
In preparation for the �nal exam

• The �nal will take place during the class on Wednesday 12/05/2018 at 10:00 am and during the class on
Friday 12/07/2018 at 10:00 am

• On Wednesday there will be 10-12 multiple choice questions out of the presented below 25 questions. Each of
the questions is multiple choice, which means that, e�ectively, each question is a set of �ve questions with
a yes/no answer. In particular, if you �nd one correct answer to any of the questions, it doesn't mean that
the remaining answers are incorrect. I suggest going through these questions very carefully. During the exam
the questions may be slightly changed (so don't just memorize the answers).

• On Friday there will be a collection of problems from midterms from 3 topics: least-squares (including
curve �tting), markov chains (without Google Pagerank) and SVD.

• I will do my very best to upload propositions of the grades on Friday.

Problem 1. Suppose that we have 3 sectors producing products P1 P2 and P3, respectively:

• To produce 1 unit of P1 it takes 0.1 unit of P1, 0.2 unit of P2 and 0.25 unit of P3,

• To produce 1 unit of P2 it takes 0.15 unit of P1 and 0.4 unit of P2,

• To produce 1 unit of P3 it takes 0.1 unit of P1, 0.3 unit of P2 and 0.2 unit of P3,

The internal demand matrix is equal to

A =

 0.1 0.2 0.25
0.15 0.4 0
0.1 0.3 0.2

−1 B =

 0.1 0.2 0.25
0.15 0.4 0
0.1 0.3 0.2

 C =

 0.1 0.2 0.25
0.15 0.4 0
0.1 0.3 0.2

T

D =


 0.1 0.2 0.25

0.15 0.4 0
0.1 0.3 0.2

T

−1

E : It can't be deduced based on the given information.

Problem 2. Let M , p and d be internal demand matrix, production vector and external demand vector. Then
according to the Leontiev input-output model with open economy, we have

A

p =

 1 1 1
1 1 1
1 1 1

−M
−1 · d

B

p =

 1 0 0
0 1 0
0 0 1

−M
 · d

C

p =

 1 0 0
0 1 0
0 0 1

−M
−1 · d

D

d =

 1 0 0
0 1 0
0 0 1

−M
 · p

E

p =

 1 1 1
1 1 1
1 1 1

−M
 · d
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Problem 3. In the Leontiev input-output model with closed economy (d = 0) we have:

A any eigenvector p of M provides valid production values,

B any eigenvector p of M associated with the eigenvalue 1 provides valid production values,

C v = 0 always provides valid production values,

D any unit eigenvector p of M associated with the eigenvalue 1 provides valid production values,

E any unit eigenvector p of M provides valid production values.

Problem 4. For the matrix (I −M)−1:

A the diagonal entries are always ≥ 1,

B the diagonal entries are always ≥ 0,

C jth column says how much the production of each product has to be increased in order to satisfy the increase
in demand on product j by +1,

D jth row says how much the production of each product has to be increased in order to satisfy the increase in
demand on product j by +1,

E all entries are always ≥ 1.

Problem 5. Let

M =

 0.5 0 0
0 0.1 0
0 0 0.3

 .
A It describes an economy with independent sectors,

B there is no theoretically possible economy associated with M ,

C (I −M)−1 = I +M +M2 +M3 + ...,

D (I −M)−1 = limk→∞Mk,

E In closed economy the only production vector satisfying the Leontiev model with the internal production M is
p = 0.

2



Problem 6. We rotate point (0, 0) in R2 by π
3 counterclockwise around point (1, 7).

A The coordinates of the point after the rotation are the upper two entries of the vector

v =

 1 0 1
0 1 7
0 0 1

 cos(π/3) − sin(π/3) 0
sin(π/3) cos(π/3) 0

0 0 1

 1 0 −1
0 1 −7
0 0 1

 0
0
1


B The coordinates of the point after the rotation are the upper two entries of the vector

v =

 1 0 −1
0 1 −7
0 0 1

 cos(π/3) − sin(π/3) 0
sin(π/3) cos(π/3) 0

0 0 1

 1 0 1
0 1 7
0 0 1

 0
0
1


C The coordinates of the point after the rotation are the upper two entries of the vector

v =

 1 0 1
0 1 7
0 0 1

 cos(π/3) − sin(π/3) 0
sin(π/3) cos(π/3) 0

0 0 1

 1 0 −1
0 1 −7
0 0 1

 0
0
1


divided by the bottom entry.

D The coordinates of the point after the rotation are the upper two entries of the vector

v =

 1 0 −1
0 1 −7
0 0 1

 cos(π/3) − sin(π/3) 0
sin(π/3) cos(π/3) 0

0 0 1

 1 0 1
0 1 7
0 0 1

 0
0
1


divided by the bottom entry.

