
Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki

Wydzia l Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin pok. 5680

klin@mimuw.edu.pl

Strona tego wyk ladu:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 1 -

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course: http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 2 -

Certified compilers

Do you trust your compiler?

• Most software errors arise from source code

• But what if the compiler itself is flawed?

• Testing is immune to this problem, since it is applied to target code

But good luck identifying the bug!

• Formal verification is harmed: even if the source program is proved correct, the

compiled one may be wrong.

• Common practice for safety-critical systems:

– turn off most optimizations

– perform human audit of target code

Bartosz Klin: Semantics & Verification - 3 -

It this paranoia?

• In 1995, 12 out of 20 commercially available C compilers were found to have

flaws in optimizing integer division.

• In 2008, all 13 tested C compilers had flaws in dealing with volatile variables.

Some GCC versions optimized this out:

extern volatile int WATCHDOG;

void reset_watchdog() { WATCHDOG = WATCHDOG;}

• CSmith: a tool for testing C compilers with randomly generated programs. In

2011, it found 325 errors in GCC, LLVM and other mainstream compilers.

• GCC shipped with Ubuntu 8.04.1 had this wrong on all optimization levels:

int foo(void) {

signed char x = 1;

unsigned char y = 255;

return x > y; }

Bartosz Klin: Semantics & Verification - 4 -

Solution I: Target code validation

After compilation, prove that the target code is equivalent to the source code.

Problems:

• Formal semantics of both source and target languages must be provided.

• Program equivalence is almost always undecidable.

• Typically needs human assistance.

• Even if it works, it is very time-consuming.

Bartosz Klin: Semantics & Verification - 5 -

Solution II: Proof-carrying code

Augment target code with a formal proof of its desirable properties.

Advantages:

• Source code semantics is not needed

• Very robust framework, exending beyond compiler correctness

• Small burden on the user: checking proofs is not very costly

• Great for mobile code

Problems:

• Does not really check compiler correctness

• Huge burden on the developer

Bartosz Klin: Semantics & Verification - 6 -

Solution III: Certified compiler

Formally prove that the compiler is correct.

Advantages:

• No burden on the developer or on the user

• Guarantees that source-code analyses apply to target code

• One-off effort

Problems:

• Formal semantics of both source and target languages must be provided.

• Huge burden on the compiler developer

Bartosz Klin: Semantics & Verification - 7 -

CompCert

• A certified C compiler

• Developed since 2005 at INRIA Paris (principal: Xavier Leroy)

• Free for non-commercial use

• Licenses sold for commercial use

Main ingredients:

• Small-step operational semantics of the source language

• Small-step operational semantics of the target language

• A compiler written in (a functional sublanguage of) Coq

• A proof of correctness in Coq

• A translation from the functional sublanguage of Coq to Caml

Bartosz Klin: Semantics & Verification - 8 -

Languages

The source language:

• A large subset of C

• No longjmp or setjmp

• Only structural switch, no “Duff’s device”

• No variable-length array types

Supported target architectures:

• PowerPC

• RISC-V

• Intel x86, 32- and 64-bit

Bartosz Klin: Semantics & Verification - 9 -

The compiler structure

• 20 passes, 11 intermediate languages, each with its own small-step operational

semantics

Bartosz Klin: Semantics & Verification - 10 -

Example intermediate language

RTL: Register Transfer Language

i ::= nop(l) | op(op, ~r, r, l) | load(k,m,~r, r, l) | store(k,m,~r, r, l)

| call(sig, (r | id), ~r, r, l) | tailcall(sig, (r | id), ~r, r)

| cond(b, ~r, lt, lf) | return(r)

A CFG (Control Flow Graph) is a finite map g : l 7→ i

Example semantic rule:

g(l) = op(op, ~r, r, l′) eval op(G, σ, op,R(~r)) = v

G ` S(Σ, g, σ, l, R,M)→ S(Σ, g, σ, l′, R[r 7→ v],M)

Bartosz Klin: Semantics & Verification - 11 -

Example transformation

RTL to LTL: register allocation

• Purpose: divide pseudo-registers r into actual registers and stack allocations

• First step: back-propagation to check which r is alive in which point l

• Two pseudo-registers interfere if they are both alive at some point

• If r and r′ do not interfere, they can be stored in the same register

• Coloring pseudo-registers with registers: an NP-complete problem, but good

heuristics exist

Property to prove:

Each transition of program is “simulated”

by transitions of the transformed program

Bartosz Klin: Semantics & Verification - 12 -

CompCert performance

• no errors uncovered so far (after years of attempts)

• compilation process: approx. 2 times slower than GCC with no optimization

• compiled code: approx. 10% slower than GCC with level 1 optimization, 20%

slower than GCC with level 2 optimization

• main reason: lack of fancy loop optimizations etc.

Bartosz Klin: Semantics & Verification - 13 -

What can go wrong?

Unverified parts of the compilation process:

• on the front end: preprocessing

• on the back end: assembling and linking

The verification process itself:

• What if one or both semantics are wrong?

• What if the translation from the functional sublanguage of Coq to Caml is

wrong?

• What if the Caml compiler is wrong?

• What if the Coq proof system is wrong?

• What if mathematics is inconsistent?

Bartosz Klin: Semantics & Verification - 14 -

