
OceanQuery: report editor query language

Marcin Stefaniak1, Łukasz Kamiński2

Abstract: We present design principles of OceanQuery, the query
language behind the Ocean Genrap report editor. Ocean Genrap re-
porting system is able to query data from a variety of data sources,
including existing SQL relational databases. However, the usability
principles of the editor application lead beyond SQL, to a stack-based
and tree-result query language. We present OceanQuery by analogy
and comparison to the XQuery core of FLWOR expressions. Particu-
lar attention is paid to aggregations and grouping, which is explicit in
OceanQuery. We include results of efficiency experiments in compari-
sion against other major XQuery engines.

Keywords: reporting tools, query languages, XQuery, grouping

1. Introduction
We study software tools for authoring reports. A report is a document schema
which is supposed to be filled with data retrieved from a data source, often a
database. Documents are hierarchical, while relational database (SQL) query result
is flat. Indeed, document can contain several nested iterations of data (tables,
listings, enumerations, etc), while SQL result is only a single sequence of uniform
rows. When designing Ocean Genrap report editor application principles of end-
user usability were among the top priorities. For instance, it is not required to
understand SQL in order to create or edit reports. Furthermore, a selected report
fragment can be cut/copied and pasted elsewhere. Because of that, we needed a
query language that would be compositional, in such a way that a query fragment
could be naturally pasted into another place. An elegant query language emerges
from this requirement, based on the concepts of environment/variable stack known
from programming language theory. It also follows that the query result is freely
tree-shaped. We call our query language OceanQuery throughout this paper.

Among several execution engines of OceanQuery the most interesting one is SQL
engine. It translates OceanQuery queries into SQL statements, including aggrega-
tions and group-by statements (for which there is an explicit language construct in
OceanQuery), so that database server calculates aggregations whenever possible.
The details of translation into SQL are left outside the scope of this paper.

This work is organized as follows: in next section related work is surveyed,
especially XQuery to SQL translators. In the 3rd section, OceanQuery language
is described using a syntax similar to XQuery and its FLWR expressions. Next
section contains results of stress test experiments. Finally, conclusions are drawn.
1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: stefaniak@mimuw.edu.pl

2 ComArch SA, Leśna 2, 02-844 Warsaw, Poland e-mail: Lukasz.Kaminski@comarch.pl

492 M. Stefaniak, Ł. Kamiński

2. Related work
There is a huge variety of query languages – let us classify them roughly according
to the structure and organization of input data and result data. The data can be
organized according to one of the following models (the list is not exhaustive)

• relational – data is structured as flat tables (example: SQL)

• tree-shaped, hierarchical – data forms a (usually finite) tree (example: XML)

• object, network – data in objects that may reference other objects (example:
OQL)

A few major query languages compared to OceanQuery are listed in table 1.

Table 1. Comparison of data models of query languages
language input result
SQL relational flat table
OQL object object

XQuery tree-shaped tree-shaped
SBQL object tree-shaped

OceanQuery network tree-shaped

Note: SBQL is the Stack-Based Approach query language developed by re-
searchers under lead of K.Subieta (Subieta, 2006). It seems conceptually similar to
OceanQuery; both of them employ the notion of an environment stack. The stack,
along with variable scope and binding, are fundamental in the programming lan-
guages theory. Yet, within the field of query languages (dominated by the relational
SQL) they were scarcely supported.

However, the difference between network and tree-shaped input data model is
negligible, and XQuery (W3C XQuery, 2006) also emerges as a similar language to
OceanQuery. XQuery belong to the vast family of query languages for tree-shaped,
semistructured data. The family includes such languages as TQL (Conforti et
al, 2002), Lorel (Abiteboul et al, 1997) and Quilt (Chamberlin et al, 2001) – the
predecessor of XQuery.

There has been a considerable research on translating (DeHaan et al, 2003)
and compiling (Grust et al, 2004) XQuery to SQL. Those systems encode XML
documents into relational tables using additional data, like dynamic intervals tech-
nique, in order to allow all XPath expressions. Another works towards this goal
are SilkRoute systems (Re et al, 2006) and (Fernandez et al, 2002), where the
XML query addresses existing relational database, but only a subset of XQuery
is supported. The presence of those research makes XQuery especially relevant to
our work.

