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Abstract—The pi-calculus with atoms, or nominal p-calculus,
is a temporal logic for reasoning about transition systems that
operate on data atoms coming from an infinite domain and
comparable only for equality. It is, however, not expressive
enough to define some properties that are of interest from the
perspective of system verification. To rectify this, we extend the
calculus with tests for atom freshness with respect to the global
history of transitions. Since global histories can grow arbitrarily
large, it is not clear whether model checking for the extended
calculus is decidable. We prove that it is, by showing that one
can restrict attention only to locally relevant parts of the history.

I. INTRODUCTION

Formal verification of infinite-state systems is a rich and
active field of study. Sources of infinity are numerous and
diverse: one may consider systems with unbounded counters,
stacks or FIFO channels, timed systems with unbounded
clocks, systems whose states are generated by regular or push-
down processes, and so on. In each of these settings, formal
verification relies on methods for symbolic representation of
infinite models by finite means. One may then decide whether
systems thus represented satisfy desirable properties, in the
process of model checking. The properties involved are often
expressed in suitable versions of temporal logics such as the
modal p-calculus [1] or its fragments CTL* [2] and LTL.

In this paper we focus on systems where the source of
infinity is an infinite domain of data values that can only
be compared for equality. In practical systems such data
values may appear, e.g., as randomly generated passwords,
unique process identifiers in distributed algorithms, or nonces
in cryptographic protocols. A typical property that one might
want to verify about a system with access to a black-box
password generator is: a computation path where generated
passwords are all different will never reach a bad state.

Several approaches to defining and checking properties of
models equipped with data values have been considered. For
example, in [3, 4, 5, 6] the linear time temporal logic LTL
was extended with a freeze quantifier that can store a currently
observed data value for future reference. This can be used to
detect repetitions of data values, a goal followed also in [7, 8].
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Another idea is to extend a temporal logic with the ability
to express constraints about locally observed data values, as
in [9, 10]. Temporal logics are closely connected to automata,
and extending them with data values amounts to considering
so-called register automata. In particular, the modal p-calculus
corresponds to alternating tree automata, and a register version
of those were studied in [11, 12].

In all these works, the authors take care to ensure that
their logics have a decidable satisfiability problem (does a
given formula have a model?). To this end, they impose
subtle conditions on their formalisms and inevitably limit their
expressivity to some degree. If one gives up on decidable
satisfiability, the data-equipped logic can get much more
expressive. An example is the first-order p-calculus of [13, 14],
which features constraints over data values from arbitrary in-
finite domains. There even the model-checking problem (does
a given model satisfy a given formula?) becomes undecidable,
and incomplete proof procedures are the main focus.

This paper is a continuation of [15], where an atomic -
calculus was proposed. Its design relies on the framework of
sets with atoms, also known as nominal sets [16, 17], where
data atoms from an infinite set A, with their inherent symme-
try, are built already into set-theoretic foundations. Originally
intended as an algebraic approach to name binding, sets with
atoms have found applications in language and computation
theory, with notions such as nominal automata [18] and Turing
machines with atoms [19] providing insights into properties
of computing devices over infinite alphabets. A key feature
of this approach is a relaxed notion of finiteness, called orbit-
finiteness. Orbit-finite structures, although usually infinite, can
be symbolically presented by finite means and are amenable
to algorithmic manipulation.

The atomic p-calculus of [15] extends the classical calcu-
lus with orbit-finite (instead of just finite) disjunctions and
conjunctions. It can express properties of Kripke models
(alternatively, labeled transition systems) equipped with data
values, with formulas such as

\{%(a/\ OuX.(av oX))

meaning: some data atom that appears in the present state,
appears again on some future path. Its satisfiability problem
is undecidable, but model checking on orbit-finite models
remains decidable, so the calculus is potentially applicable to
the verification of systems that manipulate data atoms.



However, the calculus of [15] is not expressive enough to
be useful in practice. In fact, one of the main results of that
paper was the non-obvious fact that the calculus cannot express
a property called #PATH: there exists an infinite path where no
data atom appears more than once. As a consequence, many
practically motivated properties such as the one regarding
password generators mentioned above, are also undefinable.
#PATH is decidable on orbit-finite models, which makes its
undefinability all the more disappointing. It is easy to define it
in an extension of CTL* with atoms (which is not a fragment
of the p-calculus with atoms), but model checking of that
logic is undecidable. The challenge of finding a syntactically
economic extension of the p-calculus with atoms that could
express #PATH while retaining the decidability of model
checking, was the main open problem left in [15].

Our main contribution is a solution to that problem. We
extend the p-calculus from [15] with simple tests of the form
fa (read “fresh a”), saying that an atom a has never appeared
before in any basic predicate that held on the computation
path that led to the present state. In a sense, {is an extremely
limited past-time modality. Similar freshness conditions have
been considered before for automata over finite words [20], in
the general framework of the aptly named history-dependent
automata [21]. With this extension, #PATH is easily definable,
as well as many properties of potential practical interest. As
examples, we show a simple system with a password-protected
critical section, and the cryptographic Needham—-Schroeder
protocol [22] that relies on generating unique nonces.

In the extended calculus, formulas are interpreted in the
context of global histories, i.e., sets of atoms that have
appeared in the past. Such histories can grow arbitrarily
large, and so it becomes unclear whether model checking for
the extended calculus remains decidable. Our main technical
result (Theorem 10) is that it does. The proof relies on the
observation that, since the behavior of each state in an orbit-
finite system only depends on a fixed set of atoms, only a
limited part of the global history is relevant at any given state
and the rest of the history may be conveniently forgotten and
later reinvented as needed.

The structure of the paper is as follows. In Sec. II, we recall

the classical modal p-calculus, followed by an introduction to
sets with atoms in Sec. III. In Sec. IV, we recall the basics
of the calculus from [15], and in Sec. V we extend it to the
history-dependent p-calculus. After showing two examples in
Sec. VI, in Sec. VII we prove that model checking is decidable.
We conclude in Sec. VIII with a brief discussion of the most
pressing directions for future work.
Acknowledgments. We are grateful to Grzegorz Fabianski for
spotting a significant mistake in an earlier version of this paper,
and to anonymous reviewers for pointing out some relevant
related work.

II. MODAL p-CALCULUS

We shall only need basic notions of the syntax and seman-
tics of the modal p-calculus; any of the texts [23, 24, 25, 26,
27] contains this and much more material. Everything in this

section is completely standard, and we recall it only to fix the
notation and to prepare the ground for further sections.

Fix a set B of basic predicates and a set X of variables.
The set of p-calculus formulas is generated by the grammar

pu=T[pl-p|leve|Op| X |uX.@ €]

where p ranges over B and X over X. The set FV(¢) ¢ X of
free variables in a formula ¢ is defined in the usual way, with
the constructor ©X.p binding X in ¢. A formula is closed if
it does not have free variables.

