In preparation for the final exam

- The final will take place during the class on Wednesday 12/05/2018 at 10:00 am and during the class on Friday 12/07/2018 at 10:00 am
- On Wednesday there will be 10-12 multiple choice questions out of the presented below 25 questions. Each of the questions is **multiple choice**, which means that, effectively, each question is a set of five questions with a yes/no answer. In particular, if you find one correct answer to any of the questions, it doesn't mean that the remaining answers are incorrect. I suggest going through these questions very carefully. During the exam the questions may be slightly changed (so don't just memorize the answers).
- On Friday there will be a collection of problems from midterms from 3 topics: least-squares (including curve fitting), markov chains (without Google Pagerank) and SVD.
- I will do my very best to upload propositions of the grades on Friday.

Problem 1. Suppose that we have 3 sectors producing products P1 P2 and P3, respectively:

- To produce 1 unit of P1 it takes 0.1 unit of P1, 0.2 unit of P2 and 0.25 unit of P3,
- To produce 1 unit of P2 it takes 0.15 unit of P1 and 0.4 unit of P2,
- To produce 1 unit of P3 it takes 0.1 unit of P1, 0.3 unit of P2 and 0.2 unit of P3,

The internal demand matrix is equal to

$$A = \begin{bmatrix} 0.1 & 0.2 & 0.25 \\ 0.15 & 0.4 & 0 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}^{-1} \qquad B = \begin{bmatrix} 0.1 & 0.2 & 0.25 \\ 0.15 & 0.4 & 0 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}^{T} \qquad C = \begin{bmatrix} 0.1 & 0.2 & 0.25 \\ 0.15 & 0.4 & 0 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}^{T}$$
$$D = \left(\begin{bmatrix} 0.1 & 0.2 & 0.25 \\ 0.15 & 0.4 & 0 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}^{T} \right)^{-1} \qquad E: \quad \text{It can't be deduced based on the given information.}$$

Problem 2. Let M, p and d be internal demand matrix, production vector and external demand vector. Then according to the Leontiev input-output model with open economy, we have

А

$$p = \left(\left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] - M \right)^{-1} \cdot d$$

В

$$p = \left(\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] - M \right) \cdot d$$

 \mathbf{C}

$$p = \left(\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] - M \right)^{-1} \cdot d$$

D

$$d = \left(\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] - M \right) \cdot p$$

Е

$$p = \left(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} - M \right) \cdot d$$

Problem 3. In the Leontiev input-output model with closed economy (d = 0) we have:

- A any eigenvector p of M provides valid production values,
- B any eigenvector p of M associated with the eigenvalue 1 provides valid production values,
- C v = 0 always provides valid production values,
- D any unit eigenvector p of M associated with the eigenvalue 1 provides valid production values,
- E any unit eigenvector p of M provides valid production values.

Problem 4. For the matrix $(I - M)^{-1}$:

- A the diagonal entries are always ≥ 1 ,
- B the diagonal entries are always ≥ 0 ,
- C *j*th **column** says how much the production of each product has to be increased in order to satisfy the increase in demand on product j by +1,
- D *j*th **row** says how much the production of each product has to be increased in order to satisfy the increase in demand on product j by +1,
- E all entries are always ≥ 1 .

Problem 5. Let

$$M = \left[\begin{array}{rrrr} 0.5 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.3 \end{array} \right].$$

- A It describes an economy with independent sectors,
- B there is no theoretically possible economy associated with M,
- C $(I M)^{-1} = I + M + M^2 + M^3 + \dots,$
- D $(I-M)^{-1} = \lim_{k \to \infty} M^k$,
- E In closed economy the only production vector satisfying the Leontiev model with the internal production M is p = 0.

Problem 6. We rotate point (0,0) in \mathbb{R}^2 by $\frac{\pi}{3}$ counterclockwise around point (1,7).

A The coordinates of the point after the rotation are the upper two entries of the vector

$$v = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

B The coordinates of the point after the rotation are the upper two entries of the vector

$$v = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

C The coordinates of the point after the rotation are the upper two entries of the vector

$$v = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

divided by the bottom entry.