Although OceanQuery looks similar, its design was not influenced heavily by
those other query languages, simply because they were either immature or unknown
to the authors then. What contributed most to the design principles of our query
language was the usability of the report editor application. We are unaware of

OceanQuery: report editor query language 493

other SQL-compliant report editor products which would widely allow copy-and-
paste manipulation on report fragments.

Another related issue is the data grouping feature, known in SQL as a GROUP BY
clause. The W3C recommendation XQuery language does not include such. This
can be justified by the fact that in result-tree-shaped query languages grouping can
be achieved using distinct operation and nested for-where expressions (Subieta,
2006). This could be a bit cumbersome for users creating and editing queries.
Moreover, grouping patterns should be detected (Deutsch et al, 2004) before the
query is executed as SQL in order to avoid bad efficiency (Re et al, 2006). Therefore,
engineers (Borkar et al, 2004) and researchers (Gokhale et al, 2007) proposed
enhancing XQuery with a kind of group-by clause. In OceanQuery we address
this issue with explicit, nested and multi-criteria group-by construction. This is
consistent with Genrap user interface (user can group by something on a report
with a single manipulation) as well as with translation to SQL (efficient queries for
the details of group-by).

3. Description of OceanQuery language

We shall describe OceanQuery using a syntax similar to XQuery description with
respect to its FLWOR expressions. Ocean queries results with data structured
in records and arrays rather than XML, so there are no „element” constructors
in it. The form of the result data is more like JSON rather than XML, and our
expressions will borrow a bit of syntax from JSON records.

OceanQuery is a statically typed language, but throughout this description we
omit the typing information that is normally stored within OceanQuery expressions
whenever it can be inferred from the context. Indeed, this type info is used when the
report query is manipulated by user, or when the database schema is not available
for some reason, so it’s only auxiliary to processing and understanding OceanQuery
queries.

One should have in mind that OceanQuery is not a language formalized and
specified by a grammar, but rather, it is an in-memory data structure that is bound
somehow to the report layout, and only certain expressions of query are visible at
a time to the user. The best analogy is a spreadsheet application: a spreadsheet
combines together a layout (rows and column width, font families and sizes, etc.)
and a graph of calculations. This graph could be printed separately as a set of
equations, but in practice only one equation at a time, from the selected cell is
viewed or edited by a user. In this section, we barely discuss the layout issues
of Ocean Genrap. Instead, we focus on the calculation part of the report, which
altogether forms an OceanQuery query. Two document elements are relevant: the
data is filled into variable fields, and there are grids, which are tabular iterations
over sequence of data.

Each of iteration expressions introduce a variable into the scope of the grid.
Occasionally, more than one simple type variable is introduced, for example when
grouping by several criteria. Internally those variables are identified by a variant of
de Bruijin indices, but for the purposes of this description we simply use variable

494 M. Stefaniak, Ł. Kamiński

names, for clarity prefixed with a dollar ’$’ sign.

3.1. Database schema model

The OceanQuery database schema model is inspired by the Entity-Relationship
Model (Chen, 1976). The database schema is represented as a set of entities
(types, domains), and relationships among them. Each entity may have one or
more named attributes, each attribute is of a simple type, such as number, string,
date-time, boolean. An instance of the entity instance may have attribute values,
of corresponding names and types.

Unlike in the traditional ER model, the relationships are directed. Each rela-
tionship leads from source entity to target entity, and is a (partial) function from
source entity instances to target entity instances. There are two major kind of
relationships: plural (to-many) and singular (to-at-most-one). In the usual case of
equational relationship (like primary key - foreign key) in relational database, two
opposite relationships may be in the schema, and the fact that they are inverses
remains as a mere hint for query optimizer.

Since in the domain of report querying only read-only data access is considered,
we find „network” conceptual data model simple yet powerful. However, it does
not support notions of inheritance nor variants – but neither do plain relational
databases.

3.2. The core of query language

The main construct of OceanQuery is a loop over an entity set, similar to the
FOR loop of XQuery’s FLWOR expressions. Actually, since we don’t have LET
expressions, so it is more like FWOR (For-Where-OrderBy-Return) expression.

