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Universal algebra I

Basics of universal algebra:
e signatures and algebras
e homomorphisms, subalgebras, congruences
e equations and varieties
e Birkhoff's theorem

Plus some hints on applications in

foundations of software semantics, verification, specification, development. . .
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Signatures I

Algebraic signature: a set of operation names, classified by arities:

> = <En>n€N

Alternatively:

> = (|X], arity)

with operation names |X| and arity function arity: |3| — N.

o We write f € X, if arity(f) = n,
e and f € X if f € X, for some n.

Names in > are called constants.

Compare the two notions

Bartosz Klin: Semantics & Verification




Fix a signature X for a while.

Algebras I

A= (|A], (f*)sex)

e > -algebra:

e carrier set |A|

e operations: fA:|A|" — |A|, for f € 3,

e the class of all X-algebras:

Alg(%)

Can Alg(X) be empty? Finite?
Can A € Alg(X) have an empty carrier?
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Multi-sorted setting'

2 = (S,0)

Algebraic signature:

e sort names: S

e operation names, classified by arities and result sorts: €2 = (Qy s)wes* ses

f:81 X ...X 8, — s stands for s1,...,8n,8 € S and f € Qs, .55

e > -algebra:

A = (|A|,(fa)ren)

e carrier sets: |A|l = (|Als)ses

e operations: fa: |Als; X ... X |Als, — |Als, for f:s1 X ... X 8, = s

...and so on...
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The algebra of TINYI

Its signature 3. (syntax): | sorts

opns

and X-algebra A (semantics):

Int, Bool;

0,1: Int;

plus, ttmes, minus: Int X Int — Int;
false, true: Bool;

[teq: Int X Int — Bool;

not: Bool — Bool;

and: Bool X Bool — Bool;

carriers
operations

A = Int, Ag,,; = Bool
O4=0,1q0=1

plus 4(n,m) =n + m, times4(n,m) =n *xm

minuso(n,m) =n —m
false 4 = ff, truey = tt

lteqa(n,m) = tt if n < m else ff

not4(b) = tt if b = ff else ff

and 4(b,b') = tt if b= b = tt else fF
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Subalgebras I

o for A € Alg(X), a X-subalgebra Asupy C A is given by subset |Agyup| C |A]
closed under the operations:

— for f € X, and ax,...,an € |Asuw|, we require f4(a1,...,an) € |Asup
then define
fAs(ar,...,an) = fAa1,...,an)

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is
the least subalgebra of A that contains X.

e Ac Alg(X) is reachable if (A)p coincides with A.
Fact: Forany A € Alg(X) and X C |A
Proof (idea):

, (A)x exists.

e generate the generated subalgebra from X by closing it under operations in A;
or

e the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms I

o for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:
— for f € ¥, and a1,...,a, € |A],
h(fA(a1,...,an)) = fB(h(a1),...,h(an))
Fact: Given a homomorphism h: A — B and subalgebras Ag,, of A and By, of

B, the image of Agyup under h, h(Asyp), is a subalgebra of B, and the coimage of
Bgup under h, h™1(Bgy), is a subalgebra of A.

Fact: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-

Fact: Identity function on the carrier of A € Alg(3>) is a homomorphism
1da: A — A. Composition of homomorphisms h: A — B and g: B — C'is a
homomorphism h;g: A — C.
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Isomorphisms I

e for A, B € Alg(X), a X-isomorphism is any Y-homomorphism i: A — B that

has an inverse, i.e., a X-homomorphism i=1: B — A such that ¢;i71 = 4d4 and

i~ = didp.

e Y.-algebras are isomorphic if there exists an isomorphism between them.
Fact: A X-homomorphism is a 3-isomorphism iff it is bijective (“1-1" and “onto”).

Fact: Identities are isomorphisms, and any composition of isomorphisms is an
Isomorphism.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A| that is
closed under the operations:

— for f € ¥, and a1,b1...,an,by € |A],
if ag = b1,...,a, = by, then fA(a1,...,a,) = fA4(d,...,a)).

Fact: For any relation R C |A| X |A| on the carrier of a Y-algebra A, there exists
the least congruence on A that contains R.

Fact: For any ¥-homomorphism h: A — B, the kernel of h, K(h) C |A| X |A
where a K (h) a’ iff h(a) = h(a'), is a 3-congruence on A.

7
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Quotients I

e for A € Alg(3) and X-congruence = C |A| X |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— for |[A/=| = {[a]= | a € |A|}, with [a]l=z = {a’ € |A| | a = a’}
— for f € ¥, and a1,...,a, € |A],
fA/E([a1]57 IR [an]E) — [fA(ala R 7an)]5

Fact: The above is well-defined; moreover, the natural map that assigns to every
element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Fact: Given two X-congruences = and =' on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=" such that | |=;h = | |=/.

