Semantyka i weryfikacja programów

Bartosz Klin
(slajdy Andrzeja Tarleckiego)
Instytut Informatyki
Wydział Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin
pok. 5680
klin@mimuw.edu.pl

Strona tego wykładu:
http://www.mimuw.edu.pl/~klin/sem18-19.html

Program Semantics \& Verification

Bartosz Klin (slides courtesy of Andrzej Tarlecki)
Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

http://www.mimuw.edu.pl/~klin
office: 5680
klin@mimuw.edu.pl

This course:
http://www.mimuw.edu.pl/~klin/sem18-19.html

Universal algebra

Basics of universal algebra:

- signatures and algebras
- homomorphisms, subalgebras, congruences
- equations and varieties
- Birkhoff's theorem

Plus some hints on applications in
foundations of software semantics, verification, specification, development. . .

Signatures

Algebraic signature: a set of operation names, classified by arities:

$$
\Sigma=\left\langle\Sigma_{n}\right\rangle_{n \in \mathbb{N}}
$$

Alternatively:

$$
\Sigma=(|\Sigma|, \text { arity })
$$

with operation names $|\Sigma|$ and arity function arity: $|\Sigma| \rightarrow \mathbb{N}$.

- We write $f \in \Sigma_{n}$ if $\operatorname{arity}(f)=n$,
- and $f \in \Sigma$ if $f \in \Sigma_{n}$ for some n.

Names in Σ_{0} are called constants.

Fix a signature Σ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f^{A}\right\rangle_{f \in \Sigma}\right)
$$

- carrier set $|A|$
- operations: $f^{A}:|A|^{n} \rightarrow|A|$, for $f \in \Sigma_{n}$
- the class of all Σ-algebras:

$$
\operatorname{Alg}(\Sigma)
$$

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite?
Can $A \in \mathbf{A l g}(\Sigma)$ have an empty carrier?

Multi-sorted setting

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$ $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$
- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$... and so on...

The algebra of Tiny

Its signature $\Sigma($ syntax $)$:
and Σ-algebra \mathcal{A} (semantics):

```
sorts Int, Bool;
opns 0,1: Int;
    plus, times, minus: Int }\times\mathrm{ Int }->\mathrm{ Int;
    false, true: Bool;
    lteq: Int }\times\mathrm{ Int }->\mathrm{ Bool;
    not: Bool }->\mathrm{ Bool;
    and:Bool }\times\mathrm{ Bool }->\mathrm{ Bool;
```

```
carriers }\quad\mp@subsup{\mathcal{A}}{\mathrm{ Int }}{}=\mathrm{ Int, }\mp@subsup{\mathcal{A}}{\mathrm{ Bool }}{}=\textrm{Bool
operations }\mp@subsup{0}{\mathcal{A}}{}=0,\mp@subsup{1}{\mathcal{A}}{}=
    plus}\mp@subsup{\mathcal{A}}{(}{}(n,m)=n+m,\mp@subsup{\mathrm{ times}}{\mathcal{A}}{(}n,m)=n*
    minus}\mp@subsup{\mathcal{A}}{(}{}(n,m)=n-
    false}\mp@subsup{\mathcal{A}}{}{= ff, true}\mp@subsup{\mathcal{A}}{~}{= tt
    lteq}\mp@subsup{\mathcal{A}}{\mathcal{A}}{}(n,m)=\textrm{tt}\mathrm{ if }n\leqm\mathrm{ else ff
    not}\mp@subsup{\mathcal{A}}{\mathcal{A}}{(b)= tt if b= ff else ff
    and}\mp@subsup{\mathcal{A}}{(}{}(b,\mp@subsup{b}{}{\prime})=\textrm{tt}\mathrm{ if }b=\mp@subsup{b}{}{\prime}=\textrm{tt}\mathrm{ else ff
```


Subalgebras

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations:
- for $f \in \Sigma_{n}$ and $a_{1}, \ldots, a_{n} \in\left|A_{\text {sub }}\right|$, we require $f^{A}\left(a_{1}, \ldots, a_{n}\right) \in\left|A_{\text {sub }}\right|$ then define

$$
f^{A_{s u b}}\left(a_{1}, \ldots, a_{n}\right)=f^{A}\left(a_{1}, \ldots, a_{n}\right)
$$

- for $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A generated by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \mathbf{A l g}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f \in \Sigma_{n}$ and $a_{1}, \ldots, a_{n} \in|A|$,

$$
h\left(f^{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{B}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)
$$

Fact: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Fact: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $i d_{A}: A \rightarrow A$. Composition of homomorphisms $h: A \rightarrow B$ and $g: B \rightarrow C$ is a homomorphism $h ; g: A \rightarrow C$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.
- Σ-algebras are isomorphic if there exists an isomorphism between them.