Here’s a brief grammar of OceanQuery expressions:

query ::= [parameters] { body-expr }
parameters ::= GIVEN (parameter-name : parameter-type)* RETURN
body-expr ::= ("tagname" : (value-expr | fwor-expr))*
fwor-expr ::= FOR variable IN entity-expr
[ORDER-BY value-expr+]
RETURN { body-expr }

entity-expr ::= (variable | ALL entity-name) path-expr [filter-expr]
filter-expr ::= WHERE bool-expr
attr-expr ::= variable path-expr . attribute-name
path-expr ::= (/ relationship)*
value-expr ::= constant | attr-expr | ... arithmetic and logical expressions
bool-expr ::= value-expr ... // evaluating logical condition

Here’s an example OceanQuery query reporting grades of students from a par-
ticular year.

GIVEN $year : int RETURN {
"year" : $year

OceanQuery: report editor query language 495

"students" : FOR $s IN ALL Students WHERE $s.year = $year
RETURN {

"grades" : FOR $ac IN $s/attended_classes
ORDER-BY $ac/class.name RETURN {

"class" : $ac/class.name
"grade" : $ac.grade

}
}

}

The value-expr represents scalar expressions, i.e. they should evaluate to a
simple value. They may refer to variables accessible in the current scope and may
be built of various arithmetic and logical operators and functions that are supported
by the database.

The FOR expression is a loop iterating over its variable values among a list
of entity instances resolved from its entity-expr. Each variable stores an entity
instance. Parameters are treated as top-level declared variables that store an entity
instance or a simple value.

It should be also noted that the path-expr of an attr-expr should consist of
relationships that are singular, so that the result of an attr-expr is a scalar value.
On the other hand, the entity-expr is supposed to be plural, but no harm is done
when it happens singular – it’s just odd to have a single-row grid.

3.3. Named expressions

One might wonder why the LET expression is missing from OceanQuery query
language. The LET expression introduces a variable in a similar fashion to FOR
expression, but it does not iterate over a set of entity instances, but rather evaluate
to a single entity instance or value. This actually might happen in OceanQuery
when the path-expr of an entity-expr in a FOR expression does not contain a plural
relationship, e.g. the data schema is inconsistent, or the static type correctness is
not enforced.

However, there is no explicit LET expression because there is no corresponding
report layout element. On the other hand, FOR expressions are naturally bound
to grid (tabular iterations) layout elements, and FOR expression is accessible by
selecting the particular grid. With LET expressions, there is no such element that
would maintain the same scope, as the LET expression, and making artificial scope
segments in the report seems very odd indeed.

Any query with LET expressions can be transformed into an equivalent query
without LET expressions, simply by inlining the variables introduced by them. Yet
the possibility to extract common expressions into LET variable is important for
user-experience. We achieve this by using a technique “named expressions”. Any
element of a body-expr can be accessed by the user, and is identified by its tag-name.
User can refer to them within another expressions in the same scope. During query
evaluation, when value-expr is referred, it is inlined in the place of the referral.
When fwor-expr is referred, its entity-expr (along with filter-expr, if present) is

496 M. Stefaniak, Ł. Kamiński

inlined. Finally, the variable field of the named expression may be hidden, so it’s
not displayed on the report layout.

The grammar is extended with the following:

entity-expr ::= ... | REF "tagname" // ... refers fwor-expr
value-expr ::= ... | REF "tagname" // ... refers value-expr

Within a single scope (for example, the top-level one) the structure of a query
with named-variables is similar to a spreadsheet. Issues that apply to spreadsheets
(e.g. cyclic references) may occur in OceanQuery, and the copy-paste behavior
is similar to what modern spreadsheets offer. This way, named expressions are a
generalization of spreadsheet computation, because there may be multiple scopes
in the query. There are special rules for referring expressions across-the-scope.
Obviously, we may refer to an expression that is defined in the same scope or in
an ancestor scope. Moreover, there are some circumstances when it is meaningful
to refer to an expression defined in a sub-scope. This commonly occurs when we
make a sum over an existing variable field in a grid.

"b" : FOR $x IN entity RETURN {
"c" : $x.val

}
"a" : SUM(REF "b", REF "c")

It seems a bit complicated when considered together with aggregations and
grouping. However, all the named expressions references can be inlined during
query pre-processing phase, and the semantics and execution of OceanQuery query
are defined without them. Thus, we shall not consider named expressions further.

Finally, there is a related feature called user-defined expressions. When a com-
mon sub-expression is dependent only on a single entity instance, which happens
very frequently, it can be defined outside the OceanQuery query. The definition is
stored in the so-called user-defined schema, which acts as an extension to the data
source schema.

