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ABSTRACT 3

Abstract

Cohomological invariants of the Bia lynicki-Birula decomposition are the main sub-
ject of this dissertation. In particular we study and compare two characteristic
classes: the motivic Chern class of a Bia lynicki-Birula cell and Okounkov’s stable
envelope. Both of these classes live in the torus–equivariant K–theory. The stable
envelope is defined axiomatically, while the motivic Chern class can be constructed
explicitly in terms of a resolution of singularities.

The stable envelope depends on an additional parameter called slope. We define the
twisted motivic Chern class which also depends on this parameter. Our construc-
tion is a combination of the Brasselet–Schürmann–Yokura definition of the motivic
Chern class with the ideas coming from the theory of multiplier ideals. To prove
that this class is independent of the choice of a resolution of singularities we use the
weak factorization theorem.

We prove that if the Bia lynicki-Birula decomposition is regular enough, then the
motivic Chern class coincides (up to normalization) with the stable envelope for
a special value of a slope. Moreover, we prove that the twisted motivic Chern
class coincides with the stable envelope for all slopes. Finally, we show that the
decomposition of a homogenous variety into the Schubert cells is regular enough.
This allows to define the stable envelope for homogenous varieties in terms of a
resolution of singularities. Our methods are based on the localization theorems and
the Lefschetz–Riemann–Roch theorem.

Keywords: Motivic Chern class, Stable envelope, Bia lynicki-Birula decomposition,
Torus action, Equivariant K-theory, Localization theorem, Schubert varieties.

AMS MSC 2010 classification: 14C17, 14M15, 19L47, 14N15.
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Streszczenie

Tematem niniejszej rozprawy doktorskiej s ↪a kohomologiczne niezmienniki rozk ladu
Bia lynickiego–Biruli. W szczególności badamy dwie klasy charakterystyczne: mo-
tywiczn ↪a klas ↪e Cherna komórki Bia lynickiego–Biruli i stabiln ↪a otoczk ↪e Okounkov’a.
Obie te klasy s ↪a elementami ekwiwariantnej K–teorii. Stabilna otoczka jest zdefin-
iowana aksjomatycznie, podczas gdy motywiczna klasa Cherna może być zadana w
sposób jawny za pomoc ↪a rozwi ↪azania osobliwości.

Stabilna otoczka zależy od dodatkowego parametru nazywanego ”slope”. W pracy
definiujemy skr ↪econ ↪a motywiczn ↪a klas ↪e Cherna która również zależy od tego parametru.
Jej konstrukcja jest po l ↪aczeniem definicji motywicznej klasy Cherna (Brasselet-
Schürmann-Yokura) i idei inspirowanych teori ↪a idea lów mnożników. Aby dowieść, że
skr ↪econa klasa nie zależy od rozwi ↪azania osobliwości używamy s labego twierdzenia
o faktoryzacji.

W rozprawie dowodzimy, że gdy rozk lad Bia lynickiego–Biruli jest dostatecznie regu-
larny to motywiczna klasa Cherna jest równa stabilnej otoczce dla specjalnej wartości
parametru ”slope”. Ponadto wykazujemy, że skr ↪econa motywiczna klasa Cherna
pokrywa si ↪e ze stabiln ↪a otoczk ↪a dla dowolnej wartości parametru ”slope”. Na koniec
dowodzimy, że rozk lad rozmaitości jednorodnych na komórki Schuberta jest dostate-
cznie regularny. Umożliwia to zdefiniowanie stabilnej otoczki dla rozmaitości jed-
norodnych za pomoc ↪a rozwi ↪azania osobliwości. Nasze rozumowania s ↪a oparte o
twierdzenia o lokalizacji i twierdzenie Lefschetza–Riemanna–Rocha.

S lowa kluczowe: Motywiczna klasa Cherna, Stabilna otoczka, Rozk lad Bia lynickiego-
Biruli, Dzia lanie torusa, Ekwiwariantna K-teoria, Twierdzenie o lokalizacji, Roz-
maitości Schuberta.
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Introduction

Algebraic torus action on a complex algebraic variety induces many interesting struc-
tures. One of the most important is the Bia lynicki-Birula decomposition. It is a
decomposition of a variety into attracting sets, called Bia lynicki-Birula cells. The
closures of cells may be singular and their properties, in particular their cohomolog-
ical invariants, were studied by many authors. However not much is known beyond
the classical examples, such as Schubert varieties in homogeneous spaces. In this
thesis we aim to present and compare two characteristic classes deforming the fun-
damental class of the closure of the Bia lynicki-Birula cell. One of these classes is
Okounkov’s stable envelope and the other is the motivic Chern class. We will con-
sider the case when the torus acts on a smooth, projective variety with finitely many
fixed points.

Bia lynicki-Birula decomposition (BB-decomposition for short) was introduced in a
series of papers [BB73, BB74, BB76] and further studied by many authors (see
e.g. [CS79, CG83, JS19] and [Car02] for a survey). Suppose that a one dimensional
algebraic torus C∗ acts on a variety M . The BB-decomposition assigns to every com-
ponent of the fixed point set MC∗

a locally closed subvariety called BB-cell. When
the variety M is projective, the BB-cells form a decomposition of M . Moreover,
if M is smooth and the fixed point set MC∗

is finite then the BB-cells are isomor-
phic to affine spaces. For M equal to a projective homogenous variety the BB-cells
are orbits of a certain Borel subgroup. These varieties are also called Schubert cells.
Their cohomological invariants are objects of great interest in enumerative geometry.

Suppose that an algebraic torus A acts on a smooth variety M . We will consider
characteristic classes in the equivariant K-theory KA(M). The localization theorem
(see e.g. [Seg68, Tho92]) is the main advantage of working in the torus equivariant
setting. It states that there is a certain multiplicative system S such that the
restriction map induces an isomorphism

S−1KA(M) ≃ S−1KA(MA) .

In many cases (e.g. when the fixed point set MA is finite) the ring on the left is
much simpler than the equivariant K-theory of M .

The motivic Chern class is a product of the program of generalizing characteristic
classes of the tangent bundle to the singular case in a functorial way. This program
was initiated by a question of Deligne [Sul71, Historical Note]. The first answer
was given by MacPherson in [Mac74] where the Chern-Schwartz-MacPherson class
cSM was defined. In the subsequent years many other characteristic classes were

9



10 INTRODUCTION

constructed. The motivic Chern class mCy defined in [BSY10] generalizes several of
these classes, such as Chern-Schwartz-MacPherson cSM class [Mac74, Alu04, Alu06],
Baum-Fulton-MacPherson Todd class [BFM75], Hirzebruch-Todd class [BSY10], or
L-class [BSY10] (see [SY07] for a nice survey). It may be thought of as a relative
version of the Hirzebruch-Todd genus [Hir56, BSY10]. Some of the mentioned char-
acteristic classes have equivariant counterparts, see e.g. [Ohm06, Web16, AMSS19,
FRW21]. We will consider the torus equivariant version of the motivic Chern class
mCA

y defined in [AMSS19, FRW21]. It assigns to every equivariant map of varieties
a polynomial over the K-theory of the target. The common feature of many of
mentioned characteristic classes are additivity properties with respect to the decom-
position of a variety as a union of closed and open subvarieties. Additivity property
of the motivic Chern class states that:

mCA
y (Y

f−→ M) = mCA
y (Y

f|Z−→ M) + mCA
y (Y \ Z

f|Y \Z−→ M) ∈ KA(M)[y] ,

for every closed subvariety Z ⊂ Y .

