
Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki

Wydzia l Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin pok. 5680

klin@mimuw.edu.pl

Strona tego wyk ladu:

http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 1 -



Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course: http://www.mimuw.edu.pl/~klin/sem18-19.html

Bartosz Klin: Semantics & Verification - 2 -



Overall

• The aim of the course is to present basic techniques of formal description of

programs.

• Various methods of defining program semantics are discussed, and their

mathematical foundations as well as techniques are presented.

• The basic notions of program correctness are introduced together with methods

and formalisms for their derivation.

• On the way, inevitably, various basic concepts of programming languages are

discussed in detail.

Bartosz Klin: Semantics & Verification - 3 -



Relation to other courses

Prerequisites:

• Wstȩp do programowania (1000-211bWP)

• Podstawy matematyki (1000-211bPM)

Follow-ups:

• Jȩzyki i paradygmaty programowania (1000-216bJPP)

• Metody realizacji jȩzyków programowania (1000-217bMRJ)

• Weryfikacja wspomagana komputerowo (1000-2N09WWK)

• Logika dla informatyków (1000-217bLOG)

Bartosz Klin: Semantics & Verification - 4 -



Programs

D207 0C78 F0CE 00078 010D0

D203 0048 F0D6 00048 01CD8

8000 F0EA F0B3 010EC 00ED7

9C00 000C F0DA 0000C ...

r := 0; q := 1;

while q <= n do

begin r := r + 1;

q := q + 2 * r + 1 end

• a precise description of an algorithm, understandable for a human reader

• a precise prescription of computations to be performed by a computer

Programs should be:

• clear; efficient; robust; reliable; user friendly; well documented; . . .

• but first of all, CORRECT

• don’t forget though: also, executable. . .

Bartosz Klin: Semantics & Verification - 5 -



Tensions

A triangle of tension for programming languages:

usable formal

effective

-�

@
@
@
@
@
@R

I �
�
�

�
�
�	

�

Bartosz Klin: Semantics & Verification - 6 -



Grand View

What we need for a good programming language:

• Syntax

• Semantics

• Pragmatics / Methodology

• Logic

• Implementation

• Programming environment

Bartosz Klin: Semantics & Verification - 7 -



Syntax

To determine exactly the well-formed phrases of the language.

− concrete syntax (LL(1), LR(1), . . . )

− abstract syntax (CF grammar, BNF notation, etc)

− type checking (context conditions, static analysis)

It is standard by now to present it formally!

One consequence is that excellent tools to support parsing are available.

Bartosz Klin: Semantics & Verification - 8 -



Semantics

To determine the meaning of the programs and all the phrases of the language.

Informal description is often not good enough

− operational semantics (small-step, big-step, machine-oriented): dealing with the

notion of computation, thus indicating how the results are obtained

− denotational semantics (direct-style, continuation-style): dealing with the

overall meaning of the language constructs, thus indicating the results without

going into the details of how they are obtained

− axiomatic semantics: centred around the properties of the language constructs,

perhaps ignoring some aspects of their meanings and the overall results

Bartosz Klin: Semantics & Verification - 9 -



Pragmatics

To indicate how to use the language well, to build good programs.

− user-oriented presentation of programming constructs

− hints on good/bad style of their use

Bartosz Klin: Semantics & Verification - 10 -



Logic

To express and prove program properties.

• Partial correctness properties, based on first-order logic

• Hoare’s logic to prove them

• Termination properties (total correctness)

Also:

− temporal logics

− other modal logics

− algebraic specifications

− abstract model specifications

Bartosz Klin: Semantics & Verification - 11 -



program verification vs. correct program development

Methodology

− specifications

− stepwise refinement

− designing the modular structure of the program

− coding individual modules

Bartosz Klin: Semantics & Verification - 12 -



Implementation

Compiler/interpreter, with:

− parsing

− static analysis and optimisations

− code generation

Programming environment

So that we can actually do this:

− dedicated text/program editor

− compiler/interpreter

− debugger

− libraries of standard modules

BUT ALSO:

• support for writing specifications

• verification tool

• . . .

Bartosz Klin: Semantics & Verification - 13 -



Why formal semantics?

So that we can sleep at night. . .

− precise understanding of all language constructs and the underlying concepts

− independence of any particular implementation

− easy prototype implementations

− necessary basis for trustworthy reasoning

Bartosz Klin: Semantics & Verification - 14 -



The central question of semantics

What does a program mean?