It is standard to write, as syntactic sugar:

pr==(-pv-y),  p=>P=-pVvy,
Op = - (), vX.p=-pX-p[X—-X].
A formula is considered legal only if it is positive, i.e., if
in every subformula puX.p the variable X occurs freely in ¢

only under an even number of nested negations.
Formulas are interpreted in Kripke models of the form

X = (K,—>,t:)

1=-T,

where K is a set of states, — ¢ K x K is the transition
relation and = ¢ K x B is the satisfaction relation for basic
predicates. For a state z € K, we denote

pred(z) ={peB |z E p}.

A model is finite if it has finitely many states and if pred(x)
is finite for every state x.

The semantics of a formula ¢ in a model X is defined for
a context £, which is a finite partial function

E:X-PK
which is defined at least on all the free variables in ¢. Then,
for any formula ¢, the set [p], € K is defined inductively:
for all z e K
p € pred(z)
2 ¢ [l
ze[p]e orxe[v],
yelele st x—y
z € [X], x e &(X)

nXele = Mo (¥ e [elgxn)-

In the last clause above, the least fixpoint is taken for a
function on the complete lattice of subsets of K ordered
by set inclusion. Thanks to the positivity assumption on ¢,
this function is monotone, and therefore by Tarski’s fixpoint
theorem it does have a least fixpoint. It can be approximated
from below by a transfinite sequence

Weplcy?c.cp¥cyvtlc..c K
defined by

T € [[T]]f

T € [[p]]5

T € [[_‘90]]5
zefpvi],
z € [[090]]5
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P = o
a<f

for a limit ordinal 3



(in particular W° = @). For any X this sequence eventually
stabilizes at the desired least fixpoint.

Example 1. Let B = {m,d}, where m stands for “mistake”,
and d for “disaster”. The formula

pX.(dv &X)

holds in a state € K iff some state where d holds is reachable
from x by a sequence of transitions. Put into words, it says
that a disaster is possible on some future path. Its negation:

vX.(~droX)
says that a disaster cannot be reached, and the formula
vX.((m—-pY.(dvoY))AoX)

means that every future mistake will inevitably lead to a
disaster. O

If the model X is finite, then for every fixpoint formula, the
corresponding sequence of approximants (3) stabilizes after a
finite number of steps. This means that the inductive defini-
tion (2) actually provides an effective procedure to compute
the interpretation of a formula in a finite model. It is easy to see
that this computation can be performed in space polynomial in
the size of ¢ and K, which gives a polynomial space algorithm
for the following model checking problem:

Given a closed formula ¢ and a state x in a finite
model K, does x € [¢] ,?

This algorithm is rather naive. More sophisticated procedures
rely on a correspondence between u-formulas and parity
games (see, e.g., [27]), where recent breakthroughs [28§]
achieved quasi-polynomial time solutions to the model-
checking problem.

III. SETS WITH ATOMS

There are several, essentially equivalent ways to introduce
sets with atoms, also known as nominal sets [16]. We follow
the set-theoretic presentation of [17], culminating in the notion
of orbit-finite sets [16, 18] and computable operations on them.

Fix a countably infinite set A, whose elements we shall call
atoms. A bijection on A will be called an atom automorphism,
and the group of atom automorphisms is denoted Aut(A).!

A set with atoms is a set that can have atoms, or other sets
with atoms, as elements. Formally, the universe UA of sets
with atoms is defined by a von Neumann-like hierarchy, by
transfinite induction on ordinal numbers «:

=@, UL, =PUL)+A,

a+l =

W= U ug,

a<pf

for 5 a limit ordinal; here + denotes the disjoint union of sets.
There is a group action of atom automorphisms on U*:

__tUA x Aut(A) - UP,
An alternative definition, taken in [16, 17], is to let Aut(A) be the group

of all finite bijections, i.e., those that fix almost all @ € A. This distinction
does not make any difference for our purposes here.

an automorphism acts on a set by consistently renaming all
atoms in it. Formally, this is defined by transfinite induction.

For a finite set S ¢ A, let Autg(A) be the group of those
automorphisms of A that fix every element of S. We say that
S supports a set X if X -7 = X for every m € Autg(A). It
should be clear that every set X is supported by the set of
all atoms that appear in it, i.e., are elements of X or appear
in some elements of it. But the notion of support is more
subtle than that: for example, for any atoms a,b,c € A, the
set A~ {a,b,c} is supported by {a,b, c}. The intuition is that
a set X is supported by S if it can be defined in a way that
does not mention any specific atoms other than those in S.

A set with atoms is considered legal only if it is hereditarily
finitely supported, i.e., if it has a finite support, its every
element has some (perhaps different) finite support and so on.
We shall only consider sets with this property.

If X has a finite support then it has the least finite support
(see [16] for a proof), denoted supp(X). A set is equivariant
if supp(X) = @.

Relations and functions are sets in the usual sense, so the
notions of support and equivariance applies to them as well.
Unfolding the definitions, for equivariant sets X and Y, a
relation R ¢ X x Y is equivariant if (x,y) € R implies (« -
m,y-m) € R and a function f : X — Y is equivariant if
flx-7m) = f(x) - m, for every m € Aut(A). The intuition is
that a relation or function is equivariant if it can be defined
in a way that only relies on comparing atoms for equality, but
without mentioning any specific atoms.

For any = with atoms, the S-orbit of x is the set

{z-m|meAutg(A)}.

For example, if S supports = then the S-orbit of x is the
singleton {xz}.

For any S, S-orbits form a partition of the universe U".
Moreover, for any S-supported set X, the S-orbits of its
elements form a partition of X. Then X is S-orbit-finite if
it is a union of finitely many S-orbits. Then, for any finite
T 2 S, X is also T-orbit-finite. Thanks to this observation, we
may drop the qualifier and simply call X orbit-finite, meaning
“S-orbit-finite for any/every S that supports X .

Example 2. « Any classical set (without atoms) is an
equivariant set with atoms. Its every element forms its
own orbit, so such a set is orbit-finite iff it is finite.

o An atom a € A has no elements, and it is supported by
{a}. A subset of A is finitely supported iff it is finite or
co-finite; a finite set is supported by itself, and a co-finite
one by its complement.

o The set A of atoms, the set (g) of two-element sets of
atoms, and the set A2 of ordered pairs of atoms, are
equivariant sets. The first two have a single orbit each,
and the last one has two equivariant orbits:

A?={(a,a)|aecAyu{(a,b)|a+beA}. (4

Similarly, A™ is orbit-finite for every n € N, with the
number of orbits equal to the n’th Bell number. The set
A* of finite sequences of atoms is not orbit-finite.



o The powerset P(A) is equivariant itself, but it contains
elements that are not finitely supported, so it is not
considered a legal set with atoms. For any legal set with
atoms X, the set Pr(X) of all finitely supported subsets
of X and the smaller set Pg,(X) of all finite subsets of
X, are both legal and supported by supp(X). Both of
them may fail to be orbit-finite even if X is orbit-finite.

o There are four equivariant binary relations on A: the
empty relation, equality, inequality and the full relation.

o There is no equivariant function from (‘2) to A, but

{({a,b},a)|a+beA} (5)

is a legal equivariant relation, and the function constant
at a is supported by {a}. The only equivariant function
from A to A is the identity. The only equivariant functions
from A% to A are projections, and the only equivariant
function from A to A? is the diagonal a + (a,a). O

Example 3. The following Kripke model represents a FIFO
buffer of size 3 that can input and output atoms. The set of
states is K = A3. The transition relation is:

(a,b,c) — (d,e, f) — e=a, f=D.
Let the set of basic predicates be
B={in, |acA}u{out, |acA} (6)

interpreted by a satisfaction relation £ such that:
pred(a, b, c) = {in,, out.}.

