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ABSTRACT
Abstract Delta Modeling is a technique for implementing
(software) product lines. Deltas are put in a partial order
which restricts their application and are then sequentially
applied to a core product in order to form specific products
in the product line. In this paper we explore the semantics of
deltas in more detail. We regard them as relations between
products and introduce a multi-modal logic that may be
used for reasoning about their effects. Our main innovation
is a modality for partially ordered sets of deltas. We prove
strong completeness results on both the frame level and the
model level and demonstrate the logic through an example.

1. INTRODUCTION
Delta Modeling [12, 13, 14] is designed as a technique for im-
plementing software product lines [11]: a way to optimally
reuse code between software products which differ only by
which features they support. The code is divided into units
called deltas, which can incrementally transform a core prod-
uct in order to generate a product in the product line.

Clarke et al. [4, 5] described delta modeling in an abstract
algebraic manner called the Abstract Delta Modeling (ADM)
approach. In that work, delta modeling is not restricted
to software product lines, but rather product lines of any
domain. It gives a formal description of deltas, how they
can be applied to products, how they can be combined, how
they can be linked to features from the feature model, as well
as how to avoid and resolve implementation conflicts. Most
notably, they put deltas in a partial order to restrict their
order of application. This allowed for an exact specification
of dependency between deltas, as well as the implementation
of desired feature interaction and the resolution of conflict
with a minimum of code duplication.

At its core, ADM is about deltas that can transform one
product into another product. We need a way to specify
and reason about the semantics of deltas, and what effect
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Figure 1: Example view of a delta frame with prod-
ucts p, q, r and deltas u, v, w, x, y, z currently visible

they have on the features that are supported by a product.
We need a way to specify that a delta implements a specific
feature or that a delta refrains from breaking an existing fea-
ture. We need a way to prove that if certain local guarantees
are met, that specific global properties, such as product line
completeness [8, 9], are then guaranteed to hold.

In this paper we introduce a modal logic in order to reason
about the semantics of deltas. Basically, we take the set of
all possible products as the set of worlds in our frame (Fig-
ure 1). We then model deltas as binary relations on this set.
In previous work, all deltas were deterministic (functional).
We now generalize the notion of delta, and allow them to be
nondeterministic, as well as non-terminating. In our logic,
we want to be able to make judgements such as

� 〈d〉 f � [d] f

meaning “delta d may implement feature f” (left) and “delta
d must implement feature f” (right). Or perhaps, for all φ:

� 〈d〉φ→ [d]φ � [d]φ→ 〈d〉φ

meaning “delta d is deterministic” (left) and “delta d always
terminates” (right). Note that we implicitly quantify over
all products that the delta may be applied to.

We also introduce an additional modalities, representing
delta models (partially ordered sets of deltas, Definition 4),
in order to make judgements such as

� [DM ] (f ∧ g ∧ h)

meaning “delta model DM implements features f , g and h”.
The paper is structured as follows. Sections 2 and 3 sum-

marize the relevant theory of abstract delta modeling and
modal logic respectively. Section 4 introduces both the syn-
tax and semantics of our modal logic on a frame level. It
also proves strong completeness. Then, Section 5 introduces
proposition letters and explores our logic on a model level.
Section 6 concludes and discusses related and future work.



2. ABSTRACT DELTA MODELING
To make this paper self-contained, we now repeat the rele-
vant theory from ADM. For more detailed information, we
refer the reader to [4, 5]. Readers familiar with the theory
can skip this section.

2.1 Products and Deltas
First, we assume a set of products, P. The set of possible
modifications to products forms a delta monoid, as follows:

Definition 1 (Delta Monoid). A delta monoid is a
monoid (D, ·, ε), where D is a set of product modifications
(referred to as deltas), and the operation · : D × D → D
corresponds to their sequential composition. y ·x denotes
the modification applying first x and then y. The neutral
element ε of the monoid corresponds to modifying nothing.