D The coordinates of the point after the rotation are the upper two entries of the vector

$$v = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) & 0 \\ \sin(\pi/3) & \cos(\pi/3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

divided by the bottom entry.

E The coordinates of the point after the rotation are equal to the entries of the vector

$$v = \begin{bmatrix} 1 & -1 \\ 0 & -7 \end{bmatrix} \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Problem 7. Rotation in 3D around the *y*-axis by $\frac{\pi}{2}$, so that the positive *z* go in the direction of negative *x* is associated with the matrix

$$A = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\pi/2) & -\sin(\pi/2) & 0 \\ 0 & \sin(\pi/2) & \cos(\pi/2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} \cos(\pi/2) & 0 & \sin(\pi/2) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\pi/2) & 0 & \cos(\pi/2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad E : \begin{bmatrix} \cos(\pi/2) & -\sin(\pi/2) & 0 & 0 \\ \sin(\pi/2) & \cos(\pi/2) & 0 & 0 \\ \sin(\pi/2) & \cos(\pi/2) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 8. The perspective projection of the point (1, 2, 3) onto the z = 0 plane from the center of perspective (0, 0, 777) is associated with the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{777} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{777} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{777} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{777} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} \qquad E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{777} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

Problem 9. The homogeneous coordinates of the point (x, y, z) are equal to

$$v = \begin{bmatrix} 7\\3\\5\\7 \end{bmatrix}.$$

Then

A The homogeneous coordinates of this point are also equal to $\frac{1}{7}v$.

B The homogeneous coordinates of this point are also equal to 2v.

- C The standard coordinates of the point (x, y, z) are equal to (7, 3, 5)
- D Something went wrong in the calculations: it should always be 1 in the bottom of the homogeneous coordinates.
- E The standard coordinates of the point (x, y, z) are equal to $(1, \frac{3}{7}, \frac{5}{6})$

Problem 10. The least-squares solution to the equation

$$\underbrace{\begin{bmatrix} 1 & 2\\ 0 & 1\\ 1 & 0 \end{bmatrix}}_{=A} x = \underbrace{\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}}_{=b}$$

A is the solution of the equation

$$\left[\begin{array}{rrr} 2 & 2 \\ 2 & 5 \end{array}\right] x = \left[\begin{array}{r} 4 \\ 5 \end{array}\right]$$

B is the solution of the equation $Ax = Proj_{Col(A)}b$

C always exists

D is equal to $\hat{x} = (AA^T)A^Tb$

E is the element in Col(A) that is the closest to b.

Problem 11. In the previous problem the solution is

$$\hat{x} = \left[\begin{array}{c} 2\\ 0 \end{array} \right].$$

The least-squares error is

A equal to $||\hat{x} - b||$, where ||v|| is the length of the vector v,

B equal to

$$\left\| \begin{bmatrix} 2\\0\\2 \end{bmatrix} - b \right\|,$$

- C is impossible to calculate based on provided information
- D equal to $\sqrt{5}$

E equal to $\sqrt{6}$.

Problem 12. Curve fitting of points (0,0), (1,2) and (2,3) using the template $ax^2 + b$:

A is associated with the least-squares solution of

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

B is associated with the least-squares solution of

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

C is associated with the solution of

$$\left[\begin{array}{rrr}1 & 3\\3 & 0\end{array}\right]\left[\begin{array}{r}a\\b\end{array}\right] = \left[\begin{array}{r}2\\3\end{array}\right]$$

D does not exist since point (0,0) belongs to any linear space

E cannot yield a smaller least-squares error than when using the template $ax^2 + bx + c$.

Problem 13. Consider points (0,1), (1,2) and (2,5) belonging to the curve $y = x^2 + 1$. Then

A it is impossible to perform a least-squares line fitting, since the points belong to a parabola,

B the template $ax^2 + b$ can't be used in this case because it would yield a 0 least-squares error for a = b = 1,

C the template $ax^2 + b$ yields a 0 least-squares error for a = b = 1

D it is impossible to get a 0 least squares error for the given points using line-fitting.