This is an equivariant Kripke model with atoms, with five
orbits of states and two orbits of basic predicates. For every
atom a € A, every state in K satisfies the p-formula

vX.((in, - OOout,) AOX), (7)

meaning that whenever a is input to the buffer, it will be output
exactly two steps later. O

It is easy to check that, for any X and Y with atoms,
supp(X,Y’) = supp(X) usupp(Y)
and, for any function f: X - Y and x € X,

supp(f(z)) < supp(f,z).

The cartesian product of two orbit-finite sets is orbit-finite,
and a finitely supported subset of an orbit-finite set is orbit-
finite. As a result, any finitely supported relation or function
between orbit-finite sets, considered as a set of pairs, is orbit-
finite. Furthermore, for any finite S € A and any orbit-finite X
and Y supported by S, the set of S-supported functions from
X to Y is finite. This is because for a fixed S, an orbit-finite
set can have only finitely many .S-supported subsets.
Orbit-finite sets, although usually infinite, can be presented
by finite means and are therefore amenable to algorithmic
manipulation. There are a few ways to do this. One way, used

in [19], is to present orbit-finite sets by formal set-builder
expressions of the form

{6|U1,...,Un€A,Q0}

where e is again an expression, v; are bound atom variables
and ¢ is a first-order formula with equality. We refer to [19]
for a precise formulation (and to [29] for a proof that all
orbit-finite sets can be presented this way); suffice it to say
that, after adding some mild syntactic sugar, expressions such
as (4), (5), or (6) above are of this form. The set defined by
such an expression is supported by the atoms that appear freely
in the expression.

Under the set-builder representation it is not trivial to check
whether two representations define the same set. (Indeed, it is
a PSPACE-complete problem, as that is the complexity of the
first-order theory of equality [30].) However, set equality and
other basic operations on orbit-finite sets are computable in
polynomial space on their representations, including:

« checking whether one set is an element (or a subset) of
another,

« union and intersection of sets, cartesian product, set
difference,

« applying an orbit-finite function to an argument, compos-
ing functions or relations,

« finding the image of a subset along a relation,

« checking whether a finite set .S supports a given set,
calculating the least support of a set,

« partitioning a given set into S-orbits, calculating the S-
orbit of a given element.

These basic operations have been implemented as compo-
nents of atomic programming languages [31, 32].

Originally [16, 17], sets with atoms (known as nominal
sets in this context) were developed as an algebraic approach
to name binding in syntax, with concepts such as name ab-
straction space introduced to that end. The modal p-calculus,
with its fixpoint operators, is an archetypical example of a
formalism where name binding plays a crucial role, and one
could use nominal techniques to study syntactic aspects of it.
We emphasize that this is not what we aim to do. In fact,
we do not even introduce the concepts of name abstraction,
a-conversion, etc. Rather, we shall build atoms into models,
formulas, variable names, etc., and variable binding in fixpoint
formulas will appear on top of that, independently. In this we
are similar to studies of nominal rewriting such as [33].

IV. p-CALCULUS WITH ATOMS

In this section we present the syntax and semantics of the -
calculus with atoms, following [15]. As an initial motivation,
consider the formula (7) again. That formula refers to a
particular atom a, but the property that it aims to formulate
does not really depend on that atom. One would like to write a
formula that says: whenever an atom is input, it will be output
exactly two steps later. A formula like

vX. ( N\ (in, — OOout, ) A DX) (8)
aelA



does not fit the syntax of the p-calculus as defined in (1)
because the inner conjunction is infinite. The p-calculus with
atoms extends the classical calculus with such infinitary (but
orbit-finitary) Boolean operators.

A. Syntax and semantics

Considering now the sets X of variables and B of basic
predicates as sets with atoms, we extend the syntax (1) with

pi= |V b ©)

ael
The precise meaning of this is that ¢y is a finitely supported
function from A to the set of formulas. Strictly speaking, the
a in the expression V,cp ¢, is merely decoration, and the
expression could be written just as V (). As a syntactic
sugar, we use the expected

/\(pa:_‘\/_‘@a-

aelA ael

The extended calculus is interpreted in Kripke models with
atoms, where the set of states, the transition relation and the
satisfaction relation are all finitely supported. The semantics
extends (2) with:

x€ |[\/ cpaﬂ = z € [pa], for some a € A.
aeh 13

It is straightforward to check (see [15, Lem. 4.7]) that the
function [_]_, is supported by supp(X), so:

supp([¢]¢) € supp (s, £, K).

Under this definition, formulas are not finite objects anymore,
but they remain finitely supported and orbit-finite. Every
formula has a well-defined finite height, so there is no need
for transfinite induction in structural reasoning on formulas. If
a formula ¢ is closed, then its every subformula ¢ has only
finitely many free variables, because each free variable in v
must have been introduced by a fixpoint operator on the finite
path from the root of ¢ to the root of ). As a result, contexts
& can still be seen as partial functions with finite domains.

Our (9) is not the only way to introduce orbit-finitary
disjunction into the p-calculus. Several equivalent alternatives
exist. In [15], a simple syntax ¢ ::= --- | \/ ® was used, where ®
is a finitely supported, orbit-finite set of formulas. One could
also use @ == -+ | Vogg 0q Where S is a finite set of atoms
and ¢(_) is a function, supported by S, from A\ S to the set
of formulas, or even ¢ = -+ | Ja.¢o where a is an atom and ¢
a formula. Each approach has its advantages; we stick to (9)
as it will make our proofs easier to follow.

B. Model checking and expressivity

Since a formula V.5 ¢, (and therefore every formula of
the p-calculus with atoms) is a finitely supported, orbit-finite
object, it may be presented by finite means as an instance of a
computational problem such as model checking. Indeed, model
checking of formulas on orbit-finite models X is decidable. To
see this (see [15, Thm. 5.1] for more details), proceed as for
the classical p-calculus in Section II, inductively computing

the (finitely supported) sets [¢], ¢ K for all subformulas ¢
of a given formula.

For the case ¢ = Vyep @4, first calculate S = supp(XK, ¢, £).
Then pick any atom b ¢ S, inductively compute R = [¢s],
then compute R € PK the S-orbit of R, and return

U:RU [[(Pm]]g U [[@anﬂg

where the [¢q, ] are computed inductively for {a1,...,a,} =
S.

For the case ¢ = pX.¢, it is important to see that the
sequence of approximants U (see (3) in Section II) stabilizes
after finitely many steps. This is because, by an easy induction
on the ordinal «, every U® is supported by the same set
S =supp(K, X, 1, £). Since K is orbit-finite, it can only have
finitely many S-supported subsets.