Applying a delta to a product results in another product.
This is captured by the notion of delta action. The fol-
lowing definition differs from previous work [4, 5], in which
deltas were always deterministic, and would always termi-
nate. The notion of nondeterministic delta action allows for
both nondeterminism and nontermination, by resulting in a
set of products, rather than a single product.

Definition 2 (Nondeterministic Delta Action).
A nondeterministic delta action is an operation
−(−) : D × P → P(P). If d ∈ D and p ∈ P, then
d(p) ⊆ P is the set of products that may result from
applying delta d to product p. It satisfies the conditions
(y ·x)(p) =

S
q∈x(p) y(q) and ε(p) = {p}.

This all leads to the notion of a deltoid, which describes
all building blocks necessary to create a product line in a
concrete domain.

Definition 3 (Deltoid). A deltoid is a quintuple
(P,D, ·, ε,−(−)), where P is a product set, (D, ·, ε) is a delta
monoid and −(−) is a nondeterministic delta action opera-
tor.

A delta model describes the set of deltas required to build
a specific product, along with a strict partial order on those
deltas, restricting the order in which they may be applied.

Definition 4 (Delta Model). A delta model is a
pair (D,≺), where D ⊆ D is a finite set of deltas and
≺ ⊆ D × D is a strict partial order on D. x ≺ y states
that x must be applied before y, though not necessarily di-
rectly before.

The partial order represents the intuition that a delta ap-
plied later has full access to earlier deltas and more authority
over modifications to the product.

The semantics of a delta model is defined by its deriva-
tions. A derivation is a delta formed by a sequential com-
position of all deltas from D, in some linearization of the
partial order.

Definition 5 (Derivation). Given a delta model
DM = (D,≺), its derivations are defined to be

derv(DM )
def
=


xn · . . . ·x1

˛̨̨̨
x1, . . . , xn is a linear
extension of (D,≺)

ff
.

Observe that when D is empty, derv(DM ) = {ε}. Also note
that derv(DM ) may potentially generate more than one dis-
tinct derivation, as non-commutative deltas may be applied
in different orders. Techniques for ensuring a unique deriva-
tion (and thus a unique product) may be found in [4, 5]. In
this paper, we make no assumptions about the determinism
of basic deltas or the unambiguity of delta models.

For specific product lines, a set F of relevant feature labels
is introduced. Eventually deltas are linked to feature labels,
so we can generate a delta model for each legal combination
of features. We do not describe this process in detail here,
but we do repeat the concept of feature model, since it will
be referenced later:

Definition 6 (Feature Model). A feature model
Φ ⊆P(F) is a set of sets of feature labels from F . Each
F ∈ Φ is a set of feature labels corresponding to a valid fea-
ture configuration, i.e. a set of features that may be active
together.

3. MODAL LOGIC
In this section, we recall a number of essential notions from
the theory of modal logic [2]. We define the basic language,
its semantics and the syntactic notion of a proof in general
terms. Following this, in the next section, we will instan-
tiate this theory with a language in which the modalities
correspond to the deltas from our underlying abstract delta
modeling framework.

3.1 Language and Semantics
We will be concerned with a basic multi-modal language
in which we have a set of proposition letters, and a set of
labeled modalities. In order to keep the story simple and
accessible, we will only concern ourselves with unary modal-
ities, as well as, in Section 5, nullary modalities which can
be regarded as playing the role of propositional constants.
In principle, however, modalities can have any arity. This
basic modal language consists of the following terms:

φ ::= ⊥ | p | φ ∨ φ | ¬φ | p© | 〈d〉φ

Here, 〈d〉 is any unary modality labeled with d, p© is any
nullary modality labeled with p and p is any proposition
letter taken from a set Ξ of proposition letters.

A frame F over this language consists of a set W of worlds
and, for each nullary modality p© a predicate Up ⊆ W and
for each unary modality 〈d〉, a binary relation Rd ⊆W ×W .