E The coordinates of the point after the rotation are equal to the entries of the vector

v =

[
1 −1
0 −7

] [
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

] [
1 1
0 7

] [
0
0

]
Problem 7. Rotation in 3D around the y-axis by π

2 , so that the positive z go in the direction of negative x is
associated with the matrix

A =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 B =


1 0 0 0
0 cos(π/2) − sin(π/2) 0
0 sin(π/2) cos(π/2) 0
0 0 0 1

 C =


cos(π/2) 0 sin(π/2) 0

0 1 0 0
− sin(π/2) 0 cos(π/2) 0

0 0 0 1



D =


0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 E :


cos(π/2) − sin(π/2) 0 0
sin(π/2) cos(π/2) 0 0

0 0 1 0
0 0 0 1


Problem 8. The perspective projection of the point (1, 2, 3) onto the z = 0 plane from the center of perspective
(0, 0, 777) is associated with the matrix

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 − 1

777 1




1
2
3
1

 B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

777 1




1
2
3
1

 C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

777 1




1
2
3
1



D =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1

777 1




1
2
3
1

 E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 777 1




1
2
3
1


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Problem 9. The homogeneous coordinates of the point (x, y, z) are equal to

v =


7
3
5
7

 .
Then

A The homogeneous coordinates of this point are also equal to 1
7v.

B The homogeneous coordinates of this point are also equal to 2v.

C The standard coordinates of the point (x, y, z) are equal to (7, 3, 5)

D Something went wrong in the calculations: it should always be 1 in the bottom of the homogeneous coordinates.

E The standard coordinates of the point (x, y, z) are equal to (1, 37 ,
5
6 )

Problem 10. The least-squares solution to the equation 1 2
0 1
1 0


︸ ︷︷ ︸

=A

x =

 1
2
3


︸ ︷︷ ︸

=b

A is the solution of the equation [
2 2
2 5

]
x =

[
4
5

]
B is the solution of the equation Ax = ProjCol(A)b

C always exists

D is equal to x̂ = (AAT )AT b

E is the element in Col(A) that is the closest to b.

Problem 11. In the previous problem the solution is

x̂ =

[
2
0

]
.

The least-squares error is

A equal to ‖x̂− b‖, where ‖v‖ is the length of the vector v,

B equal to ∥∥∥∥∥∥
 2

0
2

− b
∥∥∥∥∥∥ ,

C is impossible to calculate based on provided information

D equal to
√

5

E equal to
√

6.
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Problem 12. Curve �tting of points (0, 0), (1, 2) and (2, 3) using the template ax2 + b:

A is associated with the least-squares solution of 0 0
1 1
4 2

[ a
b

]
=

 0
2
3


B is associated with the least-squares solution of 0 1

1 1
4 1

[ a
b

]
=

 0
2
3


C is associated with the solution of [

1 3
3 0

] [
a
b

]
=

[
2
3

]
D does not exist since point (0, 0) belongs to any linear space

E cannot yield a smaller least-squares error than when using the template ax2 + bx+ c.

Problem 13. Consider points (0, 1), (1, 2) and (2, 5) belonging to the curve y = x2 + 1. Then

A it is impossible to perform a least-squares line �tting, since the points belong to a parabola,

B the template ax2 + b can't be used in this case because it would yield a 0 least-squares error for a = b = 1,

C the template ax2 + b yields a 0 least-squares error for a = b = 1

D it is impossible to get a 0 least squares error for the given points using line-�tting.

E it is possible to get a 0 least squares error for the given points using line-�tting after removing one point
(thus, working with only two points).
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Problem 14. Suppose that 4 teams play a number of games with the following results

• Team 1 beats team 2 by 7 points

• Team 1 loses to team 3 by 8 points

• Team 2 ties with team 3

• Team 2 beats team 3 by 15 points

• Team 2 beats team 4 by 5 points

• Team 3 loses to team 4 by 1 points

The Massey method team rankings for the above teams are represented by a vector x, which is

A a least-squares solution to 
2 −1 −1 0
−1 4 −2 −1
−1 −2 4 −1
0 −1 −1 2

x =


−1
13
−8
−4


B a least-squares solution to 

1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1

x =


7
−8
0
15
5
−1


C a solution to 

2 −1 −1 0
−1 4 −1 −1
−1 −2 4 −1
0 −1 −1 2

x =


−1
13
−8
−4


D a solution to 

2 −1 −1 0
−1 4 −2 −1
−1 −2 4 −1
1 1 1 1

x =


−1
13
−8
0


E a solution to 

2 −1 −1 0
−1 4 −2 −1
−1 −2 4 −1
0 0 0 0

x =


−1
13
−8
1


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Problem 15. If the Massey matrix equation for a set of teams is
3 −1 −2 0
−1 5 −2 −2
−2 −2 4 0
1 1 1 1

x =


6
2
10
0


then

A There are 4 teams

B Team 4 played 1 game

C Team 1 played 1 game against team 2

D Team 2 played 3 games in total

E In total there were 7 games played

Problem 16. Let T be a regular transition matrix. Then

A Each column of T , treated as a vector, has length 1

B Each column of T has the sum of its entries equal to 1

C Each column is a probability vector

D One of its eigenvalues is equal to 1

E Each row is a probability vector

Problem 17. Let T be a regular transition matrix. Then

A any eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated by T

B any unit eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated by
T

C any probability eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated
by T