Assume that Y is a possibly singular A-variety and ∆ is a Q-Cartier divisor on Y
such that the support of ∆ contains the singularities of X. In a joint work [KW22]
we defined the twisted motivic Chern classes mCA

y (Y, ∂Y ; ∆) in the equivariant K-
theory of Y . Their construction is a combination of the Brasselet-Schürmann-Yokura
definition [BSY10] with the ideas coming from the theory of multiplier ideals, see
[Laz04, §9]. The twisted motivic Chern class can also be interpreted as a limit of
the elliptic class constructed by Borisov and Libgober for Kawamata log-terminal
pairs [BL03, BL05]. The definition of our classes is explicit in terms of a resolution
of singularities. We apply the weak factorisation theorem [AKMW02, W lo09] to
show that the resulting class is well defined.

Stable envelopes are characteristic classes defined initially for symplectic resolu-
tions (see [Bea00, Kal09]). They are important objects which derive from geomet-
ric representation theory and connect it with enumerative geometry (see surveys
[Oko18a, Oko18b]). In [MO19] they were used to determine quantum multiplica-
tion on Nakajima quiver varieties. They have rich connections to various areas of
mathematics such as: symplectic duality [RSVZ19a, RSVZ19b, RW20a], derived
categories [SZZ21], quantum integrable system [RTV15, RTV19], and combinatoric
of puzzles [KZJ21].

Stable envelopes were defined in three types: cohomological [MO19], K-theoretic
[OS16, Oko17] and elliptic [AO21]. Their definition is still evolving, see [Oko21]
for a recent progress. In this dissertation we focus on the K-theoretic stable en-
velopes. They depend on an additional parameter, a fractional line bundle called
slope. Their definition is axiomatic and only particular examples were studied in
detail (e.g. [Smi20, SZ20]). We will consider the case when the symplectic manifold
is the cotangent bundle of a smooth variety on which the torus acts with finitely
many fixed points. In this context stable envelope assigns to every fixed point a
class in the equivariant K-theory which deforms the fundamental class of Bia lynicki-
Birula cell. We construct the stable envelope (for an arbitrary slope) via resolution
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of singularities of the closure of BB-cell.

One of the important notions in the theory of K-theoretic stable envelopes is the
wall R-matrix defined in [OS16]. It measures the dependence of the stable envelope
on the slope. It turns out that this dependence is locally constant. There exists a
division of the linear space of fractional line bundle into open regions (called alcoves)
such that the stable envelope depends only on an alcove containing slope. For any
choice of a slope the stable envelopes form a basis of a certain free module (i.e. the
localized K-theory). The wall R-matrix between two slopes is a base change matrix
between bases corresponding to these slopes. In [SZZ21] this matrix was computed
for a generalized flag variety.

The idea of connecting characteristic classes with stable envelopes originates from
parallelly written papers [RV18], [FR18] and [AMSS17]. There, the Chern-Schwartz-
MacPherson classes in the equivariant cohomology were compared with cohomolog-
ical stable envelopes. We focus on the comparison in the K-theory. Let us state our
main results. Let M be a smooth projective A-variety. Suppose that the fixed point
set MA is finite. Choose a general enough one parameter subgroup σ : C∗ → A. Let

M =
⊔

e∈MA

M+
e

be the corresponding Bia lynicki-Birula decomposition. The twisted motivic Chern
classes applied to the closures of cells, with a suitably chosen divisors ∆e,s, satisfy
all but one of the axioms of Okounkov’s stable envelopes without any additional
assumptions.

Theorem (see Theorem 4.2). The (rescaled) twisted classes

i∗ mCA
y (M+

e , ∂M
+
e ; ∆e,s) ∈ KA(M)[y] ⊂ KA×C∗

(T ∗M)

satisfy the normalization axiom and the Newton inclusion property of stable en-
velopes (for a slope s).

The remaining axiom is of a different nature. Its validity depends on the regularity
of BB-decomposition. We present a sufficient condition for this axiom to hold. Our
condition is satisfied by homogenous varieties for a reductive linear group.

Theorem (see Corollary 5.16). Suppose that M is a homogenous variety. Then the
(rescaled) twisted classes

i∗ mCA
y (M+

e , ∂M
+
e ; ∆e,s)

are equal to the stable envelopes for T ∗M for a slope s.

For a small anti-ample slope we obtain comparison with the motivic Chern class.

Theorem (see Theorem 2.2). The (rescaled) motivic Chern classes

mCA
y (M+

e ⊂ M) ∈ KA(M)[y] ⊂ KA×C∗
(T ∗M)

satisfy the normalization axiom and the Newton inclusion property of stable en-
velopes (for a small anti-ample slope s).
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Theorem (see Corollary 5.16). Suppose that M is a homogenous variety. Then the
(rescaled) motivic Chern classes

mCA
y (M+

e ⊂ M)

are equal to the stable envelopes for T ∗M for a small anti-ample slope s.

The above theorems are generalisations of the previous results of [AMSS19, FRW21].
The approach of [AMSS19] is based on the study of the Hecke algebra action
on the equivariant K-theory of flag varieties, whereas our strategy is similar to
[FRW21, Web17]. We study the limits of Laurent polynomials (of one or many
variables) to directly check the stable envelopes axioms.

There is one more family of characteristic classes, called weight functions, closely
connected to the stable envelopes for homogenous varieties in type A (see e.g.
[RTV15, RTV19]). One should also mention recent works in the elliptic theory
[RW20b, KRW20]. We will not extend exposition of these developments here.

The comparison of the stable envelopes with the motivic Chern classes has several
advantages. Motivic Chern classes have rich functorial properties. In [AMSS19]
such comparison was used to prove conjectures of Bump, Nakasuji and Naruse
[BN11, BN19, NN16] concerning the geometry of homogenous varieties over p-adic
fields.

Our work allows to give an explicit definition of the stable envelope in terms of
a resolution of singularities of the closure of BB-cell. In general such resolution
is hard to find, yet in a special case of a generalized flag variety we may use the
Bott-Samelson resolution (see e.g. [BK05, Chapter 2.2] or [Dem74]). The inductive
construction of Bott-Samelson varieties allows to obtain recursive formulas which
compute characteristic class of a cell from the classes of smaller cells. Formulas of
this form were studied in e.g. [Knu03, AM16, AMSS19, MNS20, RW20b]. In our
next work [Kon] we prove such a formula for the twisted motivic Chern class and
use it to calculate the wall R-matrix for a generalized flag variety. This approach
allows to reinterpret results of [SZZ21] in a geometric setting and simplify them.

Contents

This PhD dissertation consists of six chapters and an appendix. Chapter 1 collects
necessary results and definitions used in the further parts of thesis. Chapters 2–5
form the main part of the dissertation. Chapters 2, 5 and appendix A are based on
the author work [Kon22]. Chapters 3 and 4 are based on a joint work with Andrzej
Weber [KW22].

In chapter 1 we recall definitions and properties of the equivariant K-theory, BB-
decomposition, the motivic Chern class and the stable envelope. We also present
certain limit procedures useful in the next chapters.
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In chapter 3 we define the twisted motivic Chern class and prove its basic proper-
ties. The main part of this chapter contains the proof of independence of the twisted
classes from the choice of a resolution of singularities.

