v].

X |TΣ(X)|

|A|

TΣ(X)

A

-
H
HHH

HHHH
HHj ? ?

idX ↪→|TΣ (X)|

v ∃! v#|v#|SetS Alg(Σ)

Bartosz Klin: Semantics & Verification - 15 -

Equations

• Equation:

∀X.t = t′

where:

− X is a set of variables, and

− t, t′ ∈ |TΣ(X)| are terms.

• Satisfaction relation: Σ-algebra A satisfies ∀X.t = t′

A |= ∀X.t = t′

when for all v : X → |A|, tA[v] = t′A[v].

Bartosz Klin: Semantics & Verification - 16 -

Semantic entailment

Φ |=Σ ϕ

Σ-equation ϕ is a semantic consequence of a set of Σ-equations Φ

if ϕ holds in every Σ-algebra that satisfies Φ.

BTW:

• Models of a set of equations: Mod(Φ) = {A ∈ Alg(Σ) | A |= Φ}

• Theory of a class of algebras: Th(C) = {ϕ | C |= ϕ}

• Φ |= ϕ ⇐⇒ ϕ ∈ Th(Mod(Φ))

• Mod and Th form a Galois connection

Bartosz Klin: Semantics & Verification - 17 -

Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y)|

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b, unless. . .

Bartosz Klin: Semantics & Verification - 18 -

Proof-theoretic entailment

Φ `Σ ϕ

Σ-equation ϕ is a proof-theoretic consequence of a set of Σ-equations Φ

if ϕ can be derived from Φ by the rules.

How to justify this?

Semantics!

Bartosz Klin: Semantics & Verification - 19 -

Soundness & completeness

Fact: The equational calculus is sound and complete:

Φ |= ϕ ⇐⇒ Φ ` ϕ

• soundness: “all that can be proved, is true” (Φ |= ϕ⇐= Φ ` ϕ)

• completeness: “all that is true, can be proved” (Φ |= ϕ =⇒ Φ ` ϕ)

Proof (idea):

• soundness: easy!

• completeness: not so easy!

Bartosz Klin: Semantics & Verification - 20 -

One motivation

Software systems (data types, modules, programs, databases. . .):

sets of data with operations on them

• Disregarding: code, efficiency, robustness, reliability, . . .

• Focusing on: CORRECTNESS

Universal algebra
from rough analogy: module interface ; signature

module ; algebra

module specification ; class of algebras

Bartosz Klin: Semantics & Verification - 21 -

Example

spec Stack = sorts Elem,Stack

opns empty : Stack ;

push : Elem × Stack → Stack ;

pop : Stack → Stack ;

top : Stack → Elem

axioms ∀s:Stack .∀e:Elem.top(push(e, s)) = e;

∀s:Stack .∀e:Elem.pop(push(e, s)) = s;

. . .

Problem:

There are models M ∈ Mod(Stack) such that M |= empty = push(empty, e), or

even:

M |= ∀s, t:Stack .s = t

Bartosz Klin: Semantics & Verification - 22 -

Equational specifications

〈Σ,Φ〉

• signature Σ, to determine the static module interface

• axioms (Σ-equations), to determine required module properties

Birkhoff’s HSP Theorem:

Fact: A class of Σ-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Solution: allow more powerful specification formalisms

Bartosz Klin: Semantics & Verification - 23 -

Wrapping up

Bartosz Klin: Semantics & Verification - 24 -

Message to take home

• Programming languages have a lot in common

• Some basic semantic notions that keep popping up:

– state vs. environment

– static vs. dynamic scope

– parameter passing modes

– Continuations!

• We may try to prove that programs are correct

– Very little can be done!

– But so much it at stake that making even tiny progress is very useful

Bartosz Klin: Semantics & Verification - 25 -

Your (near) future

• Jezyki i Paradygmaty Programowania (JiPP):

– very cool programming languages totally unlike Tiny

– writing an interpreter (in Haskell) for a language of your own design

– Hint: just recall your denotational semantics!

• Metody Realizacji Jezykow Programowania (MRJP):

– writing a full-fledged compiler

– lexing, parsing, code generation, the works

• But first...

– Good luck at the exam!

Bartosz Klin: Semantics & Verification - 26 -