Our calculus can now express formulas such as (8), but also
many others. For example, still over the same set B of basic
predicates as in Example 3, the formula

vX. N\ (in, > O(vY.~in, AOY))
acA
says that on no computation path the same atom is ever input
more than once. (No state in the model from Example 3
satisfies this formula.)

However, the expressive power of the calculus leaves much
to be desired. Even in a simple setting where B = A the
property #PATH is not definable (see [15, Sec. 7]), and neither
are many properties that are useful in practice.

V. HISTORY-DEPENDENT p-CALCULUS

We extend the p-calculus with atoms with formulas of the
form fa, where a € A is an atom. The intuition is that ja holds
if the atom a has never appeared in any basic predicate that
held on the transition path that led to the current state.

Put together, we extend (1) to:

eu=T|plfa|-¢level V ea| Ol X | pX.p;
a€ch

some syntactic sugar is introduced as before.

To simplify the setting, from now on we assume that every
state = in a model satisfies only finitely many basic predicates,
i.e., that pred(z) is finite. All examples considered so far, and
further ones that we present in Section VI below, satisfy this
assumption. Then for any state x in a Kripke model we can
define the finite set of atoms:

evt(z) = |

pepred(z)

supp(p) (10)

(evt(x) stands for events at x) which contains those atoms that
appear in some basic predicate that holds in x; these atoms
will be considered non-fresh in any path that originates in z.

For the semantics of our history-dependent calculus, a
formula ¢ is now interpreted relative to a history H € PgA,
i.e., a finite set of atoms. A context £ also interprets variables
relative to histories, so it is of the type:

£ X = PipA - PK.



Semantics is formally defined by induction, extending (2) to:

xe€ [[Tﬂ? forall z e K
T € [[p]]f < pepred(z)
T € ﬂuaﬂ? <~ a¢H

vel-gld = zi[elf

x € [[govw}]f > € [[ga]]? or x € [[z/;]]f
P 1D
x€ |[\/ gpaﬂ — ¢ [[gpa]]?for some a € A

aeh I3

Te [[Oga]]? > Jye [[gp]]?uew(m) st.x—vy
ve[X]{ = ze&(X)(H)
nXgle = (¥ [plexoy)-

Notice how in the clause for &g, the atoms in evt(x) are
added to the current history. Also notice how in the clause for
uX.p, the least fixpoint is taken over functions of the type

U PnA — PK,

that is, over families (of sets of states) indexed by histories.
This is unavoidable: one could not define the set [ X ap]]f for
a specific H by a fixpoint construction, since the variable X
may be evaluated inside ¢ for a history richer than H.

Functions ¥ as above, ordered by (pointwise) inclusion,
form a complete lattice, so the least fixpoint is well-defined.
However, unlike in the history-free setting, (11) does not
provide a method to compute the semantics of a formula.
The trouble is with fixpoint formulas: here approximants ¥
used as in (3) to define a least fixpoint are not orbit-finite
objects, so it is not clear how to even represent them by finite
means, let alone how to compute Tetl from U%, Even if
that was somehow solved, it is not clear why the sequence of
approximants should stabilize after finitely many steps. Indeed,
unlike in Section IV-B, here approximants are families indexed
by elements of an orbit-infinite set and there are infinitely
many of them, even for a fixed support S.

We must proceed with care, because the presence of data
atoms sometimes makes seemingly innocent problems become
undecidable; examples include language equivalence for non-
deterministic orbit-finite automata [34], model checking for
CTL* with atoms [15], and the existence of a finitely sup-
ported homomorphism between two orbit-finite graphs [35].
Nevertheless, in Section VII, we shall deal with the above
issues and prove that model checking on orbit-finite models is
indeed decidable. For now, let us mention that the problematic
property #PATH is now easy to define by a formula:

yX.(/\(a—> ua)AOX).
aeA

In fact, as the following examples show, the history-dependent
calculus is expressive enough to define some properties that
are interesting from the perspective of system verification.

VI. EXAMPLES

We present two scenarios which rely on comparing data
atoms for equality and can be encoded in our history-
dependent p-calculus. The first one features two processes
trying to concurrently access a critical section, while the
second one is a version of the cryptographic Needham—
Schroeder protocol [22].

A. Critical section

Two concurrent processes A and B have access to a
common critical section S. In order not to enter it together,
they can lock it with a password they must generate each time
before entering it. Only the process that locked the critical
section can interact with it. The section can then be unlocked
using the same password. A typical interaction is depicted in
Figure 1, where the boxes on each thread show what password
is remembered, and the dashed arrows are actions that cannot
be performed, because of the drawn inequalities.

A S B
7]
0

lock 4

unlock 4

Fig. 1. An interaction between the processes and the critical section

We want to make sure that the two processes will never enter
the critical section together. Of course, this is only true under
the assumption that the processes will not generate the same
passwords. Building that requirement into the model would
make it orbit-infinite (an entire history of passwords would
have to be remembered in the state), so instead our model
will allow processes to generate arbitrary passwords, and the
safety condition will be included in the formula that defines
the desired property.

Formally, we build an orbit-finite, equivariant model X =
(K,—,E) on the set of predicates

B={ps | a €A} u{locka,lockg,unlock4,unlockg},

where p, means that the password a has just been generated,
and the other predicates have obvious meanings. A state x €
K basically records the passwords each thread remembers;
however, for the states to satisfy the right predicates, we need

several copies of such a record. Formally, a state s a tuple
l':(G/A,aB,aS,S,t) (]2)

where the a x’s are passwords remembered by the three threads
(these may be some a € A or @), and s and ¢ form a



finite component that models the current stage of interaction.
Specifically, the value of s € {p,lock,unlock, @} specifies
whether a password is just being generated, the section locked
or unlocked (or perhaps none of that), and ¢ € {A, B, @} says
which one of the two processes is performing the action. In a
state x, if s € {lock, unlock} then x = s;; if s = p then x = pg, ;
otherwise x satisfies no basic predicates.

In defining the transition relation we use a simple notation
for updating components of states: z[B ~ a,s — p] denotes
the state = as in (12) with the component ap set to a and the
component s set to p, and so on. Transitions from a state x
as in (12) are as follows:

o if s+ @ort+ @, then t — x[s,t » @] is the only
transition (the states with s = t = @ are the “normal”
states of interaction, the other ones are there just to satisfy
the right predicates); otherwise,

e x — x[A ~ a,s » p,t — A] for every a € A, and
similarly for B (A and B can generate passwords),

o if ag = @ and a4 # @, then x — z[S +~ aa,s —
lock,t — A] and similarly for B (A and B can enter the
critical section when it is free),

o if ag =ag # @, then x — x[A, S — @, s — unlock,t —
A] and similarly for B (when A or B unlocks the critical
section, they forget their current password and have to
generate a new one).