In chapter 2 we prove that the motivic Chern class satisfies all but one axioms of the
stable envelope for the trivial slope. In chapter 4 we prove that the twisted motivic
Chern class satisfies all but one axioms of the stable envelope for a slope s.

In chapter 5 we focus on the remaining axiom. It is of a different nature. Its validity
depends on the regularity of the BB-decomposition and it does not hold automati-
cally. To even begin we have to assume that the BB-decomposition is a stratification
satisfying the Whitney condition A. We prove that the stratification of a homoge-
neous space by the Schubert cells is regular enough.

Chapter 6 contains an example. We calculate the twisted motivic Chern classes
for the Lagrangian Grassmanian LG(2, 4) and explicitly check that they satisfy the
axioms of stable envelopes.

Appendix A contains a comparison of our definition of the stable envelope with the
standard one. We also present a rigorous proof of uniqueness of the stable envelopes
adapted to the case of isolated fixed points.

Notations and assumptions

All considered varieties are complex and quasiprojective, i.e. a variety is a reduced,
finite type, quasiprojective scheme over C (not necessarily irreducible). We use the
following notational conventions:

• Y, Z, W are varieties.
• M, N are smooth varieties.
• A ≃ (C∗)rkA is an algebraic torus.
• A-variety is a variety equipped with an action of the torus A.
• T = A× C∗ is a product of tori.
• h ∈ Hom(T,C∗) is a character of T given by the projection on the factor C∗.
• X = T ∗M is the cotangent variety. If A acts on M we consider the induced

action of T on X (see example 1.61).
• σ : C∗ → A is a one parameter subgroup.
• e, e′ (and variations) are torus fixed points.
• For a point e ∈ M we denote by TeM the tangent space to M at e, i.e.
TeM = TM|e .

• The symbol ⊂ denotes not necessarily strict inclusion.
• G is a reductive linear complex Lie group. B is a Borel subgroup of G and
P is a parabolic subgroup of G. G/B denotes the generalized flag variety
of G, G/P denotes a homogenous variety of G. See e.g. [Bor91] for an
introduction to algebraic groups.

• Let R be a ring and G a group. Then R[G] denotes the group algebra.





CHAPTER 1

Tools

1.1. Equivariant K-theory

In this section we will recall the basic properties of the equivariant K-theory. Our
main reference is [CG10, Chapter 5]. Let A ≃ (C∗)r be an algebraic torus. Let Y
be a quasiprojective A-variety. Categories V ectA(Y ) of A-vector bundles on Y and
CohA(Y ) of A-coherent sheaves have distinguished class of short exact sequences.

Definition 1.1. Let Y be a quasiprojective A-variety. The equivariant K-theory
of vector bundles KA(Y ) is defined by

KA(Y ) = Q{isomorphism classes of A-vector bundles}/ ∼
where ∼ is an equivalence relation induced by [E1] = [E0] + [E2], whenever there
exists a short exact sequence

0 → E0 → E1 → E2 → 0 .

There is a ring structure on the group KA(Y ) induced by the tensor product

[E1] · [E2] = [E1 ⊗ E2].

Definition 1.2. Let Y be a quasiprojective A-variety. The equivariant K-theory of
coherent sheaves GA(Y ) is the Grothendieck group of the abelian category CohA(Y ).
Explicitly

GA(Y ) = Q{isomorphism classes of A-coherent sheaves}/ ∼
where ∼ is an equivalence relation induced by [F1] = [F0] + [F2], whenever there
exists a short exact sequence

0 → F0 → F1 → F2 → 0 .

There is a KA(Y )-module structure on the group GA(Y ) induced by the tensor
product

[E] · [F ] = [E ⊗F ].

Example 1.3 ([CG10, Paragraph 5.2.1]). For Y = pt we have

KA(pt) ≃ GA(pt) ≃ Q[Hom(A,C∗)] ≃ Q[t±1 , ..., t
±
r ] ,

where Q[Hom(A,C∗)] is a group algebra.

For a character α ∈ Hom(A,C∗) we denote by tα ∈ KA(pt) the class of corresponding
one dimensional representation of A.

Let Y be an A-variety and L → Y an A-equivariant line bundle. Suppose that
e ∈ Y A is a fixed point. Then the fiber Le is a representation of A. By

we(L) ∈ Hom(A,C∗)

15



16 1. TOOLS

we denote the weight of this representation. The weight is a locally constant function
on Y A, that is if e and e′ are two fixed points belonging to the same component
of Y A, then we(L) = we′(L). Therefore, it makes sense to define wF (L) for a
component F ⊂ Y A.

Let D be an A-equivariant Cartier divisor on Y . It induces an element in the
equivariant Chow group AA

dimY−1(Y ). By [EG98b, Theorem 1] the first Chern class
induces an isomorphism PicA(Y ) ≃ AA

dimY−1(Y ). Thus, the line bundle OY (D) is
equipped with the natural choice of a linearization. For a smooth fixed point e ∈ DA

the weight we(OY (D)) is the normal weight to D at e. For a fixed point e ∈ Y A

which does not belong to the support of D, we have we(OY (D)) = 0.

Let us recall basic functorial properties of the K-theory.

Proposition 1.4. • Let C be a category of quasiprojective A-varieties with
A-equivariant maps. The K-theory of vector bundles induces a contravariant
functor

KA(−) : C → Rings.

For a morphism f : Z → Y and E ∈ KA(Y ), the pullback map is given by
the standard pullback

f ∗[E] = [f ∗E] ∈ KA(Z).

• Let C be a category of quasiprojective A-varieties with A-equivariant proper
maps. The K-theory of coherent sheaves induces a covariant functor

GA(−) : C → Groups.

For a proper morphism f : Z → Y and E ∈ GA(Z), the pushforward map
is given by

f∗[E] =
∑
i=0

(−1)i[Rif∗E] ∈ GA(Y ).

• Let i : U ↪→ Y be an open embedding of an invariant subvariety. We have
a restriction map

i∗ : GA(Y ) → GA(U) .

• Let f : Z → Y be a flat morphism. There is a pullback map

f ∗ : GA(Y ) → GA(Z) .

Corollary 1.5. For any A-variety Y the morphism Y → pt induces KA(pt)-
algebra structure on KA(Y ).

Theorem 1.6 ([CG10, Proposition 5.1.28]). Let M be a smooth A-variety. There
is a canonical isomorphism

KA(M) ≃ GA(M) .

Corollary 1.7. Let M be a smooth A-varieties and Y a quasiprojective A-variety.
Let f : Y → M be a proper equivariant map. We consider the pushforward

f∗ : KA(Y ) → KA(M)

given by

KA(Y ) −→ GA(Y )
f∗−→ GA(M) ≃ KA(M) .
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Proposition 1.8 (Projection formula [CG10, Paragraph 5.3.12]). Let Z and Y be
A-varieties and f : Z → Y a proper A-equivariant map. The map

f∗ : GA(Z) → GA(Y )

is a morphism of KA(Y ) modules, i.e. for a ∈ GA(Z) and b ∈ KA(Y ) we have

f∗(a) · b = f∗(a · f ∗(b)) .

Let N ↪→ M be a closed embedding of a smooth A-invariant locally closed subvariety.
Its normal bundle is

ν(N ⊂ M) := coker(TN → TM|N) ∈ V ectA(N) .

Proposition 1.9 ([CG10, Proposition 5.3.15], [Tho93]). Consider a pullback square
of A-varieties:

T ×Y Z

π̃
��

p̃ // Z

π
��

T p
// Y

Suppose that one of the following conditions hold.