A model M over a frame consists of a frame and a valu-
ation function V : Ξ→P(W ), mapping proposition letters
to sets of worlds. We can now, given a model M and world
w ∈W , define the modal satisfaction relation � as follows:

M, w � ⊥ never
M, w � p iff w ∈ V (p)
M, w � φ ∨ ψ iff M, w � φ, or M, w � ψ
M, w � ¬φ iff not M, w � φ
M, w � p© iff w ∈ Up

M, w � 〈d〉φ iff there exists a v ∈W with
(v, w) ∈ Rd and M, v � φ

We regard φ∧ψ, φ→ ψ and [d]φ as abbreviations for ¬(¬φ∨
¬ψ), ¬φ ∨ ψ and ¬ 〈d〉 ¬φ, respectively.

We furthermore write M � φ and say that φ is globally
true in M iff for all worlds w, we have M, w � φ. Given
a frame F, we write F, w � φ and say φ is valid at world



w iff for all models M based on F, we have M, w � φ. We
furthermore write F � φ and say φ is valid on F iff for all
worlds w, we have F, w � φ. When we want to restrict the
semantic entailment to a certain class of structures S, we
superscribe � with S, as in �S.

Given a set of formulas Γ and a class of structures S (either
models or frames), we say that φ is a local consequence of
Γ, and write Γ �S φ, iff, for all models M (possibly based on
frames) from S, and all worlds w ∈W :

M, w � φ whenever M, w � Γ.

Likewise, given a set of formulas Γ and a class of structures
S, we say φ is a global consequence of Γ, and write Γ �g

S φ,
iff, for all models M from S, we have

M � φ whenever M � Γ.

3.2 Proof Theory

Definition 7 (Normal Modal Logic). Given any
modal language, a normal modal logic is a set of formulas
Λ containing all propositional tautologies, the formula K:

[d] (p→ q)→ ([d] p→ [d] q),

the formula Dual:

〈d〉 p↔ ¬ [d]¬p

(for all modalities d) and closed under:

• Modus ponens: if φ ∈ Λ and φ→ ψ ∈ Λ, then ψ ∈ Λ;

• Uniform substitution: if φ ∈ Λ, then φ[ψ/p] ∈ Λ for
all proposition letters p and formulas φ; and

• Generalization: if φ ∈ Λ, then [d]φ ∈ Λ for all modal-
ities d.

Given any set of formulas Γ, a smallest normal modal logic
containing all formulas in Γ always exists, and will be called
the normal modal logic generated by Γ.

Given a normal modal logic Λ, we write

`Λ φ

to denote φ ∈ Λ, and

Γ `Λ φ

to express that there are formulas ψ1, . . . , ψn such that

`Λ (
^

1≤i≤n

ψi)→ φ.

Alternatively, we can also regard the relation ` in terms of
a proof system. Here, we regard K and Dual, together with
all propositional tautologies as axioms, and regard the ear-
lier closure properties (modus ponens, uniform substitution,
and generalization) as proof rules.

A normal modal logic Λ is called strongly complete with
respect to a class S of frames, if, when for any set of formulas
Γ and any formula φ, Γ �S φ implies Γ `Λ φ. The normal
modal logic K, generated by the empty set, is strongly com-
plete with respect to the class of all frames [2].

4. DELTA FRAMES
One of the primary goals of this paper is to reason about
abstract delta modeling using the language and techniques of
modal logic. A good starting point, before moving on to an
axiomatic characterization (in which we are concerned with
issues such as completeness), is to describe delta modeling
using Kripke frames.

4.1 Relational Deltas
For the convenience of the formalism described in the re-
mainder of the paper, we now start working in a more con-
crete deltoid, in which deltas are relations between products.

Definition 8 (Relational Deltoid). A rela-
tional deltoid (P,D, ·, ε,−(−)) is a deltoid in which
D = P(P × P).

For a complete charactarization of the deltoid and a solid
link to earlier work [4, 5], we also need to define delta action
(Definition 2) concretely, but this is quite straightforward.