Note that this indeed defines an orbit-finite model.
To define the property, we start by defining a formula

safe = /\ (po — fa)

aech

which says that whenever there is a newly generated password,
then it has not been generated before. We can then define

Py =vX.(safe > (unlock4 v (munlockg A0X))),

whose meaning is that, in all safe paths (where passwords
are generated at most once) from the current state, B cannot
unlock the critical section unless A has already unlocked it.
We define Pp similarly. The property we are interested in is

vX.(safe - ((lockg = P4) A (lockg - Pg) A0X)),

which means that, for any safe path, if a process locks the
critical section, then the same process must unlock it before
the other can. This formula indeed holds in the initial state of
this model (one where all components are &).

B. The Needham—Schroeder protocol

The Needham-Schroeder protocol allows two agents to
verify each other’s identities on an unsafe network by using
public-key cryptography. A normal interaction according to
the protocol is depicted in the left-hand part of Figure 2. It
proceeds as follows:

1) A generates a nonce n 4,

2) A sends (A,n4) to B, encrypted with kpp (B’s public

key),

3) B deciphers (A,n4) using ksp (B’s secret key),

4) B generates a nonce npg,

5) B sends (na,ng) to A, encrypted with kp 4,

6) A deciphers (n4,np) using kg4 and checks that the first
nonce is the one she sent,

7) A sends npg to B, encrypted with kpp,

8) B deciphers np using ksp and checks that it is the nonce
he sent.

We model three agents: Alice, Bob, and Eve (A, B, and
FE). Alice and Bob follow the protocol, while Eve does not
necessarily, which can lead to a man-in-the-middle attack [36],
as depicted in the right-hand part of Figure 2. We want to see
if a state can be reached where Alice or Bob think they know
someone’s identity but they are actually mistaken.

sndr reve A E B
|
na
. A B ':j(nA,A)kPE
|
na 0,
na
1 (nA’A)kPB : [:](nAvA)kPB
2
A,’I’LA : AanA
2 3 npg
ng| (na,nB)kp, | (PAMB)Epy
(nanB)kpa ||| 4
"ma,np
5 :Ej (nB)ka
nA7nB 5 |
|
6 (nB)kpp | ng
! 2] ("B)kpp
7 |
7 n |
Py | 5]

Fig. 2. The protocol and the man-in-the-middle attack

Formally, we build an equivariant model X = (K, —,F)
on the set of predicates

{ng |acA}u{k, | a e A} u{bad},

with the intuition n, represents a nonce (a state satisfies n, if
n, has just been generated), k, is a key (for brevity, we only
mention secret keys), and bad indicates bad states. Each state
x € K records the state of Alice, Bob, and Eve. We need a
few copies of these states so that = = n, and = E k, happen
only when a nonce or key is generated.

We model Alice and Bob as 7-tuples (k,n,i,n’,i’,c,p) of
a key k, nonces n (generated by that agent) and n’ (received
from another agent), identities ¢ (whom they are communicat-
ing with) and ' (whom they hope to be communicating with)
from { A, B, E'}, a ciphertext ¢ (which is modeled as a tuple of
the key needed to decipher it and the information contained in
it), and the phase p of the protocol they are at (p is 0 or a pair
of a number from 1..7 together with a flag f € {sndr,rcvr},
depending on whether they sent the first message or received
it, as depicted on the left of Figure 2). All of these variables
may be @. Eve is modeled similarly, except she does not need
to remember any identities, nor the phase of the protocol she is
at, and is thus modeled as a quadruple (k,n,n’, ¢). Formally, a
state of X is then a quintuple (c4,05,0E, s,t) where o4, o,
and o are the states of Alice, Bob, and Eve, and s € {n, k, @}



and t € {A, B, E, @} specify if an action is being done, and
which agent is doing it. We shall refer to Alice’s key in o4 as
ka, etc. In a state x, if p4 is (7,sndr) or (8, rcvr) (the possible
values of p at the end of the protocol) and i4 # i’, (Alice is
mistaken on the identity of the agent she is communicating
with), then z = bad, and similarly for Bob. If s #+ @ and ¢ = n,
then z =n,,. If s #+ @ and ¢ = k, then z E kg, .

Any state z where s # @ or ¢t # @ has a single transition
x — z[s,t — @]. Otherwise, for Alice and Bob, the transition
relation follows the protocol (we let variables X, Y, and Z
range over identities):

« they can always generate a public/secret key pair, and
must do so before beginning the protocol: x — x[kx
k,px = 0,8~ k,t — X] for any k € A,

« they can generate nonces (at steps 0 and (3, rcvr)), e.g.:
if px =0, then x — z[nx ~ a,px ~ (1,sndr),s —
n,t — X] for any a € A (X generates a nonce),

o they can send and receive messages (e.g, at step
(1,sndr)): if px = (1,sndr) and py = 0, then 2 —
zlix » Y,i » Z,px ~ (2,sndr),iy —» X cy
(kz,X,nx),py = (2,rcvr)] (X sends Y a test, thinking
they are Z2),

o they can decipher messages, provided they have the
right key (e.g., at step (2,rcvr)): if py = (2,rcvr), and
cy = (ky,X,n) then x — z[n{, » n,if » X, py ~
(3,rcvr)] (if the cipher is encrypted with the right key,
it is deciphered),

and similarly for the other steps of the protocol. They
can also, at any time, decide to reset the protocol: © —
z[nx,ix,n'y,t,cx,px — @]. For communications with
Eve, the transitions are nearly the same, except there needs
be no checks about fields not contained in our model of Eve.
There are also transitions corresponding to what Eve can do:

« she can forge messages with a false identity, meaning she
does not need to send E as her identity, she can also send
A or B,
« when deciphering messages, she decides what to do with
nonces (e.g., she may throw them away),
« she can “proxy” ciphertexts, meaning, if X (Alice or Bob)
is in phase 0, (2,sndr), or (5, rcvr) (i.e., ready to receive
a message), and cg # @, then * — z[cx = cg,px
p% ], where 0% = (2,rcvr), (2,sndr)* = (5,sndr), and
(5,revr)* = (7, revr).
Note that this indeed defines an orbit-finite model.
Obviously, if there is a collision between keys or nonces
(e.g.,if kg = k4 or ng = n4) then the protocol can be broken.
We thus define the formula

safe = /\ (kq vV ng — fa)
ach
meaning there are no such collisions. The formula we are
interested in is then

—uX.(safe A (bad v & X)), (13)

meaning that no safe path can reach a bad state.

Because of a well-known attack, this formula does not hold
in our model. We can modify this to model a correction of the
protocol [36] by sending (n4,np, B) encrypted with kp4 in
step 5), and A accepting only if B is the agent they think
they are communicating with. Formula (13) then holds. Note
that this does not mean that there are no attacks against the
modified protocol, but only that Eve equipped with capabilities
defined in our model cannot break it.

VII. DECIDABILITY OF MODEL CHECKING

In this section we shall prove that model checking formulas
of the history-dependent p-calculus against orbit-finite models
is decidable. More specifically, our aim is to show how to
inductively compute the set [[(p]]g, defined according to (11),
from a given closed formula ¢ and an orbit-finite model XK.