(1) The map p is proper, and π is flat.
(2) All varieties are smooth. The maps p and p̃ are closed embeddings. The

map π induces an isomorphism of normal bundles

π̃∗ν(T ⊂ Y ) ≃ ν(T ×Y Z ⊂ Z) .

Then, we have an equality

π∗p∗ = p̃∗π̃
∗ : GA(T ) → GA(Z) .

In the next chapters we will need following technical facts:

Proposition 1.10 ([Har77, Exercise 8.4 (a)]). Let M be a smooth A-variety and
E ∈ V ectA(M) an A-vector bundle. Consider the associated projective bundle

g : P(E) → M .

Then
g∗[OP(E)/M(s)] = 0 ∈ KA(M)

for s ∈ {−1,−2, ...,−(rkE − 1)}.
Remark 1.11. The above proposition holds in the derived category. We have

Rig∗OP(E)/M(s) = 0

for s ∈ {−1,−2, ...,−(rkE − 1)} and arbitrary i.

Proposition 1.12 ([CG10, Formula 5.2.4]). Let F be a quasiprojective variety
equipped with the trivial action of the torus A. Then, we have a canonical iso-
morphism

KA(F ) = K(F ) ⊗Q Q[Hom(A,C∗)] ,

where K(F ) is the nonequivariant K-theory of F . Moreover, for a quasiprojective va-
riety F equipped with the trivial action of the torus T = A× C∗ we have a canonical
isomorphism

KT(F ) = KC∗
(F ) ⊗Q Q[Hom(A,C∗)] .
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Consider a variety F equipped with the trivial C∗-action. Every equivariant vector
bundle E ∈ V ectC

∗
(F ) decomposes as a sum of C∗-eigenspaces

E =
⊕
n∈Z

En .

The sum E+ = ⊕n>0En is called the positive (or attracting) part of E while the the
sum E− = ⊕n<0En is called the negative (or repelling) part.

Proposition 1.13. Let σ : C∗ → A be a one parameter subgroup. Suppose that F
is an A-variety, such that the induced C∗-action is trivial. Then taking the positive
part of a vector bundle induces a map

KA(F ) → KA(F ) .

An analogous result holds for the negative part.

Proof. All A-equivariant maps between A-vector bundles over F preserve eigenspace
decomposition. Therefore, any short exact sequence of such bundles decomposes as
a sum of short exact sequences of eigenspaces. □

Proposition 1.14 ([CG10, Proposition 5.2.14]). Let Y be an A-variety and Z a
closed invariant subvariety. Denote by i the inclusion i : Z ↪→ Y . Then, there is a
short exact sequence

GA(Z)
i∗−→ GA(Y ) −→ GA(Y \ Z) −→ 0 .

The following notion of support of a K-theory element is necessary to define the
stable envelopes.

Definition 1.15. Let M be a smooth A-variety. Consider an element a ∈ KA(M)
and a closed invariant subvariety i : Z ↪→ M . We say that supp(a) ⊂ Z if and only
if a lies in the image of the pushforward map

GA(Z)
i∗−→ GA(M) ≃ KA(M).

Proposition 1.14 implies that supp(a) ⊂ Z is equivalent to a|M\Z = 0.

Remark 1.16. Note that for an element a ∈ KA(M) the support of a is not a well
defined subset of M . We define only the notion supp(a) ⊂ Z for a closed subvariety
Z ⊂ M .

1.1.1. Characteristic classes. Let Y be a quasiprojective A-variety. We use the
lambda operations λy : KA(Y ) → KA(Y )[y] defined by:

λy([E]) :=
rkE∑
i=0

[ΛiE]yi ∈ KA(Y )[y] .

For an element α ∈ KA(Y ) we define operation λα : KA(Y ) → KA(Y ) as a compo-
sition of λy with a map of KA(Y ) which sends y to α, i.e.

λα([E]) :=
rkE∑
i=0

[ΛiE]αi ∈ KA(Y ) .



1.1. EQUIVARIANT K-THEORY 19

The operation λ−1 : KA(Y ) → KA(Y ) applied to the dual bundle is the K-theoretic
Euler class. Namely

eu(E) = λ−1(E
∗) .

For an A-vector bundle E ∈ V ectA(Y ) we define

det(E) = ΛrkEE ∈ V ectA(Y ) .

Proposition 1.17. Let Y be an A-variety and E ∈ V ectA(Y ) an equivariant vector
bundle. Then

λ−1(E
∗) = (−1)rkE · det(E∗) · λ−1(E) .

Let N ↪→ M be a closed embedding of a smooth A-invariant locally closed subvariety.
We denote by eu(N ⊂ M) the Euler class of the normal bundle i.e.

eu(N ⊂ M) := λ−1(ν
∗(N ⊂ M)) ∈ KA(N) .

For a fixed point e ∈ NA we write νe(N ⊂ M) for the restriction ν(N ⊂ M)|e .

Proposition 1.18 ([CG10, Proposition 5.4.10]). Let M be a smooth A-variety and
i : N ↪→ M an immersion of a smooth A-invariant closed subvariety. For an element
a ∈ KA(N) we have

i∗i∗(a) = a · eu(N ⊂ M).

The above proposition implies that i∗i∗1 = eu(N ⊂ M). It is sometimes possible
to give an explicit formula for the pushforward i∗1 in the K-theory of an ambient
space.

Proposition 1.19. Let M be a smooth A-variety and
⋃m

i=1 Di a SNC divisor (see
[Kol07, Definition 3.24]). Consider the subvariety DI =

⋂m
i=1Di. Let i : DI → M

be an inclusion, then

i∗1 = i∗[ODI
] =

m∏
i=1

(1 −OM(−Di)) ∈ KA(M) .

We will prove this result by induction on m. For m = 1 the proposition simplifies
to the following lemma.

Lemma 1.20. Let M be a smooth A-variety and D a codimension one smooth sub-
variety. Let i : D → M denote an inclusion. For any element α ∈ KA(M) we
have

α · (1 −OM(−D)) = α · i∗(OD) ∈ KA(M) .

Proof. It follows from a short exact sequence

0 → OM(−D) → OM → i∗(OD) → 0 .

□

Proof of proposition 1.19. For m = 1 the proposition follows from lemma 1.20.
Suppose that the proposition holds for some m. We will prove it for m + 1. The
inclusion i decomposes:

i :
m+1⋂
i=1

Di
j−→ Dm+1

ι−→ M .
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The Divisor
⋃m

i=1Di∩Dm+1 ⊂ Dm+1 is SNC, thus the inductive assumption implies
that

j∗(1) =
m∏
i=1

(
1 −ODm+1(−Di ∩Dm+1)

)
∈ KA(Dm+1) .

Lemma 1.20 for α =
∏m

i=1 (1 −OM(−Di)) implies that

i∗1 = ι∗j∗1 = ι∗

m∏
i=1

(
1 −ODm+1(−Di ∩Dm+1)

)
= ι∗ι

∗
m∏
i=1

(1 −OM(−Di)) =

=
m∏
i=1

(1 −OM(−Di)) · ι∗(1) =
m+1∏
i=1

(1 −OM(−Di)) .

□

1.1.2. Localization. Localization theorems are the main advantage of working
with the torus equivariant cohomology. Roughly speaking, they allow to consider
only the restriction of classes to the fixed point set without a loss of essential infor-
mation.