3.4. Aggregations

Besides the usual scalar-to-scalar expressions, we extend the core by aggregation
expressions, which calculate a scalar value from a plurality of values. The same ag-
gregation functions as in SQL are supported, that is, sum, average, maximum/min-
imum, as well as „count” and „exists” functions.

Below is the extension to core grammar.

value-expr ::= ... | aggr-expr | count-expr | exists-expr
aggr-expr ::= aggr-kind (FOR variable IN entity-expr , value-expr)
aggr-kind ::= SUM | AVG | MAX | MIN
count-expr ::= COUNT (entity-expr)
exists-expr ::= EXISTS (entity-expr)

OceanQuery: report editor query language 497

The entity-expr is evaluated in the current environment to yield an entity-set, and
another value-expr is evaluated with the environment extended with this entity-set.

Example:

{
"students" : FOR $s IN ALL Students

WHERE COUNT($s/attended_classes) > 5 RETURN {
"avg_grade" : AVG(FOR $ac IN $s/attended_classes, $ac.grade)

}
}

3.5. Grouping

OceanQuery supports nested grouping – a grid can be grouped and grouped again.
It is possible to perform grouping by more than one expressions at once. The group
expression is either a simple-type value-expr, or a singular path-expr evaluated in
the context of the grouped entity-expr. The later is more or less equivalent in SQL
to grouping by foreign keys, but it allows more usable typing of the group items.

The grammar is extended as follows:

entity-expr ::= (. . . | entity-group-expr | entity-detail-expr) [filter-expr]
entity-group-expr ::= GROUP variable = entity-expr BY group-item+
group-item ::= variable = (value-expr | path-expr)
entity-detail-expr ::= DETAILS group-variable

The meaning of entity-group-expr is to introduce one variable for every group-
item and iterate over groups. Moreover, a special group-variable is introduced
which represents the plurality of grouped entities. This group-variable can be used
only in entity-detail-expr, which results in looping over details of the current group.
Naturally, the type of details of the group is the same as the grouped entity-expr.

Below is an example:

FOR $g IN GROUP $s = ALL Students BY $y = $s.year, $p = $s/programme
RETURN {

"programme" : $p.name
"year" : $y
"students" : FOR $s IN DETAILS $g RETURN { "student" : $s.name }
"students_by_gpa" : FOR $g2 IN GROUP $s = DETAILS $g BY $s.gpa
RETURN {

"gpa" : $gpa
"students" : FOR $s IN DETAILS $g2
RETURN { "student" : $s.name }

}
}

The entity-expr contained in entity-group-expr is forbidden to be entity-group-
expr. This is not an obvious requirement, but we insisted on making our queries
simple and concise. And because the reports are authored by user-interface gestures

498 M. Stefaniak, Ł. Kamiński

rather than by hand, the burden of making necessary transforms is placed on
the software, not the user. However, not every query with nested groups can be
naturally expressed in the restricted form, For example, if one makes a group and
group it again by an aggregation of their details.

In (Borkar et al, 2004), an extension to XQuery was proposed in order to feature
grouping, in such a way that an optional group clause is added to the FLWOR
construct. This is naturally limited the number of groupings per loop iteration to
one, and so their approach is equivalent to our restricted-form grouping.

3.6. Translation to SQL

Let us outline very briefly how OceanQuery queries are performed on SQL data-
bases. The approach is quite similar to the SilkRoute (Fernandez et al, 2002)sys-
tem. We assume that each entity corresponds to a database table, and that their
primary keys are known. For each node in the tree of our query, an SQL query is
issued and their results are merged into a data tree.

Let us call the places in the query with body-expr – that is, FOR expressions
and the top-level – the nodes of that query. Each node can be translated to an
independent SQL query. The SQL query for a node returns identity columns and
value columns. The identity columns contain variable values – primary keys of
entities or scalar values – corresponding to the variable environment of that node.
The value columns contain scalar values corresponding to the value-exprs associated
with that node. For each node except the root (top-level one), the result is grouped
and inserted into the data queried for its parent node, possibly sorted according to
the order-by clause. Within this framework, the problem of executing OceanQuery
is reduced to constructing appropriate SQL queries for each OceanQuery node,
which is beyond the scope of this paper.

4. Experimental Results
In this section, we present the results that demonstrate the time efficiency of the
execution of Ocean queries. We measured the time of execution for three different
database queries with varying data sizes using four different query engines:

• Saxon 8.9.0.3N 3 – XQuery engine

• MonetDB/XQuery v4.0 4 – XQuery front-end to a high-performance database
management system

• GenRap/XML – OceanQuery interpreter for in-memory XML-shaped data

• GenRap/SQL – OceanQuery engine for SQL databases.