E it is possible to get a 0 least squares error for the given points using line-fitting **after removing one point** (thus, working with only two points).

Problem 14. Suppose that 4 teams play a number of games with the following results

- Team 1 beats team 2 by 7 points
- Team 1 loses to team 3 by 8 points
- Team 2 ties with team 3
- Team 2 beats team 3 by 15 points
- Team 2 beats team 4 by 5 points
- Team 3 loses to team 4 by 1 points

The Massey method team rankings for the above teams are represented by a vector x, which is A a **least-squares** solution to

Γ	2	$^{-1}$	-1	0		[-1]
	$^{-1}$	4 -2 -1		13		
	$^{-1}$	-2	4	-1	x =	-8
	0	-1	-1	2		-4
-				-	•	

B a $\mathbf{least}\text{-}\mathbf{squares}$ solution to

[1]	-1	0	0 -]	7
1	0	-1	0		-8
0	1	-1	0		0
0	1	$^{-1}$	0	x =	15
0	1	0	$^{-1}$		5
0	0	1	$^{-1}$		1

C a solution to

$$\begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 \\ -1 & -2 & 4 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} x = \begin{bmatrix} -1 \\ 13 \\ -8 \\ -4 \end{bmatrix}$$

D a solution to

2	$^{-1}$	$^{-1}$	0		-1
-1	4	-2	-1		13
-1	-2	4	-1	x =	-8
1	1	1	1		0

E a solution to

$$\begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 4 & -2 & -1 \\ -1 & -2 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x = \begin{bmatrix} -1 \\ 13 \\ -8 \\ 1 \end{bmatrix}$$

Problem 15. If the Massey matrix equation for a set of teams is

$$\begin{bmatrix} 3 & -1 & -2 & 0\\ -1 & 5 & -2 & -2\\ -2 & -2 & 4 & 0\\ 1 & 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 6\\ 2\\ 10\\ 0 \end{bmatrix}$$

then

- A There are 4 teams
- B Team 4 played 1 game
- C Team 1 played 1 game against team 2
- D Team 2 played 3 games in total
- E In total there were 7 games played
- **Problem 16.** Let T be a regular transition matrix. Then
- A Each column of T, treated as a vector, has length 1
- B Each column of T has the sum of its entries equal to 1
- C Each column is a probability vector
- D One of its eigenvalues is equal to 1
- E Each row is a probability vector

Problem 17. Let T be a regular transition matrix. Then

- A any eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated by T
- B any unit eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated by T
- C any probability eigenvector of T corresponding to the eigenvalue 1 is a steady state of the Markov chain generated by T
- D if v is the steady state then Tv = v
- E if v is the steady state then Tx = v for any vector x

Problem 18. Let T be a transition matrix. Then

- A if T is regular then it has a steady state v
- B if T is regular then $\lim_{k\to\infty} T^k x = v$, where x is any vector and v is the steady state
- C if T is not regular then it may still have a steady state
- D if T is not regular then point B is always false. In other words, there is no chance to find a transition matrix T, that is not regular, but it still has a steady state and every other state converges to the that steady state
- E $\lim_{k\to\infty} T^k x = v$, where x is any vector and v is the steady state

Problem 19. Suppose that we have 3 states such that

- all residents of state 1 remain in state 1
- half of the residents of state 2 moves to state 1 and the other half moves to state 3
- all residents of state 3 move to state 2

A The transition matrix T for this process is

$$\left[\begin{array}{rrrr} 1 & \frac{1}{2} & 0\\ 0 & 0 & 1\\ 0 & \frac{1}{2} & 0 \end{array}\right]$$

B The transition matrix for this process is

$$\left[\begin{array}{rrrr} 1 & \frac{1}{2} & 0\\ 0 & 0 & 1\\ 0 & \frac{1}{2} & 0 \end{array}\right]^T$$

C T has a steady state equal to $[1,0,0]^T$

D T is a regular transition matrix

E we have $\lim_{k \to jinfty} T^k [1/3, 1/3, 1/3]^T = [1, 0, 0]^T$.