Fact: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" $1-1$ " and "onto").
Fact: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f \in \Sigma_{n}$ and $a_{1}, b_{1} \ldots, a_{n}, b_{n} \in|A|$,

$$
\text { if } a_{1} \equiv b_{1}, \ldots, a_{n} \equiv b_{n} \text { then } f^{A}\left(a_{1}, \ldots, a_{n}\right) \equiv f^{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

Fact: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that contains R.

Fact: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Quotients

- for $A \in \mathbf{A l g}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $|A / \equiv|=\left\{[a]_{\equiv \mid}|a \in| A \mid\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A| \mid a \equiv a^{\prime}\right\}$
- for $f \in \Sigma_{n}$ and $a_{1}, \ldots, a_{n} \in|A|$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-]_{\equiv}: A \rightarrow A / \equiv$.

Fact: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a

Fact: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.

Products

- for $A_{i} \in \mathbf{A} \lg (\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:

$$
\begin{aligned}
- & \left|\prod_{i \in \mathcal{I}} A_{i}\right|=\prod_{i \in \mathcal{I}}\left|A_{i}\right| \\
- & \text { for } f \in \Sigma_{n} \text { and } a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right| \text {, for } i \in \mathcal{I}, \\
& f_{\Pi_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)
\end{aligned}
$$

Fact: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Define the product of the empty family of Σ-algebras.
When the projection π_{i} is an isomorphism?

Terms

Consider a set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Σ in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f \in \Sigma_{n}$ and $t_{1}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|, f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t^{A}[v]$ of a term $t \in\left|T_{\Sigma}(X)\right|$ in A under v is determined inductively:
$-x^{A}[v]=v(x)$, for $x \in X$
$-\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{A}[v]=f_{A}\left(\left(t_{1}\right)^{A}[v], \ldots,\left(t_{n}\right)^{A}[v]\right)$, for $f \in \Sigma_{n}$ and $t_{1}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|$

Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider a set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f \in \Sigma_{n}$ and $t_{1}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|, f^{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Fact: For any set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$, there is a unique Σ-homomorphism $v^{\#}: T_{\Sigma}(X) \rightarrow A$ that extends v. Moreover, for $t \in\left|T_{\Sigma}(X)\right|, v^{\#}(t)=t^{A}[v]$.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|$ are terms.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t=t^{\prime}$

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t^{A}[v]=t^{\prime A}[v]$.

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ
if φ holds in every Σ-algebra that satisfies Φ.

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}(\mathcal{C})=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}(\operatorname{Mod}(\Phi))$
- Mod and Th form a Galois connection

Equational calculus

$$
\begin{array}{cc}
\overline{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime}}{\forall X . t^{\prime}=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t=t^{\prime \prime}} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b \text {, unless. } \ldots
$$

Proof-theoretic entailment

$$
\Phi \vdash_{\Sigma} \varphi
$$

Σ-equation φ is a proof-theoretic consequence of a set of Σ-equations Φ if φ can be derived from Φ by the rules.

How to justify this?
Semantics!

Soundness \& completeness

Fact: The equational calculus is sound and complete:

$$
\Phi \models \varphi \Longleftrightarrow \Phi \vdash \varphi
$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

Proof (idea):

- soundness: easy!
- completeness: not so easy!

One motivation

Software systems (data types, modules, programs, databases. . .): sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, ...
- Focusing on: CORRECTNESS

Universal algebra from rough analogy:

$$
\begin{aligned}
\text { module interface } & \leadsto \text { signature } \\
\text { module } & \leadsto \text { algebra } \\
\text { module specification } & \leadsto \text { class of algebras }
\end{aligned}
$$

Example

```
spec STACK = sorts Elem, Stack
    opns empty:Stack;
        push: Elem > Stack }->\mathrm{ Stack;
        pop:Stack -> Stack;
        top:Stack }->\mathrm{ Elem
        axioms }\foralls:Stack.\foralle:Elem.top(push(e,s))=e
        \foralls:Stack.\foralle:Elem.pop(push(e,s))=s;
```

Problem:
There are models $M \in \operatorname{Mod}(\operatorname{STACK})$ such that $M \models$ empty $=$ push(empty,e), or even:

$$
M \models \forall s, t: \text { Stack } . s=t
$$

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

Birkhoff's HSP Theorem:
Fact: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Solution: allow more powerful specification formalisms

Wrapping up

Message to take home

- Programming languages have a lot in common
- Some basic semantic notions that keep popping up:
- state vs. environment
- static vs. dynamic scope
- parameter passing modes
- Continuations!
- We may try to prove that programs are correct
- Very little can be done!
- But so much it at stake that making even tiny progress is very useful

Your (near) future

- Jezyki i Paradygmaty Programowania (JiPP):
- very cool programming languages totally unlike Tiny
- writing an interpreter (in Haskell) for a language of your own design
- Hint: just recall your denotational semantics!
- Metody Realizacji Jezykow Programowania (MRJP):
- writing a full-fledged compiler
- lexing, parsing, code generation, the works
- But first...
- Good luck at the exam!