Definition 9 (Relational Delta Action). A rela-
tional delta action is an operation −(−) : D × P → P(P)
such that for all d ∈ D and all p ∈ P:

d(p)
def
= { q ∈ P | (p, q) ∈ d }

This implicitly defines sequential composition · as relation
composition and the empty delta ε as the identity relation.

The paper loses no generality with this approach. The
only real difference is that there can no longer exist multiple
distinct deltas that represent the same relation.

4.2 Delta Terms
We define the set of delta terms (which can be seen as the
syntactic counterparts of deltas) as the smallest set such
that:

1. Every delta has a corresponding basic delta term d,

2. Given delta terms d1 and d2, d2 · d1 and d1 ∪ d2 are
delta terms, and

3. Given a finite set D of delta terms, and a partial order
≺ : D ×D, (D,≺) is a delta term.

From here onward, we use the set of delta terms to label
our set of unary modalities. i.e. for each delta term d, there
exist unary modalities 〈d〉 and [d]. We are not using nullary
modalities yet, but they become useful in Section 5.2.

4.3 Frames and Relations
A concrete relational deltoid uniquely defines a delta frame
F = (W,Rd1 , . . .). The set of worlds W is the set of products
P and the set of binary relations Rdi is the set of deltas D.

Definition 10. The relation Rd is the delta correspond-
ing to basic delta term d. We define the binary relations
corresponding to compound delta terms inductively, in terms
of basic delta terms. First, union and composition:

Rd1∪d2
def
= Rd1 ∪Rd2

Rd2·d1
def
= {(p3, p1)|∃p2((p3, p2) ∈ Rd2 ∧ (p2, p1) ∈ Rd1)}

Finally, the binary relation corresponding to a partial order
(D,≺) on delta terms can be described in terms of deriva-
tions of this partial order as follows:

R(D,≺)
def
=

[
d∈derv((D,≺))

Rd,



Using derv (Definition 5) here is a bit of an abuse of no-
tation, as it is defined on deltas, not delta terms. How-
ever, a delta term version can be defined analogously. Note
that if the relations corresponding to the delta terms in D
are deterministic (functional) and the partial order (D,≺)
has a unique derivation, the relation R(D,≺) is deterministic
as well. Note also that we can characterize composition in
terms of partial orders:

Rd2·d1 = R({d1,d2},{(d1,d2)})

and, conversely, we can characterize partial orders in terms
of union and composition.

Definition 11 (Delta frames). Let ∆F, the class of
Delta frames, be the class of all frames, with a underlying set
of delta terms as modalities, satisfying the relational equali-
ties from Definition 10.

We now introduce the following useful notation:

Notation 12. For a given partially ordered set DM =
(D,≺) and subset D′ ⊆ D, we define the notation:

DM \D′ def
= (D \D′,≺′)

where ≺′ is ≺ restricted to D \D′.

From Definition 10, the following proposition follows
straightforwardly:

Theorem 13. Given a nonempty delta model DM =
(D,≺) and any formula φ, we have

�∆F 〈DM 〉φ ↔
_

d minimal

〈d〉 〈DM \ {d}〉φ

and for the empty delta model (∅,∅), we have

�∆F 〈(∅,∅)〉φ ↔ φ

Proof. Induction on the size of D.

It is worthwhile to note that the above theorem is similar
to what is known as the expansion law of the process alge-
bra CCS [10]. Because delta models are finite and do not
contain cycles in our case the expansion law in combination
with other axioms allows a complete reduction to basic delta
terms, as explained in more detail below.

Dually, the semantic entailment

�∆F [DM ]φ ↔
^

d minimal

[d] [DM \ {d}]φ

is also valid as a direct consequence of Theorem 1.
In the next section we will discover that the normal modal

logic generated by these formulas (together with axioms for
union and composition) is strongly complete with respect to
the class of delta frames.