D if v is the steady state then Tv = v

E if v is the steady state then Tx = v for any vector x

Problem 18. Let T be a transition matrix. Then

A if T is regular then it has a steady state v

B if T is regular then limk→∞ T kx = v, where x is any vector and v is the steady state

C if T is not regular then it may still have a steady state

D if T is not regular then point B is always false. In other words, there is no chance to �nd a transition matrix T ,
that is not regular, but it still has a steady state and every other state converges to the that steady state

E limk→∞ T kx = v, where x is any vector and v is the steady state
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Problem 19. Suppose that we have 3 states such that

• all residents of state 1 remain in state 1

• half of the residents of state 2 moves to state 1 and the other half moves to state 3

• all residents of state 3 move to state 2

A The transition matrix T for this process is  1 1
2 0

0 0 1
0 1

2 0


B The transition matrix for this process is  1 1

2 0
0 0 1
0 1

2 0

T

C T has a steady state equal to [1, 0, 0]T

D T is a regular transition matrix

E we have limk→]infty T
k[1/3, 1/3, 1/3]T = [1, 0, 0]T .

Problem 20. Consider the internet with four pages P1, P2, P3 and P4. Suppose that the links are ass follows:
P1→ P2, P3, P2→ P3, P3→ P2, P4 and P4→ P1. Then

A the transition matrix associated with the Google Page Rank for this internet is
0 0 0 1
1
2 0 1

2 0
1
2 1 0 0
0 0 1

2 0


B the transition matrix associated with the Google Page Rank for this internet is not regular

C not only is point B false, but also every transition matrix associated with the Google Page Rank for any internet
is always regular

D the ranking of each page belongs to the interval [0, 1]

E suppose that we remove all links of all pages of this internet; then the Google Page Ranking is equal for all 4
pages

Problem 21. Singular value decomposition of matrix A is a factorization A = UΣW and

A the columns of U are unit eigenvectors of AAT corresponding to eigenvalues arranged in a nonincreasing order

B the columns of W are unit eigenvectors of ATA corresponding to eigenvalues arranged in a nonincreasing order

C the only nonzero entries of Σ are the nonzero eigenvalues of AAT arranged in a nonincreasing order on the
diagonal

D singular values are the square roots of the nonzero eigenvalues of AAT

E this sentence is false
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Problem 22. Let

M =

[
1 2 0
0 1 −1

]
.

Then the SVD of M is equal to

A =

[
2 1
1 −2

] [ √
6 0 0

0 1 0

] 2 5 −1
1 0 2
−2 1 1

 , B =
1

5

[
2 1
1 −2

] [ √
6 0 0

0 1 0

]
2√
6

5√
6
− 1√

6

1 0 2

−2
√
5√
6

√
5√
6

√
5√
6

 ,
C =

1

5

[
−2 1
−1 −2

] [ √
6 0 0

0 1 0

] −
2√
6
− 5√

6
1√
6

1 0 2

−2
√
5√
6

√
5√
6

√
5√
6

 , D =

[
2 1
1 −2

] [ √
6 0 0

0 1 0

] 2 5 −1
1 0 2
−2 1 1

T ,

D =
1

5

[
2 1
1 −2

] [ √
6 0 0

0 1 0

]
2√
6

5√
6
− 1√

6

1 0 2

−2
√
5√
6

√
5√
6

√
5√
6


T

.

Problem 23. Let A be a centered data matrix such that

A = [u1 u2]

[
σ1 0 0
0 σ2 0

]
V T

is its SVD. Then

A the total variance of the data is equal to σ1 + σ2

B the percentage of the variance of the data in the direction u2 is equal to
σ2
2

σ2
1+σ

2
2

C vector u1 de�nes the direction in which the data vary the most

D ‖u1‖ = ‖u2‖2

E σ1 ≥ σ2
Problem 24. Let A be a centered data matrix such that

A = UΣV T

is its SVD. Suppose that jth eigenvalue of AAT is nonzero. Then

A If uj is the jth column of U then Auj is the jth column of V

B If uj is the jth column of U then ATuj is the jth column of V

C If uj is the jth row of U then ATuj is the jth column of V

D If uj is the jth column of U then
ATuj

‖uj‖ is the jth column of V

E If uj is the jth column of U then
ATuj

‖ATuj‖ is the jth column of V

Problem 25. Let

A =

[
2 1 −3 23 1 0 −12 8 π

√
1

4 −12 8 0 93 0 55 99 1 −1

]
.

Then, in practice, to �nd the SVD of A one necessarily needs to (maybe among other things)

A �nd 2 eigenvalues of AAT

B �nd 2 eigenvectors of AAT

C �nd 10 eigenvalues of ATA

D �nd 10 eigenvectors of ATA

E it would be much more tedious to perform the SVD for AT
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