To make the proof easier to follow, from now on we assume
that the model X is equivariant. At the end of this section we
explain how this assumption can be dropped.

Since we assumed in Section V that pred(«) is finite for
every state x, recalling (10) it is easy to check that

evt(z) ¢ supp(x),

a useful property to keep in mind.

A. First attempts

Ignoring for a moment the fact that £ interprets variables as
families indexed by arbitrary histories and it is not clear how to
present it by finite means, how could we compute ﬂgp]]f from a
given ¢, ¢ and H? Here is an initial idea: intuitively, to check
whether z € [[(p]]f, it should not matter whether an atom a
belongs to H if that atom is not present in the support of the
current situation, that is in the support of x, ¢ and perhaps &.
Such “locally fresh” atoms should be irrelevant for the validity
of the statement. So perhaps one could restrict attention only
to those statements where H ¢ supp(z,p,&), which would
provide some bound on the size of histories considered.

This idea does not quite work, and it is not enough to keep
track of how global histories intersect with local supports. To
see why, consider the equivariant formula

p=\ -fa
acA
which says that some atom is not fresh. Since the formula is
closed, it can be interpreted in the empty context & = @. If
one wants to check whether x € [] f for an equivariant state
x € K, then the local support supp(z, ¢, £) is empty. However,
to check whether z € [[cp]]? we must know whether the history
H is empty, and this information is lost in the (necessarily
empty) intersection of H with the local support.

This motivates a refinement of the initial idea: together with
the intersection of a global history H with a local support S,
one should remember the number (but not the identities) of
those atoms in H which do not belong to .S. This idea will
turn out to work, so we shall now present it more formally.



B. Local-history semantics

A local history is a history together with a natural number:
(n,H) € N x PgaA.

The number n is the anonymous part, and H is the non-
anonymous part of the local history.

Basic operations for anonymizing and de-anonymizing
atoms in local histories will be useful. For a local history
(n, H) and a finite set of atoms S, define:

(n,H)»~S=(n+|H~S|,HnS). (14)
This operation restricts the local view of a history to atoms
in .S, and anonymizes all other atoms. The symbol » is the
middle ground between the set intersection symbol (as the
non-anonymous part H is intersected with S), and a right-to-
left arrow (as atoms are transferred from the non-anonymous
to the anonymous part).

Dually, define:

(n,H)ysS=(n-|S~H|,HuS). (15)
This operation is defined only if |S \ H| < n. It forces all
atoms in S into the non-anonymous part, drawing them from
the anonymous part if needed.

The anonymization operation can be applied to global
histories as well, writing H » S for (0, H) » S. Note that
H ~ S is a representation of the S-orbit of H, in the sense
that Hw~S = H'» S if and only if H and H' are in the same S-
orbit. Our informal idea now is that = € [[(p]]? depends only on
the S-orbit of H for S = supp(z,¢,£) and so our semantics
can be computed with only local histories in focus.

To this end, we show an alternative local-history semantics
of our calculus, where a formula is interpreted for a local his-
tory (n,H) and a localized context p that interprets variables
relative to local histories:

p: X =~ (NxPA) - PK.

The semantics is defined inductively as follows:

n,H
P
n,H

forall z ¢ K
< p e pred(x)
<~ at¢H

x € (T)
x € (p)
x € (fal
€ (-¢)
z€ovi)

=ty

= (]go[)Z’H or € (]1/)[)Z’H

n,H
for some a € A, z € (pa),"", or

P
n,H
P
n,H
P
n,H
P

n >0 and for some a ¢ HU S,

eV e <=1 ze (pa) (S a),
ach
where S = supp (33, \ ©as p) ,
aclA

there is y € K and D c A s.t.
T—>ye (]90[)E)(n,HL.Ievt(z))-e\S')\;ID7
|D| < n,

D c supp(y) ~ (H usupp(z, ¢, p)),
where S = supp(y, ¢, p),

ze (X)PT = xep(X)(n, H)

In the last equation, the least fixpoint is taken over functions:

xe (]<><pDZ’H —

3 : (Nx Pgd) - PK.

The equations for the single-orbit disjunction and the di-
amond modality are considerably more complex than the
corresponding ones for the global history semantics (11), so
some explanation is in order.

For a formula ¢ = V4 ¢, to hold in a state x given a
local history (n, H), it must be that some ¢, holds in the
same state. If a belongs to H, or if it does not belong to the
global history whence (n, H) emerged, then the local history
relevant for ¢, in z is still (n, H). However, there is also a
possibility that a belongs to the global history, but it is absent
from the local support S and it had therefore been relegated
to the anonymous part of the local history, i.e., to the number
n. It should then be “de-anonymized”. Before that happens, it
is prudent to restrict the local view by intersecting it with .S,
to ensure that the non-anonymous part H remains small.

Similar intuitions apply to <¢, but here an additional
complication appears: the supports of y and = can in general
be completely unrelated, so some atoms may have to be
anonymized while other ones are de-anonymized. To this end,
while making a transition from the state x to y, a set D of
de-anonymized atoms is chosen. There must be at most n of
them, since this is the size of the anonymous part of the local
history. There is no point in de-anonymizing an atom that is
already in H, so D and H must be disjoint. Furthermore, if an
atom is not in H but has been present in the current support,
then the local history claims for a fact that the atom does not
belong to the global history either; so D and supp(z,, p)
must be disjoint too. Finally, each de-anonymized atom must
be part of the new current support S after the transition, which
in this situation is equivalent to belonging to supp(y).

Once D is chosen, a new local history is constructed as
expected; note that the elements of the set pred(x) become
part of the global history, but some of them (those not in .S)
immediately go into the anonymous part of the local history.

C. Global vs. local histories

We now wish to show a formal correspondence between
the global and the local semantics, arguing by induction on
the structure of formulas. The inductive claim turns out to be
rather subtle, so we shall first explain why other, seemingly
simpler approaches do not work.

For a finite set .S of atoms, a local-history context

p: X~ (NxPzA) - PK



can be extended (“de-localized”) to one that depends on global
histories, denoted by

1% X =~ PiA > PK
and defined by:
P15 (X)(H) = p(X)(H = S).

Comparing local and global history semantics, at first sight it
is natural to expect that for every formula ¢, a local-history
context p, a global history H and every sufficiently large set

S of atoms: "
HK_\S
(b, ™7 = [el jys -

More specifically, it is reasonable to expect this for S 2
supp(y, p), since the formula ¢ and its context p form the
local view on history.

Unfortunately, Equation (16) fails. For a counterexample,
for B = A consider a state x € K with pred(z) = supp(z) =
{a} and the formula

(16)

¢ =\ (anja)
ach
with a history H = {a} (the context p is irrelevant as ¢ is
closed). Since ¢ is an equivariant formula, one may take S = &
so that H ~ S = (1,2). It is then easy to check that
H~S

z e (¢} v el ps -

Intuitively, the problem here is that we allowed too small an
S, in that it does not contain the support of the state =, which
should rightly be a part of the local view on history.