4.4 Completeness

Definition 14. Define the modal logic K∆ as the small-
est normal modal logic containing all instances of the follow-
ing axiom schemata:

1. 〈DM 〉φ↔
W

d min. 〈d〉 〈DM \ {d}〉φ (nonempty DM )

2. 〈(∅,∅)〉φ↔ φ;

3. 〈d2 · d1〉φ↔ 〈d1〉 〈d2〉φ; and

4. 〈d1 ∪ d2〉φ↔ (〈d1〉φ ∨ 〈d2〉φ).

We call instantiations of these axiom schemata ‘∆ axioms’.
These allows us to formulate the following completeness re-
sult, after defining a translation function t as follows (that t
is well-defined trivially follows from defining a fitting com-
plexity function on formulas):

Definition 15.

t(f)
def
= f for proposition letters f

t(¬φ)
def
= ¬t(φ)

t(φ ∨ ψ)
def
= t(φ) ∨ t(ψ)

t(〈d〉φ)
def
= 〈d〉 t(φ) for basic delta terms d

t(〈d2 · d1〉φ)
def
= t(〈d1〉 〈d2〉φ)

t(〈DM 〉φ)
def
=

W
d∈derv(DM ) t(〈d〉φ)

The idea behind this function is to translate any formula
into an equivalent formula in which all unary modalities are
labeled only by basic delta terms. This enables us to forget
about compound delta terms, allowing us to construct our
completeness proof in terms of the completeness of K w.r.t.
the class of all frames.

Lemma 16. For all Γ and φ, we have:

1. Γ �∆F φ iff Γ �∆F t(φ);

2. Γ `K∆ φ iff Γ `K∆ t(φ); and

3. Γ �∆F t(φ) iff Γ � t(φ)

Proof. The first and second part of the lemma can be
proven by induction (on the complexity of formulas as well
as that of delta terms); the third part follows from the ob-
servation that for any translated formula, only the relations
corresponding to basic delta terms are used: hence, we are
simply treating our delta frame as a regular frame.

Theorem 17. K∆ is strongly complete w.r.t. the class
of delta frames.

Proof. This amounts to saying that, for any Γ and φ,
if Γ �∆F φ, then Γ `K∆ φ. But, if Γ �∆F φ, then, by the
first part of Lemma 1, we have Γ �∆F t(φ), and by part
3 of Lemma 1, we now have Γ � t(φ). Completeness of
K now gives Γ �K t(φ), and because K ⊆ K∆, we also
get Γ �K∆ t(φ). Finally, part 2 of Lemma 1 now yields
Γ �K∆ φ).

5. MODELS ON DELTA FRAMES
As we can now reason on the frame level with the proof
system of Section 4, we would also like to reason on the
model level.

Recall that a model M = (F, V ) is a frame augmented
with a valuation function which maps proposition letters
from Ξ to the set of worlds in which they are true. Our
worlds are products from P. What we want to reason about
is the features that are implemented by those products, so
we propose that F ⊆ Ξ. We would like to prove properties
about the effect of deltas on specific features given axiomatic
characterizations of specific models.



5.1 Semantic Feature Model
In Definition 6 we see features as labels. A feature model Φ
indicates which features are allowed to be selected together
on a conceptual level. However, if we have M, w �∆F f for
some f ∈ F , it means that feature f is actually implemented
in product w. It is a semantic judgment.

An interesting relation exists however. A (syntactic) fea-
ture model is only sensible if all of its feature configurations
can actually be implemented. We define a semantic feature
model as follows:

Definition 18 (Semantic Feature Model).
Given a model M, we define its semantic feature model
ΦM ⊆ P(F) as the set of sets of features that can
semantically be implemented together:

ΦM
def
=

˘
V ′(w) ∩ F | w ∈W

¯
where V ′ : W → P(Ξ) is the function mapping each world
to the set of proposition letters that are true there:

V ′(w)
def
= { p ∈ Ξ | w ∈ V (p) }

We expect a sensible syntactic feature model to be a subset
of the semantic feature model:

Φ ⊆ ΦM

meaning that all valid feature configurations contain only
features that can potentially be implemented together.