We used OCEAN GenRap 2006 M10 SDK, Java version 5 for OceanQuery eval-
uation. For testing GenRap/SQL, the MS SQL Server 2000 database was used.
3 available at http://saxon.sourceforge.net/
4 available at http://monetdb.cwi.nl/projects/monetdb/XQuery/index.html
5 available at http://genrap.comarch.com

OceanQuery: report editor query language 499

Table 2. Timings for test 1 (CPU sec)

N Saxon Monet GR/XML GR/SQL
1000 0.82 0.15 0.07 0.03
5000 15.25 0.23 0.32 0.11

10,000 61.61 0.35 0.69 0.25
50,000 - 1.36 3.8 1.5

100,000 - 2.78 8.0 2.5
200,000 - 7.77 20.9 6.9
500,000 - 19.1 - 25.0

Experiments were run on an Intel Pentium M1,73GHz system with 1GB RAM
running Windows XP. All software configuration were default, except for Monet-
DB/XQuery, which memory limit was increased to 640MB. Each test result is an
average of ten executions and measuring user and system time spent. For Saxon,
two runs were performed each time: one with the tested query, and one with empty
query, so as to exclude the overhead of reading the data.

4.1. Test 1

This test features a single entity invoice(id, name, date, value) and calcu-
lating sums of value for invoices grouped by date. The XQuery in Saxon form
is

for $i in fn:distinct-values(./invoice/@date)
return <group><date> {$i} </date><values>{

fn:sum(./invoice[@date = $i]/@value)
}</values></group>

The corresponding OceanQuery contains explicit groupping.
Timing results for this test are shown in table 2. The number of invoices in the

data is denoted by N . Saxon engine seems to be evaluating the query with O(N2)
strategy, while the other engines use rather linear strategies. The GenRap/XML
engine is slower (up to a constant), which is easily explained by the fact that it’s
unoptimized, low-performance query interpreter only.

4.2. Test 2

In the second test, the invoice schema is extended with entity entry(id, count,
price, name), with a one-to-many relationship between invoice and entry. The
test query is supposed to calculate the average value of invoices, where the value
of invoice is the sum of it’s entries values, and the value of each entry is its price
multiplied by its count attribute. Again, the XQuery is:

fn:avg((for $i in ./invoice

500 M. Stefaniak, Ł. Kamiński

Table 3. Timings for test 2 (CPU sec)

N Saxon Monet GR/XML GR/SQL
5000 0.36 0.22 0.19 0.01

10,000 0.47 0.31 0.39 0.01
50,000 1.23 1.03 1.9 0.11

100,000 2.27 1.97 4.0 0.17
200,000 4.63 3.77 8.1 0.34
500,000 11.2 9.22 - 0.86

1000,000 25.4 18.4 - 1.7

return
<vv value=’{
fn:sum((for $j in $i/entry

return <v value=’{$j/@count * $j/@price}’/>)/@value)
}’/>)/@value)

Timing results for this test are shown in table 3. The number of invoices in
the data is about

√
N , and each invoice has its own

√
N entries, which results in

approximately N rows. It seems that all engines executed the query in a linear-
time fashion, yet the GenRap/SQL engine was significantly high-performing, which
could be attributed to the maturity of modern relational database engines.

4.3. Test 3

For test 3, the invoice-entry schema is further extended with product(name,
tax) and category(id, name) entities. Each entry is related to exactly one
product, and each product falls into exactly one category. A product is related
to its entry instances by a relationship named entries, and a category is in
relationship products with its product-s.

The query is supposed to determine for each category, the average value of
total invoiced gross value of products from this category. And the gross value of a
product is its value multiplied by the tax rate of the product. The XQuery is:

for $i in ./category return
<category id=’{$i/@id}’ value=’{
fn:avg((for $j in $i/product

return <v value=’{$j/@tax * fn:sum(
(for $k in .//entry[@productId = $j/@id]
return <v value=’{$k/@count * $k/@price}’/>)/@value

)}’/>)/@value)
}’/>

The corresponding OceanQuery employs grouping as follows:

OceanQuery: report editor query language 501

Table 4. Timings for test 3 (CPU sec)