To fix that, one may weaken (16) and postulate instead that

a7

but

He~S

ze ) = wefelhs

whenever S 2 supp(z, ¢, p). This, however, is ill-suited as
a claim to prove by structural induction on ¢; specifically,
the inductive step for fixpoint formulas ©.X.¢ is problematic.
Indeed, for the inductive step one would want to prove that if

2e®(HwS) < zeWU(H) (18)

for some ¢ : (N x PA) — PK and ¥ : Py A - PK such
that .S 2 supp(z, ¢, p, @, ¥), then also

Z € q@b,ﬁ?{ié]

To use the inductive assumption (17) about ¢, one would need:

(P[X = D1 = (p1°)[X = ¥],

but this does not follow from (18). It would follow from
the stronger assumption ®(H »~ S) = W(H), but that would
amount to assuming (16), which fails in general.

To find the right claim to prove by induction, we look for
the middle ground between (16) and (17), by relaxing the
relationship between contexts p and p1? allowed in (17).

For any @ : (NxPg,A) > PK, U : Py A » PK and a finite
set of atoms S, we write

H
= welel popxne-

b ~g U 19)

if and only if for every x € K, T 2 Susupp(z) and H € Pg,A:
z2e®(HwT) — zcU(H)
(compare (18)). From the definition it easily follows that

if ®~gW¥ and ScS then P~g V.

We will use this observation extensively in the following.

This relation ~ is extended to contexts: for p : X — (N x
PinA) - PK and € : X = P A > PK with the same domain,
we write p ~ £ if and only if p(X) ~gpp(x,p) E(X) for every
X in that domain.

Theorem 4. For every formula ¢ and contexts

p: X =~ (NxPzA) - PK
&: X = PA - PK

defined on the free variables of ¢, if p ~ £ then

(€ ~supp(e,0) [[‘P]]g'
Proof. By structural induction on ¢. O
Corollary 5. For any closed formula o, ()52 = [[goﬂg.

Proof. By Theorem 4, (¢) g ~supp(y) [¥] - and the conclusion
easily follows from the definition of ~ in (19), as @ » T =
(0,@) for any T. O

D. Relevant local histories

By Corollary 5, to find the semantics of a closed formula
in a given model, one may equivalently calculate its local-
history semantics. This, however, does not imply yet that
model checking is decidable. Indeed it looks like a step
back, since in the local-history semantics fixpoint formulas are
approximated by families indexed by elements of N x Pg A,
a clearly orbit-infinite set. We shall now show how the set of
indices can be limited to an essentially orbit-finite set, thus
ensuring decidability.

The inductive definition of Qgp[)og’g involves calculating many
sets of the form WDZ’H for ¢ subformulas of ¢. We will
show that the family of all such sets (more precisely, tuples
(¢, p,(n,H))) that appear in this calculation for a fixed
formula ¢ and a fixed orbit-finite model X, is essentially orbit-
finite. It is clear that a fixed formula ¢ has only an orbit-
finite set of subformulas 1, but we need to find bounds on the
remaining three ingredients.

To this end, we shall need a more refined analysis of the
inductive definition of the semantics (_). For a fixed closed
formula ¢, define the set of relevant tuples (¢, p, (n,H)) as
the least set closed under the following rules:

e (p,2,(0,0)) is relevant;

o if (=, p,(n,H)) is relevant, then (¢, p,(n,H)) is rel-

evant;

o if (Vv O, p,(n,H)) is relevant, then (¢, p, (n, H)) and

(0, p,(n,H)) are relevant;

o if (Vaea Ya,p,(n,H)) is relevant, then:

— (%a,p, (n, H)) is relevant for every a € A and



- if n>0, then (¢q,p, ((n,H) ~ S) ={a}) is relevant
for every a ¢ HuU S, where S is as in the definition of
q\/aeA waDp;

o if (O, p,(n, H)) is relevant, then

(¥, p, ((n, Huevt(z)) ~ 5) = D)

is relevant for every x,y € K, and for every D and S as
in the definition of (Gv) 3

o if (uX.9,p,(n,H)) is relevant, then, for every ordinal
a, the tuple (¢, p[X — D], (n, H)) is relevant, where
O : (N x PgaA) > PK is defined by induction on «:
- @Y is constant at @,
_ (I)a+1 — qup[XHq)a]’
- % = Ugca & for a limit ordinal o

o if (X,p,(n,H)) is relevant, then (uX.1,p’, (n,H)) is
relevant, where pX .1 is the binding occurrence of X in
o, and p’ is p restricted to free variables in puX.1.

Looking at the definition of (_]), it is easy to see that the
inductive definition of (]gp[)%’(a involves only those (and perhaps
not all those) sets (]w[)Z’H where (¢, p, (n, H)) is relevant for

. For the case of fixpoint formulas, this is because
H H
(]UX~¢D:)L7 = quZ[XH‘I’“]
for some ordinal . Moreover, in inductive computation of the
rightmost expression, p[X — ®“] is used for subformulas of
1. As a result, for the case of variables we have

(XD = 0 (. H) = ()50

for some < « (e.g., B = a—1if « is not a limit ordinal),
and the tuple (¢, p'[X + ®”],(n,H)) is relevant because
(nXap, ', (n, H)) is.

Our purpose now will be to show that the set of relevant
tuples is “almost” orbit-finite, and that it can be usefully
approximated by an orbit-finite set.

First, let us define some auxiliary measures of the complex-
ity of formulas. Let mu-depth(p) denote the maximal number
of nested fixpoint operators in . Note that every subformula
of o has at most mu-depth(p) free variables. Moreover, let
max-var-supp() denote the maximal size of the least support
of a variable name in , and let max-subf-supp(yp) be the
maximal size of the least support of a subformula of ¢. These
are all well-defined natural numbers.

Lemma 6. In every relevant tuple (v, p,(n,H)), the context
p has a support of size at most

mu-depth(p) - (max-var-supp () + max-subf-supp(¢)). (20)

Proof. It is enough to show that for every relevant tuple
(¢, p, (n,H)), and for every free variable X in v, the function
p(X) : (N xPgA) - PK has a support of size at most

M - (max-var-supp(p) + max-subf-supp(p)),

where M is the number of fixpoint operators that surround v
in . This is proved by induction on the definition of the set
of relevant tuples. 0

Note that the upper bound (20) on the size of a support of
p in a relevant tuple (v, p, (n, H)) depends only on ¢ but not
on ¢, n or H. Denote this upper bound by max-ctx-supp ().
Furthermore, let dim(X) be the dimension of X, i.e., the
maximal size of the least support of a state of XK.

Lemma 7. In every relevant tuple (¢, p,(n,H)), the history
H contains at most

dim(X) + max-subf-supp( @) + max-ctx-supp(p) +1  (21)

atoms.

Proof. By induction on the definition of the set of relevant
tuples. For the case of 1), it is easy to check that in the
resulting tuple (4, p,(n’,H")) there is H' ¢ supp(y, ¥, p),
and the conclusion follows since

o [supp(y)| < dim(X),

o [supp(v)| < max-subf-supp(yp), and

o [supp(p)| < max-ctx-supp(p).
The case of ¥ = V,ep Yo 1s similar, and all other cases are
trivial since they do not change the history H. O

The upper bound (21) on the size of a local history H in
a relevant tuple (¢, p, (n, H)) depends only on ¢ and on the
model X but not on v, p or n. Denote this upper bound by
max-loc-hist(p, X).