Definition 1.21. Let SA ⊂ KA(pt) be a multiplicative system of all nonzero ele-
ments. The localized K-theory of an A-variety Y denotes the ring S−1

A KA(Y ).

Theorem 1.22 (Localization theorem [Tho92, Theorem 2.1]). Let Y be a quasipro-
jective A-variety. The restriction map

S−1
A KA(Y ) → S−1

A KA(Y A)

is an isomorphism.

Proposition 1.23 ([CG10, Corrollary 5.11.3]). Let Y be a smooth quasiprojective
A-variety. Let F be a component of the fixed point set Y A. The class eu(F ⊂ Y ) is
invertible in the localised K-theory S−1

A KA(F ).

Theorem 1.24 (Lefschetz-Riemann-Roch theorem [CG10, Theorem 5.11.7], [Tho92,
Theorem 3.5] ). Let M and N be smooth quasiprojective A-varieties and f : N → M
a proper equivariant map. Let F be a component of the fixed point set MA. Consider
an element a ∈ KA(N). Then

(f∗a)|F
eu(F ⊂ M)

=
∑

G⊂f−1(F )∩NA

(f|G)∗
a|G

eu(G ⊂ N)
∈ S−1

A KA(M) ,

where the sum is indexed by the set of components of the fixed point set NA whose
image lies in F .

Remark 1.25. Analogous theorems hold in other torus equivariant cohomology
theories. See [EG98a] for Chow groups, [Seg68] for the topological K-theory, [AF21]
for the singular cohomology and [tD71] for a generalized equivariant cohomology
theory.
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1.2. Newton polytopes and the limit map

In this section we recall the definition of a Newton polytope and define the limit
map in the K-theory. The notion of a Newton polytope is essential to define the
K-theoretical stable envelopes. The limit map is a useful tool allowing to compare
various Newton polytopes.

1.2.1. Newton polytopes.

Definition 1.26. Let R be a commutative ring with unit and Λ a lattice of a finite
rank. Consider a group algebra R[Λ] and a polynomial f ∈ R[Λ]. The Newton
polytope N (f) ⊂ Λ ⊗Z R is a convex hull of the lattice points corresponding to the
nonzero coefficients of the polynomial f .

Example 1.27. Let R = Z and Λ = Z⊕Z. The ring R[Λ] is the Laurent polynomial
ring in two variables x and y. Let

f = y−2 − xy2 + 5x3 − 2x ,

then

N (f) = conv((0,−2); (1, 2); (3, 0); (1, 0)).

This is a triangle with vertices (0,−2), (1, 2) and (3, 0) .

We recall elementary properties of Newton polytopes:

Proposition 1.28. Let R be a commutative ring with unit. For any Laurent poly-
nomials f, g ∈ R[Λ] we have

(a) N(f · g) ⊂ N(f) + N(g).
(b) N(f · g) = N(f) + N(g) when the ring R is a domain.
(c) N(f · g) = N(f) + N(g) when the coefficients of the polynomial f corre-

sponding to the vertices of the polytope N(f) are not zero divisors.
(d) N(f + g) ⊂ conv(N(f), N(g)).
(e) Let θ : R → R′ be a homomorphism of rings and θ′ : R[Λ] → R′[Λ] its

extension. Then N(θ′(f)) ⊂ N(f).

To define the stable envelopes we need the notion of a Newton polytope of a K-
theory class. We can also define a Newton polytope of a polynomial over K-theory
ring. For convenience, we denote both these polytopes by NA.

Definition 1.29. Let F be a smooth variety equipped with the trivial action of a
torus T = A× C∗.

• To define the Newton polytope

NA(a) ⊂ Hom(A,C∗) ⊗Z R
of an element a ∈ KT(F ), we take the lattice Λ = Hom(A,C∗) and the ring
R = KC∗

(F ) and use the canonical isomorphism (proposition 1.12)

KT(F ) ≃ KC∗
(F )[Hom(A,C∗)] .

• To define the Newton polytope

NA(a) ⊂ Hom(A,C∗) ⊗Z R
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of a polynomial a ∈ KA(F )[y], we take the lattice Λ = Hom(A,C∗) and the
ring R = K(F )[y] and use the canonical isomorphism (proposition 1.12)

KA(F )[y] ≃ K(F )[y][Hom(A,C∗)] .

Remark 1.30. The above notion of Newton polytope generalizes the notion of de-
gree in cohomology (see [OS16, Paragraph 2.1.6]).

Remark 1.31. In definition 1.29 we define a Newton polytope according to the
smaller torus A not the whole torus T.

Example 1.32. Suppose that α ∈ Hom(A,C∗) is a single character and a ∈ KT(F ).
Then by proposition 1.28 (c) the Newton polytope NA(α ·a) is equal to the polytope
NA(a) translated by α. Let h ∈ Hom(T,C∗) be a character of T = A× C∗ given by
a projection on the second factor then

NA(h · a) = NA(a) .

The following proposition justifies use of the same notation for Newton polytopes of
a class and of a polynomial.

Proposition 1.33. Let F be a smooth variety equipped with the trivial action of a
torus T = A× C∗. Consider the map

ρ : KA(F )[y] → KT(F )

given by ρ(y) = −h. Let

a = a0 + a1y + ... + amy
m ∈ KA(F )[y]

be a polynomial. Then

NA(a) = conv

(
m⋃
i=0

NA(am)

)
= NA(ρ(a)) .

1.2.2. Limit map. The idea to study behaviour of various limits of a Laurent
polynomial to obtain informations about its Newton polytope is present in the lit-
erature e.g. [Oko17, SZZ20, FRW21]. We start with a definition of the limit map
for a C∗-action.

Definition 1.34. Let F be a smooth variety equipped with the trivial action of
the one dimensional torus C∗. We have the canonical isomorphism (see proposition
1.12)

KC∗
(F ) ≃ K(F ) ⊗Q Q[Hom(C∗,C∗)] ≃ K(F )[t, t−1] ,

where t denotes the character of the standard C∗-representation. The limit map
limt→0 is defined on a subring K(F )[t] by killing all positive powers of t

lim
t→0

: KC∗
(F ) 99K K(F ) .

Analogously, we may define the limit map for a one parameter subgroup.

Definition 1.35. Let F be a smooth variety equipped with the trivial action of a
torus A. Let σ : C∗ → A be a one parameter subgroup. We define the limit map
limσ as a composition

lim
σ

: KA(F )
σ∗
// KC∗

(F )
limt→0 // K(F ) ,
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where the first map σ∗ is the restriction to the one dimensional torus. This map is
defined on the preimage of K(F )[t] ⊂ KC∗

(F ) under the map σ∗.

The above definition may be extended to the ring of polynomials over K-theory, the
localised K-theory and polynomials over the localised K-theory. For convenience,
we denote all these maps by limσ.

Definition 1.36. Let F be a smooth variety equipped with the trivial action of a
torus A. Let σ : C∗ → A be a one parameter subgroup.

• The limit map limσ extends to a subring of a localised K-theory S−1
A KA(F )

lim
σ

: S−1
A KA(F ) 99K K(F ) .

This map is defined on a subring of elements f ∈ S−1
A KA(F ) such that f

can be expressed as a quotient a
b

with

a ∈(σ∗)−1 (K(F )[t]) , b ∈(σ∗)−1 (K(pt)[t]) , b /∈(σ∗)−1 (tK(pt)[t]) .

The limit map is defined by applying limσ to the numerator and denomi-
nator separately.