5.2 Proof System
Note that the proof system from Section 4 is not sound with
respect to global semantic entailment on models. For exam-
ple, consider the following ‘proof’:

(1) f → [d] g axiom
(2) f → [d]¬g uniform substitution on g

So we have

f → [d] g `K f → [d]¬g,

but at the same time the (global) semantic consequence

f → [d] g �g f → [d]¬g

is easily seen to be false. The culprit here is our usage of
uniform substitution. This proof rule produces new validi-
ties from old validities, but it does not preserve truth on
a model level. We still need the uniform substitution rule,
however, to prove truths such as:

(1) p ∨ ¬p propositional tautology
(2) [d] f ∨ ¬ [d] f uniform substitution on p

The trick is to allow uniform substitution only on newly pro-
duced proposition-letters, but not on the original features in
our axioms. This may be accomplished by first transforming
all feature propositions in our axioms to nullary modalities,
on which uniform substitution does not apply. We can then
prove any valid formula in the proof system of frames. We
first define the following translation:

Definition 19.

u(f)
def
= f© for proposition letters f

u(¬φ)
def
= ¬u(φ)

...

For the other shapes of formulas the u translation is sim-
ply propagated down to the proposition letters, leaving ev-
erything else unchanged. We also lift the function u to sets
of formulas in the expected manner.

Furthermore, we also define a translation function (overload-
ing the earlier name u) from models to frames, dropping the
valuation function V but augmenting the frame with, for
every proposition letter in the model, a unary relation (rep-
resenting a nullary modality) which holds at precisely the
worlds in which this proposition letter was true in V . This
enables us to formulate the following translation lemma:

Lemma 20. For all models M, worlds w and formulas φ:

M, w � φ iff u(M), w � u(φ)

and

M � φ iff u(M) � u(φ).

Proof. Induction on the complexity of formulas. The ba-
sic propositional case trivially follows from our construction
of nullary modalities in terms of propositional letters.

This lemma enables us to prove the following soundness re-
sult w.r.t. global truth on the model level:

Theorem 21. For all sets of formulas Γ and all formulas
φ:

if u(Γ) `K∆ u(φ), then Γ �g
∆F φ

Proof. Assume u(Γ) `K∆ u(φ). Let M be a model
(based on a delta frame) such that M � Γ. Then, by
Lemma 2, we have u(M) � u(Γ). Now let Λ be the logic
of the class of delta frames {F ∈ ∆F |F � u(Γ)}. Because Λ
is a normal modal logic, it is closed under proof rules, and
hence it follows from the fact that u(Γ) ⊆ Λ that u(φ) ∈ Λ.
It follows that u(φ) is valid on this class of frames, so we
have u(M) � u(φ), and by another application of Lemma 2,
we get M � φ. Hence, Γ �g

∆F φ.

5.3 Relative Completeness
In Hoare logics relative completeness has been established

for classes of models which allow the expressibility in the
logic of weakest preconditions [1]. For example in [7] a class
of arithmetic models has been introduced which allow ex-
pressibility in the logic of weakest preconditions by means
of arithmetically based encoding techniques. Following this
general approach to completeness of Hoare logics we want to
identify a class of models for which the converse of the above
proposition 3 holds. More specifically, we want to identify
a set of models M for which there exists an axiomatisation
ΓM in K∆ such that M � φ implies u(ΓM) `K u(φ). Note
that in our modal logic K∆ weakest preconditions of a delta
d and postcondition φ can be directly expressed by formu-
las of the form [d]φ. A natural set of models to consider
are those models which allow the expression of such weakest
preconditions in terms of a logical combination of features
themselves.

Definition 22 (Precondition Expressibility). A
model M allows the expression in K∆ of weakest precon-
ditions iff for every formula [d]φ, where d is a basic delta
term and φ is a boolean combination of features, there exists
a boolean combination of features φ′ such that

M, w � [d]φ iff M, w � φ′
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For any model M let ΓM denote the propositional theory
of its underlying semantic feature model extended with the
theory WP(M) defined by˘

[d]φ↔ φ′
˛̨

M � [d]φ↔ φ′
¯

where d is a basic delta term, and both φ and φ′ are boolean
combinations of features. We have the following relative
completeness theorem.