N Saxon Monet GR/XML GR/SQL
5000 0.87 3.32 0.36 0.03

10,000 2.04 9.7 0.73 0.04
50,000 16.0 - 4.0 0.14

100,000 46.1 - 8.6 0.26
200,000 145.5 - 18.3 0.36
500,000 625.5 - - 0.87

1000,000 - - - 1.7

FOR $c IN ALL category RETURN {
"id" : $c.id
"value" : AVG(

FOR $g IN GROUP $e = $c/products/entries BY $p = $e/product,
$p.tax * SUM(FOR $k IN DETAILS $g, $k.count * $k.price)

}

Timing results for this test are shown in table 4. Again, the number of invoices
in the data is

√
N , and each invoice has its own

√
N entries. There is about 4

√
N

categories and
√

N products. Each entry refers to a product chosen randomly with
uniform distribution, so for one product there are on average

√
N entries referring

to it. In this test, only GenRap/SQL prevailed. The reason behind the early fall
of MonetDB/XQuery is its ineffective memory management - it overused the hard
disk swap.

5. Conclusions
In this paper, we have presented the query language used in the report editor
application Ocean GenRap. We have explained how it is related to a mainstream
semi-structure query language XQuery, and the approach used to feature explicit
grouping. The feasibility of such a language has been shown by experiments with
its implementation in an industry-grade software product. It appears that high
performance of query execution can be obtained by translating OceanQuery into
SQL queries and executing these on a relational database engine. Further research
should focus on efficient translation of OceanQuery into SQL queries and other
database query languages.

5.1. Acknowledgment

This paper is based on results of the project “New generation of data access lan-
guages for intelligent reporting and business data analysis” realized by ComArch
SA in cooperation with Poznań University of Technology within the Sectoral Op-
erational Programme “Improvement of the Competitiveness of Enterprises, years

502 M. Stefaniak, Ł. Kamiński

2004-2006”, WKP_1/1.4.1/1/2005/41/41/279/2005/U. The project was funded in
part by the European Regional Development Fund.

References
Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J. L. (1997)

The Lorel query language for semistructured data. International Journal on
Digital Libraries 1, 1, 68–88

Borkar, V. and Carey, M. (2004) Extending XQuery for grouping, duplicate
elimination, and outer joins. XML conference

Chamberlin, D., Robie, J., and Florescu, D. (2001) Quilt: An XML query
language for heterogeneous data sources. Lecture Notes in Computer Science
vol.1997

Chen, P. P. (1976) The entity-relationship model - toward a unified view of data.
ACM Transactions on Database Systems 1, 1, 9–36

Conforti, G., Ghelli, G., Albano, A., Colazzo, D., Manghi, P., and Sa-
rtiani. C. (2002) The query language TQL. Proceedings of WebDB 13-18
http://www.db.ucsd.edu/webdb2002/papers/43.pdf

DeHaan, D., Toman, D., Consens, M. P. and Özsu, M. T. (2003) A com-
prehensive XQuery to SQL translation using dynamic interval encoding. Pro-
ceedings of SIGMOD Conference 623–634

Deutsch, A., Papakonstantinou, Y., and Xu. Y. (2004) Minimization and
group-by detection for nested XQueries. Proceedings of ICDE p. 839. IEEE
Computer Society

Fernandez, M. F., Kadiyska, Y., Suciu, D., Morishima, A. and Tan, W.
C. (2002)] Silkroute: A framework for publishing relational data in XML.
ACM Trans. Database Syst. 27,4,438–493

Gokhale, C., Gupta, N., Kumar, P., Lakshmanan, L., Ng, R. and Prak-
ash. B. A. (2007)] Complex group-by queries for XML. To appear in 2007
IEEE 23rd International Conference on Data Engineering (ICDE 2007)

Grust, T. Sakr, S. and Teubner. J. (2004) XQuery on SQL hosts. Proc. of
the 30th Int’l Conference on Very Large Data Bases (VLDB)

Re, C., Suciu, D., and Brinkley, J. (2006) A performant XQuery to SQL tra-
nslator. Technical Report University of Washington, Seattle
http://silkroute.cs.washington.edu/SilkRouteII_TR.pdf

Subieta. K. (2006) Stack-based approach and stack-based query language de-
scription. http://www.sbql.pl

W3C Consortium (2006) XQuery 1.0: an XML query language. W3C Proposed
Recommendation http://www.w3.org/TR/xquery/