• The limit maps

S−1
A KA(F )[y] 99K K(F )[y], KA(F )[y] 99K K(F )[y] ,

are defined as extensions of the limit maps S−1
A KA(F ) 99K K(F ) and

KA(F ) 99K K(F ).

Proposition 1.37. The limit map

lim
σ

: S−1
A KA(F ) 99K K(F ) .

is well defined.

Proof. Consider f ∈ S−1
A KA(F ) such that f = a1

b1
= a2

b2
, where a1, a2, b1, b2

satisfy conditions from the definition of limit map. We need to prove that

limσ a1
limσ b1

=
limσ a2
limσ b2

.

Let

σ∗(a1) =
N∑
k=0

ak,1t
k; σ∗(a2) =

N∑
k=0

ak,2t
k; σ∗(b1) =

N∑
k=0

bk,1t
k; σ∗(b2) =

N∑
k=0

bk,2t
k .

Assumptions from the definition of limit map imply that b0,1 ̸= 0 and b0,2 ̸= 0. The
limit map is defined by limσ ai = a0,i and limσ bi = b0,i for i ∈ {1, 2}. We know that

N∑
k=0

ak,1t
k ·

N∑
k=0

bk,2t
k =

N∑
k=0

ak,2t
k ·

N∑
k=0

bk,1t
k .

Comparison of the coefficient of t0 proves that a0,1b0,2 = a0,2b0,1 . □

Remark 1.38. The denominators limσ b1, limσ b2 are elements of K(pt) = Q. There-
fore, they are invertible in K(F ).
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Remark 1.39. In [Kon21] for a subtorus C∗ ⊂ A we defined a more general limit
map

lim: S−1
A KA(F ) 99K S(A/C∗)K

(A/C∗)(F ) .

We used it to prove the equality of the motivic Chern class with the stable envelope
for a small antiample slope. We will not use this map here. Instead we apply
methods of [KW22].

The limit map allows to compare Newton polytopes.

Proposition 1.40 ([FRW21, Proposition 3.6]). Let F be a smooth variety equipped
with the trivial action of a torus T = A× C∗. Let a and b be two classes in
the equivariant K-theory KT(F ). Suppose that b is invertible in the localized K-
theory S−1

T KT(Y ). The following conditions are equivalent

(1) There is an inclusion of Newton polytopes

NA(a) ⊂ NA(b) .

(2) For a general enough one parameter subgroup σ : C∗ → A the limit

lim
σ

a

b
exists.

The proposition for F = pt is proven in [FRW21, Proposition 3.6]. The gen-
eralization given here is straightforward. Analogous result holds for polynomi-
als a, b ∈ KA(F )[y] .

Let us note several useful properties of the limit map.

Proposition 1.41. Let F be a smooth variety equipped with the trivial action of a
torus A. Let a ∈ S−1

A KA(F )[y] and let L ∈ PicA(F ) be an equivariant line bundle.
For any one parameter subgroup σ : C∗ → A the limit limσ(L · a) exists if and only
if the limit limσ(twF (L) · a) exists.

Proposition 1.42. Let F be a smooth variety equipped with the trivial action of a
torus A. Let x, y ∈ S−1

A KA(F )[y]. The limit map is additive and multiplicative. If
the limits limσ x and limσ y exist then the limits limσ x + y and limσ x · y also exist.
Moreover

lim
σ

x + y = lim
σ

x + lim
σ

y , lim
σ

x · y = lim
σ

x · lim
σ

y .

Proposition 1.43. Let F and G be smooth varieties equipped with the trivial ac-
tion of a torus A. Let f : F → G be a map. Consider x ∈ S−1

A KA(F )[y] and
y ∈ S−1

A KA(G)[y].

• The limit map commutes with the pullback f ∗, i.e. if the limit limσ y ∈ K(G)[y]
exists than the limit limσ f

∗y ∈ K(F )[y] also exists. Moreover

lim
σ

f ∗y = f ∗ lim
σ

y ∈ K(F )[y] .

• Suppose that f is proper. The limit map commutes with the pushforwards f∗,
i.e. if the limit limσ x ∈ K(F )[y] exists than the limit limσ f∗x ∈ K(G)[y]
also exists. Moreover

lim
σ

f∗x = f∗ lim
σ

x ∈ K(G)[y] .
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The analogous results hold for the limit maps on S−1
A KA(F ) and S−1

A KA(F )[y].

1.2.3. Rational exponents. In chapter 4, we will need to consider polynomials
with rational coefficients. In this subsection, we extend methods of the previous
subsection to this setting.

Definition 1.44. Let R be a commutative ring with unit and Λ a lattice of finite
rank. Consider a polynomial f ∈ R[Λ⊗ZQ]. The Newton polytope N (f) ⊂ Λ⊗ZR is
a convex hull of points corresponding to the nonzero coefficients of the polynomial f .

Example 1.45. Let R = Z and Λ = Z. For a rational number q ∈ Q denote by xq

the corresponding element in Z[Q]. Let

f = x + x1/2 − x4/3 .

The polytope N (f) is an interval [1/2; 4/3].

Definition 1.46. We define the extended K-theory ring of point as

K̃A(pt) = Q[Hom(A,C∗) ⊗Z Q] .

Let F be a variety equipped with the trivial action of a torus A. We define the
extended K-theory ring of the variety F as

K̃A(F ) = K(F ) ⊗Q K̃A(pt) = K(F )[Hom(A,C∗) ⊗Z Q] .

Remark 1.47. Suppose that Ã → A is a covering of tori. Then we have an inclusion

KÃ(F ) ⊂ K̃A(F ) .

Moreover, for any a ∈ K̃A(F ) there exists a torus covering Ã → A such that

a ∈ KÃ(F ).

Definition 1.48. Let f : F → G be a map between varieties equipped with the
trivial action of a torus A. We define a homomorphism

f ∗ ⊗ idK̃A(pt) : K̃A(G) → K̃A(F ) .

Analogously if f is proper and varieties F and G are smooth we define

f∗ ⊗ idK̃A(pt) : K̃A(F ) → K̃A(G) .

Slightly abusing notation we will denote these maps by f ∗ and f∗, respectively.

Definition 1.49. Let F be a smooth variety equipped with the trivial action of a
torus T = A× C∗. To define the Newton polytope NA(a) ⊂ Hom(A,C∗) ⊗Z R of

an element a ∈ K̃T(F ) we take the lattice Λ = Hom(A,C∗), the ring R = K̃C∗
(F )

and use canonical isomorphisms

K̃T(F ) =K(F ) ⊗Q K̃T(pt)

=K(F ) ⊗Q

(
K̃A(pt) ⊗Q K̃C∗

(pt)
)

=
(
K(F ) ⊗Q K̃C∗

(pt)
)

[Hom(A,C∗) ⊗Q] .

Analogously, we define a Newton polytope of a polynomial a ∈ K̃A(F )[y].
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Remark 1.50. In chapter 4 we will consider only elements of the form α · a ∈ K̃T(F ),

where a ∈ KT(F ) and α ∈ K̃T(pt) is a single rational character. The Newton poly-
topes of such class is translation of a lattice polytope (due to proposition 1.28 (c)).

Definition 1.51. Let F be a smooth variety equipped with the trivial A-action.
For A = C∗ we define the limit map

K̃C∗
(F ) 99K K(F )

on a subring

K(F )[Q≥0] ⊂ K(F )[Q] = K̃C∗
(F ) ,

by killing all positive powers of t. Moreover, for an arbitrary torus A and a one
parameter subgroup σ : C∗ → A we define the limit map

lim
σ

: K̃A(F )
σ∗
// K̃C∗

(F )
limt→0 // K(F ) ,

as in definition 1.35.