Theorem 23. For any model M that allows the expres-
sion in K∆ of weakest preconditions we have

if M � φ, then u(ΓM) `K∆ u(φ)

for every formula φ.

Proof. It is suffices to show that using the transforma-
tion function t from Definition 13 the propositional theory
ΓM allows to reduce every formula φ to a logical combina-
tion of features. The proof proceeds by a straightforward
induction on φ.

Note that for models that allow the expression of weakest
preconditions our modal logic K∆ is in fact a conserva-
tive extension of the propositional logic of the underlying
semantic feature models. Of particular interest is also that
for deterministic delta models we only need to require that
every formula [d] f , where d is a basic delta term and f is
a single feature, can be expressed by a boolean combination
of fatures itself.

5.4 Example
We now illustrate the use of K∆ through an example proof.
Say we have the feature model as shown in Figure 2. The
features f , g and h are implemented by the delta model DM
in Figure 3. The feature t is satisfied in some empty core
product, on which we’d like to apply those deltas.

We now introduce a set of basic axioms valid in this model:

Axiom 24 (Delta Model Axioms).

(1) f → t
(2) g → f
(3) h → f
(4) g → [c] g
(5) h → [b]h

(6) t → [a] f
(7) f → [b] g
(8) f → [c]h
(9) g → [bc] g

(10) h → [bc]h

Axioms 1, 2 and 3 are due to the feature model shown in
Figure 2. It is generally the case that when a subfeature is

implemented its superfeature is implemented as well. Ax-
ioms 4 and 5 are due to a property we assume the underlying
deltoid to have, called non-interference [8], which states that
commuting deltas cannot interfere with each others features.
Axioms 6 to 10 are by design of the deltas a, b, c and bc.
We assume that they were developed such that a, b and c
implement the features f , g and h (Axioms 6, 7 and 8),
taking into account only the deltas ‘above’ them, and that
conflict resolving delta bc [4, 5] doesn’t break the features
implemented by the previous deltas (Axioms 9 and 10).

Now say we have a core product c ∈ P with c � t. We’d
like to prove the following property:

Proposition 25. c � [DM ] (t ∧ f ∧ g ∧ h)

In order to prove this property more succinctly, we introduce
the following auxiliary proof rules:

Lemma 26 (l3). For all formulas φ, ψ and χ, and for
all deltas d1, . . . , dn, we have:

φ→ [d1] · · · [dn]ψ, ψ → χ ` φ→ [d1] · · · [dn]χ

Proof. By induction on n.

Lemma 27 (l4). For all formulas φ and ψ and all
deltas d, we have:

` ([d]φ ∧ [d]ψ) ↔ [d] (φ ∧ ψ)

Proof. See [2, Example 1.40].

Proof of Proposition 1.

(11) t©→ [a] [b] g© l3 : 6, 7
(12) t©→ [a] [b] ( f©∧ g©) l3 : 11, 2
(13) t©→ [a] [b] ( f©∧ g©∧ [c] h©) l3 : 12, 8
(14) t©→ [a] [b] ( g©∧ [c] h©) l3 : 13, 2
(15) t©→ [a] [b] ([c] g©∧ [c] h©) l3 : 14, 4
(16) t©→ [a] [b] [c] ( g©∧ h©) l4 : 15
(17) t©→ [a] [b] [c] ([bc] g©∧ h©) l3 : 16, 9
(18) t©→ [a] [b] [c] ([bc] g©∧ [bc] h©) l3 : 17, 10
(19) t©→ [a] [b] [c] [bc] ( g©∧ h©) l4 : 18
(20) t©→ [a] [b] [c] [bc] ( f©∧ g©∧ h©) l3 : 19, 2
(21) t©→ [a] [b] [c] [bc] ( t©∧ f©∧ g©∧ h©) l3 : 20, 1
(22) t©→ [a] [b] [c] [DM 1] ( t©∧ f©∧ g©∧ h©) l3 : 21,∆
(23) t©→ [a] [b] [DM 2] ( t©∧ f©∧ g©∧ h©) l3 : 22,∆

Formula (24) is derived in a symmetric manner to (23).