This looks like a useless question. Just run it and see, dude!

A more practical (and essentially equivalent) version:

When do two programs mean the same thing?

Useful e.g. in compiler design.

Bartosz Klin: Semantics & Verification - 15 -



Example

Can the program

if f(x) then y:=x else y:=x

be optimized to

y:=x

?

Not really: f(x) may loop, or print something, or change the value of x...

How about

if x>0 then y:=x else y:=x

?

Is such an optimization correct? And what does it even mean?

Bartosz Klin: Semantics & Verification - 16 -



Another example

Recall:

r := 0; q := 1;

while q <= n do

begin r := r + 1;

q := q + 2 * r + 1

end

Or better:

rt := 0; sqr := 1;

while sqr ≤ n do (rt := rt + 1;

sqr := sqr + 2 ∗ rt + 1)

Bartosz Klin: Semantics & Verification - 17 -



Well, this computes the integer square root of n, doesn’t it:

{n ≥ 0}
rt := 0; sqr := 1;

{n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
while {sqr = (rt + 1)2 ∧ rt2 ≤ n} sqr ≤ n do

(rt := rt + 1;

{sqr = rt2 ∧ sqr ≤ n}
sqr := sqr + 2 ∗ rt + 1)

{rt2 ≤ n < (rt + 1)2}

But how do we justify the implicit use of assertions and proof rules?

Bartosz Klin: Semantics & Verification - 18 -



Sample proof rule

For instance:

{sqr = rt2 ∧ sqr ≤ n} sqr := sqr + 2 ∗ rt + 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}

follows by:

{ϕ[E/x]} x :=E {ϕ}

BUT: although correct in principle, this rule can fail in quite a few ways (abnormal

termination, looping, references and sharing, side effects, assignments to array

components, etc)

Be formal and precise!

Bartosz Klin: Semantics & Verification - 19 -



Justification

• definition of program semantics

• definition of satisfaction for correctness statements

• proof rules for correctness statements

• proof of soundness of all the rules

• analysis of completeness of the system of rules

Bartosz Klin: Semantics & Verification - 20 -



Course outline

• Operational semantics

• Denotational semantics for simple and somewhat more advanced constructs

• Foundations of denotational semantics

• Partial correctness: Hoare’s logic

• Total correctness: proving termination

Bartosz Klin: Semantics & Verification - 21 -



Syntax

There are standard ways to define a syntax for programming languages. The course

to learn about this:

Jȩzyki, automaty i obliczenia

Basic concepts:

• formal languages

• (generative) grammars: regular (somewhat too weak),

context-free (about right), context-dependent (somewhat too powerful), . . .

BTW: there are grammar-based mechanisms to define the semantics of

programming languages: attribute grammars, perhaps also two-level grammars, see

(or rather, go to)

Metody relizacji jȩzyków programowania

Bartosz Klin: Semantics & Verification - 22 -



Concrete syntax

Concrete syntax of a programming language is typically given by a (context-free)

grammar detailing all the “commas and semicolons” that are necessary to write a

string of characters that is a well-formed program. Typically, there are also

additional context dependent conditions to eliminate some of the strings permitted

by the grammar (like “thou shalt not use an undeclared variable”).

Presenting a formal language by an unambiguous context-free grammar gives a

structure to the strings of the language: it shows how a well-formed string is build

of its immediate components using some linguistic construct of the language.

Bartosz Klin: Semantics & Verification - 23 -



Abstract syntax

Abstract syntax presents the structure of the program phrases in terms of the

linguistic constructs of the language, by indicating the immediate components of

the phrase and the construct used to build it.

Think of abstract syntax as presenting each phrase of a language as a tree: the

node is labelled by the top construct used, with the subtrees giving the immediate

components.

Parsing is the way to map concrete syntax to abstract syntax, by building the

abstract syntax tree for each phrase of the language as defined by the concrete

syntax.

All these concepts (and more) are explained at other courses.

Bartosz Klin: Semantics & Verification - 24 -



At this course

We will not belabour the distinction between concrete and abstract syntax.

• concrete-like way of presenting the syntax will be used

• the phrases will be used as if they were given by an abstract syntax

• if doubts arise, parenthesis and indentation will be used to disambiguate the

interpretation of a phrase as an abstract-syntax tree

This is inappropriate for true programming languages

but quite adequate to deal with our examples

Bartosz Klin: Semantics & Verification - 25 -