Lemmas 6 and 7 imply that the only potentially unbounded
component of a tuple (%, p,(n,H)) relevant for a fixed
formula ¢, is the number n, the size of the anonymous part of
the local history. To deal with this final component, we shall
use a relative version of the notion of relevant tuple.

Specifically, for a relevant tuple Q = (¢, p, (n,H)) for a
fixed formula , we say that another tuple (¢', p’, (n/, H')) is
relevant for Q) if it belongs to the least set of tuples containing
(@ and closed under all rules that define the set of relevant
tuples except the one for (¢, @, (0,2)). Obviously, if @ is
relevant then every tuple relevant for @ is itself relevant.

Lemma 8. For every relevant tuple Q = (v, p,(n,H)), and
Sor every tuple (W', p',(n', H")) relevant for Q,

n+|H|<n'+|H'|

Proof. 1t is enough to show the inequality for all clauses in
the definition of the set of relevant tuples. In all clauses except
Vaea Yo and O1p the inequality holds trivially as equality, as
then n’ =n and H' = H. For the case of O, we have

n'+|H'| =n+|Huevt(z)|>n+|H|,
and the case of Y =V ep ¥, 1S similar. O

The next lemma applies to any closed formula ¢ and
any orbit-finite model K. Intuitively, the lemma says that, if
the anonymous part of a local history grows large enough,
its precise size ceases to matter and it may be seen as an
inexhaustible supply of non-fresh, anonymous atoms.



Lemma 9. For any numbers my > mo and any v, p, and H
such that both tuples (v, p,(m1, H)) and (¢, p,(mo, H)) are
relevant, if

mo + |H| > max-loc-hist(p, X) + dim(X) (22)
then the two tuples are equivalent, i.e., Qz/JDZ“’H = Qz/JI):)"Z’H.

Proof. 1f 1) is of the form T, p or fa, the conclusion holds triv-
ially. For other cases, the proof follows by fixpoint induction
on the definition of the set of relevant tuples. The two interest-
ing cases are \,ep ¥, and &1, where a nontrivial condition
on the size of the anonymous part of the history appears. For
these cases it is important that, by (22) and by Lemma 7, we
have my,mo > dim(X), so the side conditions on 7 in the
definitions of (V4ea ¥a) and (O1)) become vacuous. Finally,
by Lemma 8, the inequality (22) is preserved in any tuple
relevant for (¢, p,(m1, H)) and (¢, p, (ma, H)). O

E. Decidability

We are now ready to prove our main technical result:

Theorem 10. Given a closed formula ¢ and a state x in
an equivariant, orbit-finite model X, it is decidable whether

T e [[cp]]g.

Proof. By Theorem 4, it is enough to decide whether z €
(]goD%’@ . To this end, one computes the local-history seman-
tics of ¢ and all its subformulas by induction, much as in
Section IV-B for the history-free p-calculus with atoms. As
before, the most complex case is for a fixpoint formula pX .1,
where a least fixpoint of an operator working over families:

O : (NxPsAd) > PK

needs to be computed. By Lemma 7, these families may
be safely restricted to indices (n, H) such that |[H| <
max-loc-hist(p, X), an upper bound computable from ¢ and
X. Then, by Lemma 9, for any m > msy such that (22) holds
(another bound computable from ¢ and X), all families ®
considered satisfy

<I>(m1,H) = (D(’I7’L27];I)7

so one may restrict attention to families ® indexed by (n, H)
such that n < max-loc-hist(p,X) + dim(X), augmented with
one more index for each H that represents a “very large n”.
Altogether, to compute (zX.1),, one builds a series of
approximating families @, each of them indexed by the same
orbit-finite set. The set of indices is equivariant, and the fam-
ilies themselves have a common finite support supp(X,, p).
Since K is orbit-finite, this implies that there are only finitely
many families ® to consider, therefore the approximation
process will reach a fixpoint after finitely many steps.
Remaining cases work as in Section IV-B. O

Our decidability proof was formulated under the assumption
that X is equivariant. This is easy to lift: for an arbitrary orbit-
finite model the proof is the same, but with supp(X) added
to all the relevant supports such as supp(z, ¢, p). Whenever a
function or relation is claimed to be equivariant in the proof,
it should now be supported by supp(X).

VIII. FUTURE WORK

To facilitate our decidability proof, we restricted the design
of the history-dependent p-calculus in several ways. The
restrictions help identify local histories as a key tool and still
let us cover substantial examples, but it should be interesting
to see how our techniques extend to richer scenarios.

Perhaps the easiest extension is to allow infinitely many
basic predicates to hold in a state. This is particularly simple
when each basic predicate is built of a single atom, since an
infinite but finitely supported set of atoms must be co-finite. A
cofinite set of basic predicates that hold in a single state leaves
only finitely many predicates fresh, so visiting such states on a
transition path makes freshness properties easy to check. The
situation becomes more complicated when arbitrary orbit-finite
sets of basic predicates are considered.

Further in this direction, simple freshness tests fa are
but one of many properties of histories than one may want
to check. Others include, e.g., checking whether the global
history is of even size, or some regular properties such as
checking that, historically, every occurrence of a particular
predicate was followed by an occurrence of another one. For
properties that can be restricted to local views of histories, our
proof technique should be applicable.

In the forthcoming [37], an extended version of [15], a
vectorial version of the p-calculus with atoms is considered,
where orbit-finitely many variables may be bound by a sin-
gle fixpoint operator. Intuitively, this amounts to equipping
fixpoint variables with atoms as parameters. Unlike in the
atom-less case, the vectorial calculus with atoms is a proper
extension of the “scalar” one. Adding freshness tests to the
vectorial calculus is a worthwhile task, and we conjecture that
model checking remains decidable for that case. The vectorial
u-calculus is closely connected to alternating tree automata
and parity games, and the next challenge is to draw that
connection in the presence of freshness tests. In particular, a
connection the tree automata models proposed in [11] needs to
be understood, as the most general of them can check a finite-
tree version of our #PATH property. A connection to parity
games should also be enlightening, as the idea of forgetting the
past is well established in game theory in the form of various
memoryless strategy theorems. Another potentially interesting
connection is to the notion of history-preserving bisimilarity
in the theory of true concurrency [38], where a model of tree
automata, as well as a u-like calculus, was introduced.

As argued in [18], the theory of sets with atoms can be
formulated more generally, for an infinite relational structure
A subject to some model-theoretic conditions. An example
is the framework of ordered atoms, where atoms are rational
numbers that can be compared not only for equality but also
for order. Ordered data values arise naturally in various sys-
tems, e.g., as timestamps or as process identifiers in distributed
protocols such as leader election. In [37] a p-calculus with
ordered atoms is introduced, and the question of extending it
with freshness tests remains open.
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