(24) t© → [a] [c] [DM 3] ( t©∧ f©∧ g©∧ h©) symmetric
(25) t© → [a] [b] [DM 2] ( t©∧ f©∧ g©∧ h©)

∧ [a] [c] [DM 3] ( t©∧ f©∧ g©∧ h©) I∧ : 23, 24
(26) t© → [a] ([b] [DM 2] ( t©∧ f©∧ g©∧ h©)

∧ [c] [DM 3] ( t©∧ f©∧ g©∧ h©)) l4 : 25
(27) t© → [a] [DM 4] ( t©∧ f©∧ g©∧ h©) l3 : 26,∆
(28) t© → [DM ] ( t©∧ f©∧ g©∧ h©) l3 : 27,∆

where

DM 1 = DM \ {a, b, c}
DM 2 = DM \ {a, b}
DM 3 = DM \ {a, c}
DM 4 = DM \ {a}

Then, with c � t©, we have our result.

We have skipped many steps in this proof, mostly those con-
cerned with invoking propositional tautologies and applying
modus ponens. We have kept only the most interesting steps
– those that directly use our axioms.



5.5 Alternate Propositions
In this section we have chosen the set of features F as the
significant set of propositions. But there are several reasons
for choosing an alternate or additional set of propositions.

First, there may be some desired interaction between fea-
tures that would not be satisfied by an implementation of
any strict subset of those features. In that case, we’d want
to have sets of features P(F) ⊆ Ξ rather than individual
features. We would then assume the additional axiom:

� F ∪G =⇒ � F ∧ � G

for some F,G ⊆ F . This approach was taken in [8].
Furthermore, it is possible that different products may im-

plement the exact same features. So we may want additional
proposition letters to distinguish between them in our logic
and reason on a somewhat lower level. Such proposition let-
ters may include the presence of specific classes or methods
in an object oriented setting.

6. CONCLUSION
In this paper we provided a method that will be useful for
further research into abstract delta modeling. The modal
logic K∆ forms the first lo allows us to reason more easily
about the semantics of deltas and delta models in a way con-
sistent with previous work. We prove strong completeness
of the logic with respect to the class of all delta frames. We
also discuss a proof technique on the level of models, prove
its completeness and illustrate it through example.

The delta theory in this paper is based on Abstract Delta
Modeling [4, 5]. We remain in a similarly abstract setting,
yet generalize even further by removing the assumption that
deltas are deterministic and terminating entities.

The logic and proof techniques in this paper will be useful
for proving properties of the Delta Modeling Workflow [8,
9]. That was, in fact, partial motivation for the research in
this paper.

Completeness proofs in modal logic have a long-standing
history, closely tied to the history of relational semantics
based on Kripke frames. A comprehensive survey of this
history can be found in e.g. [2, Section 1.8].

The modal logic presented in this paper has a flavour very
reminiscent of dynamic logics such as PDL [6]. A crucial dif-
ference, however, is that the logic presented here is simpler
(and hence, easier to work with) due to the absence of op-
erations such as iteration or tests. Due to this simplicity,
we can easily unravel complex modalities into simpler ones,
and under certain conditions even reduce them to proposi-
tional formulas, enabling us to obtain the main results from
Section 5.

Possible future work following up the initial research in
this paper may include work on characterizations of modal
expressivity of basic properties of delta models and interac-
tions between deltas, including positive as well as limitative
results. In the case of limitative results, it may be worth-
while to look into the additional expressivity that the modal
µ-calculus has to offer [3]. This additional expressivity may,
for example, be required to express the condition that a con-
flict between two deltas is resolved by a third delta.

Another interesting research direction is the use of our log-
ical framework in the synthesis of delta models using model
checking techniques.
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