Problem 20. Consider the internet with four pages P1, P2, P3 and P4. Suppose that the links are ass follows: $P1 \rightarrow P2, P3, P2 \rightarrow P3, P3 \rightarrow P2, P4$ and $P4 \rightarrow P1$. Then

A the transition matrix associated with the Google Page Rank for this internet is

$$\left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \end{array}\right]$$

- B the transition matrix associated with the Google Page Rank for this internet is not regular
- C not only is point B false, but also **every** transition matrix associated with the Google Page Rank for **any** internet is **always** regular
- D the ranking of each page belongs to the interval [0, 1]
- E suppose that we remove all links of all pages of this internet; then the Google Page Ranking is equal for all 4 pages

Problem 21. Singular value decomposition of matrix A is a factorization $A = U\Sigma W$ and

- A the columns of U are unit eigenvectors of AA^{T} corresponding to eigenvalues arranged in a nonincreasing order
- B the columns of W are unit eigenvectors of $A^T A$ corresponding to eigenvalues arranged in a nonincreasing order
- C the only nonzero entries of Σ are the nonzero eigenvalues of AA^T arranged in a nonincreasing order on the diagonal
- D singular values are the square roots of the nonzero eigenvalues of AA^{T}
- E this sentence is false

Problem 22. Let

$$M = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 0 & 1 & -1 \end{array} \right].$$

Then the SVD of M is equal to

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 5 & -1 \\ 1 & 0 & 2 \\ -2 & 1 & 1 \end{bmatrix}, \quad B = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{5}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ 1 & 0 & 2 \\ -2\frac{\sqrt{5}}{\sqrt{6}} & \frac{\sqrt{5}}{\sqrt{6}} & \frac{\sqrt{5}}{\sqrt{6}} \end{bmatrix}, \quad C = \frac{1}{5} \begin{bmatrix} -2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{2}{\sqrt{6}} & -\frac{5}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 1 & 0 & 2 \\ -2\frac{\sqrt{5}}{\sqrt{6}} & \frac{\sqrt{5}}{\sqrt{6}} \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 5 & -1 \\ 1 & 0 & 2 \\ -2 & 1 & 1 \end{bmatrix}^{T}, \quad D = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{5}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ 1 & 0 & 2 \\ -2\frac{\sqrt{5}}{\sqrt{6}} & \frac{\sqrt{5}}{\sqrt{6}} \end{bmatrix}^{T}.$$

Problem 23. Let A be a centered data matrix such that

$$A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} V^T$$

is its SVD. Then

A the total variance of the data is equal to $\sigma_1 + \sigma_2$

B the percentage of the variance of the data in the direction u_2 is equal to $\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$

C vector u_1 defines the direction in which the data vary the most

- D $||u_1|| = ||u_2||^2$
- $E \sigma_1 \geq \sigma_2$

Problem 24. Let A be a centered data matrix such that

$$A = U\Sigma V^T$$

is its SVD. Suppose that jth eigenvalue of AA^T is nonzero. Then

A If u_j is the *j*th column of U then Au_j is the *j*th column of V

B If u_j is the *j*th column of U then $A^T u_j$ is the *j*th column of V

C If u_j is the *j*th row of U then $A^T u_j$ is the *j*th column of V

D If u_j is the *j*th column of U then $\frac{A^T u_j}{\|u_j\|}$ is the *j*th column of V E If u_j is the *j*th column of U then $\frac{A^T u_j}{\|A^T u_j\|}$ is the *j*th column of V **Problem 25.** Let

4 _	2	1	-3	23	1	0	-12	8	π	$\sqrt{1}$	
A =	4	-12	8	0	93	0	55	99	1	-1	·

Then, in practice, to find the SVD of A one necessarily needs to (maybe among other things)

- A find 2 eigenvalues of AA^T
- B find 2 eigenvectors of AA^T
- C find 10 eigenvalues of $A^T A$
- D find 10 eigenvectors of $A^T A$
- E it would be **much** more tedious to perform the SVD for A^T