Exact analogues of propositions 1.43 and 1.42 hold in the rational exponents setting.
Moreover, the analogue of proposition 1.40 also holds.

Proposition 1.52 (see [FRW21, Proposition 3.6]). Let F be a smooth variety
equipped with the trivial action of a torus T = A× C∗. Let a and b be two classes

in the equivariant K-theory K̃T(F ). Suppose that b is invertible in the localized

K-theory S−1
T K̃T(F ). The following conditions are equivalent

(1) There is an inclusion of Newton polytopes

NA(a) ⊂ NA(b) .

(2) For a general enough one parameter subgroup σ : C∗ → A the limit

lim
σ

a

b
∈ K(F )

exists.

Proof. We may find a coverings Ã → A and C∗ → C∗ such that a, b ∈ KÃ×C∗
(F )

and b is invertible in S−1

Ã×C∗K
Ã×C∗

(F ). Then, the proposition follows from 1.40 after

identification

Hom(Ã,C∗) ⊗Z Q ≃ Hom(A,C∗) ⊗Z Q .

□

The following proposition reduces computations of limit of a polynomial with ratio-
nal coefficients to the standard case.

Proposition 1.53. Consider a variety F with the trivial action of a torus A and
an element of the localised K-theory α ∈ S−1

A KA(F )[y]. Let w ∈ Hom(A,C∗) ⊗Z Q
be a fractional weight. Let w0, ..., wm ∈ Hom(A,C∗) be characters such that

w ∈ conv(w0, ..., wm) ⊂ Hom(A,C∗) ⊗Z R .

Suppose that for a chosen one parameter subgroup σ all of the limits limσ t
wiα exist.

Then the limit limσ t
wα exists as well.
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Proposition 1.54. Consider a variety F with the trivial action of a torus A and
an element of the localised K-theory α ∈ S−1

A KA(F )[y]. Let w ∈ Hom(A,C∗) ⊗Z Q
be a fractional weight. Let w0, ..., wm ∈ Hom(A,C∗) be characters such that

w ∈ conv(w0, ..., wm) ⊂ Hom(A,C∗) ⊗Z R
and w can be expressed as a convex combination of w0, ..., wm with a nonzero coef-
ficient at w0. Suppose that for a chosen one parameter subgroup σ all of the limits
limσ t

wiα exist and we have
lim
σ

tw0α = 0 .

Then the limit limσ t
wα exists and is equal to zero.

1.3. BB-decomposition

The BB-decomposition was introduced in [BB73, BB74, BB76] and further studied
in e.g [CS79, CG83, JS19] (see [Car02] for a survey). We recall its definition and
fundamental properties.

Definition 1.55. Let M be a smooth C∗-variety. Let F be a component of the
fixed point set MC∗

. The positive BB-cell of F is the subset

M+
F = {x ∈ M | lim

t→0
t · x ∈ F} .

Analogously, the negative BB-cell of F is the subset

M−
F = {x ∈ M | lim

t→∞
t · x ∈ F} .

It follows from [BB73] that

Theorem 1.56. Let M be a smooth C∗-variety. Let F be a component of the fixed
point set MC∗

.

(1) The BB-cells are locally closed, smooth, algebraic subvarieties of M . More-
over, we have an equality of C∗-vector bundles

T (M+
F )|F = (TM|F )+ ⊕ TF .

(2) There exists an algebraic morphism

lim
t→0

: M+
F → F .

(3) Suppose that the variety M is projective. Then, there is a set decomposition
(called BB-decomposition)

M =
⊔

F⊂MC∗

M+
F .

(4) The morphism limt→0 is an affine bundle.
(5) The BB-decomposition induces a partial order on the set of components of

the fixed point set MC∗
, defined by the transitive closure of relation

F2 ∩M+
F1

̸= ∅ ⇒ F1 ≥ F2 .

Proposition 1.57. Let M be a smooth A-variety. Consider a one parameter sub-
group σ : C∗ → A. Then the BB–cells defined by the C∗-action are A-equivariant
subvarieties.
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Definition 1.58 ([MO19, Paragraph 3.2.1]). Suppose that M is a smooth A-variety.
Consider the vector space of cocharacters

t := Hom(C∗, A) ⊗Z R .

For a fixed point set component F ⊂ MA, denote by νF
1 , ..., ν

F
codimF the torus weights

appearing in the normal bundle ν(F ⊂ X). A weight chamber is a connected
component of the set

t \
⋃

F⊂MA,i≤codimF

{νF
i = 0}.

Proposition 1.59. Let M be a smooth projective A-variety. Consider a one pa-
rameter subgroup σ : C∗ → A such that σ ∈ C for some weight chamber C. Then the
fixed point sets MA and Mσ are equal.

Proposition 1.60. Let M be a smooth A-variety. Choose a weight chamber C.
Consider one parameter subgroups σ1, σ2 such that σ1, σ2 ∈ C. Then σ1 and σ2

induce the same decomposition of the normal bundle to the fixed point set into the
positive and the negative part. Moreover, the BB-decompositions with respect to
these subgroups are equal.

Proof. The only nontrivial part is the equality of the BB-decompositions. It
is a consequence of [Hu95, Theorem 3.5]. Alternatively, thanks to the Sumihiro
theorem [Sum74, Theorem 1] it is enough to prove the proposition for M equal to
the projective space. In this case, the proof is straightforward. □

1.4. Stable envelopes

Let A be an algebraic torus and T = A× C∗. Suppose that X is a symplectic alge-
braic T-variety. Suppose that the symplectic form ω is preserved by the torus A and
is an eigenvector of the factor C∗. In [MO19, OS16, Oko17, AO21] Okounkov and
his coauthors defined the stable envelope in the case when the variety X is a sym-
plectic resolution e.g. a Nakajima quiver variety (see [Bea00, Kal09] for symplectic
resolutions and [Nak94, Nak98, Gin12] for an introduction to Nakajima quiver vari-
eties). It was noted in [Oko21, Kon22] that one may define the stable envelope in a
more general setting. In this section we present the definition of the stable envelope
for a cotangent variety with isolated fixed point set. See appendix A for a detailed
comparison with the standard definition.

According to [OS16, Oko17] the K-theoretical stable envelopes depend on three
parameters: polarization T 1/2 ∈ KT(X), one parameter subgroup σ : C∗ → A and
slope s ∈ Pic(X) ⊗Z Q. When X is a cotangent variety T ∗M we have a canonical
choice of polarization given by TM . In this section we present the definition of
the stable envelope only for this polarization (see appendix A for a definition in a
general setting). Restriction to a single polarization does not reduce the generality of
considerations. The stable envelope for one polarization (and all slopes) determines
the stable envelope for any other polarization [Oko17, Paragraph 9.1.12].

In the rest of this section we assume that X = T ∗M is a cotangent variety with a
torus action described in the following example
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Example 1.61. Consider a smooth projective A-variety M . Suppose that the fixed
point set MA is finite. The cotangent variety X = T ∗M is equipped with the action
of the torus T = A× C∗, such that the action of A is induced from M and the factor
C∗ acts on the fibers by scalar multiplication. The fixed point set of this action is
finite. Moreover, we have equalities

XT = XA = MA.