Fact: For any ¥-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Products I

o for A; € Alg(X), i € Z, the product of (A;),c7. 11,7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € ZI:

= ez Ail = 1Liez 144l
— for f € Xy and a1 € |[[,er Ails- s an € |]]er Adl, fori € Z,
inGIAi(a’:L’ © 7a'n)(7’) — fAz(a']-(Z)7 s ,Cl,n(’l,))

Fact: For any family (A;),.; of ¥-algebras, projections m;(a) = a(), wherei € I
and a € [[,c7 |Ai

, are X-homomorphisms m;: [ [, .7 Ai — As.

Define the product of the empty family of X-algebras.

When the projection 7; is an isomorphism?
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Terms '

Consider a set X of variables.

e terms t € |Tx(X)| are built using variables X, constants and operations from X
in the usual way: |Tx(X)| is the least set such that
- X C [Tx(X)
— for f € X, and t1,...,t, € |[Tx(X)|, f(t1,...,tn) € [ITx(X)]
e for any Y-algebra A and valuation v: X — |A|, the value t*[v] of a term
t € |Te(X)| in A under v is determined inductively:
— ] =v(x), forz € X

— (f(t, ... 7tn))A[U] — fA((tl)A[U]a SO (tn)A[U])’ for f € ¥y, and
t1,...,tn € [T (X)]

Above and in the following: assuming unambiguous “parsing” of terms!
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Term algebras I

Consider a set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations

defined “syntactically”:
— for f € 3y, and t1,...,t, € [T(X)], X (ty, .. t,) = f(t1, ..., tn).

, there is

Fact: For any set X of variables, 3-algebra A and valuation v: X — |A
a unique X-homomorphism v# : Ts(X) — A that extends v. Moreover, for
t € |Tx(X)|, v7*(t) = t*[v].

1dx | T (X
X L, 1T (X) T5(X)

Set® o et Alg(D)

Y Y
Al A
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Equaﬁons'

VX.t =1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |Tx(X)]| are terms.

e Satisfaction relation: X-algebra A satisfies VX.t = ¢t/

AEVXt=t

when for all v: X — |A], t4[v] = /4[v].
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Semantic entailment'

P s o

>.-equation ¢ is a semantic consequence of a set of Y.-equations ®

if 0 holds in every 3-algebra that satisfies P.

BTW:
e Models of a set of equations: Mod(®) = {A € Alg(X) | A = ¢}
e Theory of a class of algebras: Th(C) = {¢ | C E ¢}
o b= <— pe& Th(Mod(®P))

e Mod and Th form a Galois connection
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Equational calculus I

VXt =1

VX.t=1t VX.t' =t

VXt =t] ... VX.i,=t,
VX.f(t1...tn) = f(t]... 1)

VXt=t VXt =1t"
VX.t=1t"

VX.t=1t

for 0: X — |Ts(Y)]
VY.t[0] = t'[6]

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b, unless. ..
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Proof-theoretic entailment I

<I>|—gcp

dl-equation ¢ is a proof-theoretic consequence of a set of Y.-equations ®

if © can be derived from ® by the rules.

How to justify this?

Semantics!
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Soundness & completeness'

Fact: The equational calculus is sound and complete:

OE=p <—= PFop

e soundness: “all that can be proved, is true” (® = p <= & F )

e completeness: “all that is true, can be proved” (& =p = & I )

Proof (idea):

e soundness: easy!

e completeness: not so easy!
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One motivation '

Software systems (data types, modules, programs, databases. .. ):

sets of data with operations on them

e Disregarding: code, efficiency, robustness, reliability, ...

e Focusing on: CORRECTNESS

Universal algebra

from rough analogy: module interface ~ signature
module ~» algebra

module specification ~» class of algebras
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Example

spec STACK = sorts Flem, Stack
opns empty: Stack;
push: Elem x Stack — Stack;
pop: Stack — Stack;
top: Stack — Elem
axioms Vs:Stack.Ve: Elem.top(push(e, s)) = e;
Vs:Stack.Ne: Elem.pop(push(e,s)) = s;

Problem:

There are models M € Mod(STACK) such that M = empty = push(empty,e), or
even:

M = Vs, t:Stack.s =t
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Equational specifications'

(%, @)

e signature 3, to determine the static module interface

e axioms (X-equations), to determine required module properties

Birkhoff's HSP Theorem:

Fact: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Solution: allow more powerful specification formalisms
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Wrapping up I
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Message to take home'

e Programming languages have a lot in common

e Some basic semantic notions that keep popping up:
— state vs. environment
— static vs. dynamic scope
— parameter passing modes

— Continuations!

e \We may try to prove that programs are correct
— Very little can be done!

— But so much it at stake that making even tiny progress is very useful
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Your (near) future'

e Jezyki i Paradygmaty Programowania (JiPP):
— very cool programming languages totally unlike TINY
— writing an interpreter (in Haskell) for a language of your own design

— Hint: just recall your denotational semantics!

e Metody Realizacji Jezykow Programowania (MRJP):
— writing a full-fledged compiler

— lexing, parsing, code generation, the works

e But first...

— Good luck at the exam!
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