The variety X is equipped with the canonical symplectic nondegenerate form ω. This
symplectic structure is compatible with the above action i.e. the form ω is preserved
by the torus A and it is an eigenvector of the torus T with character corresponding
to the projection on the second factor. Denote this character by h ∈ Hom(T,C∗).
For a fixed point e ∈ MA we have an equality of T-representations

TeX = TeM ⊕ (Ch ⊗ T ∗
eM) .(1)

Definition 1.62. Let M be a smooth projective A-variety. Suppose that the fixed
point set MA is finite. We say that a one parameter subgroup σ : C∗ → A is good if
and only if MA = Mσ.

Remark 1.63. According to the above definition a one parameter subgroup σ is
good if and only if it belongs to some weight chamber (see proposition 1.59).

Definition 1.64. Let M be a smooth projective A-variety. Suppose that the fixed
point set MA is finite. Let σ : C∗ → A be a good one parameter subgroup. We
say that the pair (M,σ) is admisible if and only if the sum of conormal bundles to
BB-cells is a closed subset of the cotangent variety T ∗M.

Remark 1.65. Let X = T ∗M be a cotangent variety, described in example 1.61.
Let σ : C∗ → A be a good one parameter subgroup. The BB–cells of σ in X are the
conormal bundles to the BB–cells of σ in M i.e. for e ∈ MA

X+
e = ν∗(M+

e ⊂ M) .(2)

Therefore, the pair (M,σ) is admisible if and only if the sum of BB-cells in X is
closed.

Remark 1.66. To see formula (2) note that X+
e ⊂ T ∗M|M+

e
. The variety T ∗M|M+

e

is an affine space with a linear A-action, therefore X+
e is a linear subspace corre-

sponding to the positive weights.

Remark 1.67. The pair (M,σ) is admisible if and only if the BB-decomposition
of M is a stratification ([GM88, Definition on p. 36]) which satisfies Whitney A
condition [Whi65].

Definition 1.68. Let X = T ∗M be a cotangent variety, described in example 1.61.
Let σ : C∗ → A be a one parameter subgroup such that the pair (M,σ) is admisible.
Consider a fractional line bundle s ∈ Pic(M) ⊗Z Q called a slope. The K-theoretic
stable envelope is a set of elements Stabs(e) ∈ KT(X) indexed by the fixed point
set MA, such that

1. Support axiom: For any fixed point e ∈ MA (cf. definition 1.15)

supp(Stabs(e)) ⊂
⊔
e′≤e

X+
e′ .
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2. Normalization axiom: For any fixed point e ∈ MA

Stabs(e)|e = eu(T−
e X)

(−1)rkT
+
e M

detT+
e M

.

3. Newton inclusion property: Choose any A-linearisation of the slope s. For a pair
of fixed points e′, e ∈ MA such that e′ ≤ e we have a containment of the
Newton polytopes

NA
(
Stabs(e)|e′

)
+ we(s) ⊂ NA(eu(T−

e′X)) − we′(detT+
e′M) + we′(s) .

4. Distinguished point: Choose any A-linearisation of the slope s. For a pair of
fixed points e′, e ∈ MA such that e′ < e the point

we′(s) − we(s) − we′(detT+
e′M) ∈ Hom(A,C∗) ⊗Z R

does not belong to the Newton polytope NA
(
Stabs(e)|e′

)
.

Remark 1.69. The order < on the fixed point set MA is the BB-order according to
the one parameter subgroup σ (see theorem 1.56 (5)).

Remark 1.70. The Newton inclusion property may be stated in the equivalent form:

NA
(
Stabs(e)|e′

)
+ we(s) − we′(s) ⊂ NA(Stabs(e′)|e′) .

Remark 1.71. To state the support axiom of the stable envelope one needs to
assume that the subset

⊔
e′≤e X

+
e′ ⊂ X is closed. Due to filtrability [BB76, The-

orem 3] of the BB-decomposition of M , one needs only to assume that the set⊔
e∈MA X+

e ⊂ X is closed i.e. that the pair (M,σ) is admisible.

Remark 1.72. The above definition may be generalized to a class of varieties broader
than cotangent bundles (see definition 7.6). When X is a symplectic resolution
such that the fixed point set XA is finite and the slope s is general enough the
above definition is equivalent to Okounkov’s definition (after some normalization
see proposition 7.10). Okounkov’s class is defined only for a general enough slope.
In this case the fourth axiom is redundant. In general, the fourth axiom is necessary
to obtain uniqueness of the stable envelope (see example 7.11). The above axioms
define a K-theory class for an arbitrary slope, which coincides with the class from
[Oko17, OS16] for a general enough slope.

Proposition 1.73. There exists at most one class satisfying the axioms of the stable
envelope.

See appendix A for the proof of a more general result (proposition 7.12). The
question whether there is a class that satisfies the axioms is difficult. It was proved
in [AO21] that if X is a Nakajima quiver variety, then the answer is positive.

1.5. Motivic Chern class

The motivic Chern class was defined in [BSY10] (see also [SY07] for a survey). Its
equivariant version is due to [AMSS19, FRW21].

Definition 1.74 (after [AMSS19, Section 4], see also [Loo02, Bit04, Bit05]). Let Y
be a quasiprojective A-variety. The group KA(V ar/Y ) is the free abelian group gen-
erated by symbols [f : Z → Y ] for isomorphism classes of A-equivariant morphisms
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f : Z → Y , where Z is a quasi-projective A-variety, modulo the usual additivity
relations

[f : Z → Y ] = [f : U → Y ] + [f : Z \ U → Y ]

for U ⊂ Z an open invariant subvariety. For every equivariant morphism g : Y → Y ′

of quasi-projective A-varieties there is a functorial push-forward

KA(V ar/Y ) → KA(V ar/Y ′)

given by composition.

Definition 1.75 ([AMSS19, Theorem 4.2]). Let C be the category of quasiprojec-
tive A-varieties with proper equivariant maps. There is a unique natural transfor-
mation mCA

y of functors from C to abelian groups

mCA
y : KA(V ar/−) −→ GA(−)[y]

such that for a smooth A-variety M we have

mCA
y (idM) = λy(T

∗M) .

This transformation is called the A-equivariant motivic Chern class.

The above definition can be restated in an equivalent way.

Definition 1.76 (after [FRW21, Section 2.3]). The motivic Chern class assigns to
every A-equivariant map of quasiprojective A-varieties f : Z → Y an element

mCA
y (f) = mCA

y (Z
f−→ Y ) ∈ GA(Y )[y]

such that the following properties are satisfied

1. Additivity: Let Z be an A-variety and U ⊂ Z an invariant open subvariety. Then

mCA
y (Z

f−→ Y ) = mCA
y (U

f|U−→ Y ) + mCA
y (Z \ U

f|Z\U−→ Y ) .

2. Functoriality: For an equivariant proper map g : Y → Y ′ we have

mCA
y (Z

g◦f−→ Y ′) = g∗ mCA
y (Z

f−→ Y ) ∈ GA(Y ′)[y] .

3. Normalization: For a smooth A-variety M we have

mCA
y (idM) = λy(T

∗M) =
rkT ∗M∑
i=0

[ΛiT ∗M ]yi ∈ GA(M)[y] .

The equivariant motivic Chern class is the unique assignment satisfying the above
properties. For a smooth A-variety M we may consider the class mCA

y (Z → M) as

an element of KA(M)[y] due to Poincaré duality (see theorem 1.6).

The above definition is meaningful also in the non-equivariant setting, i.e. for A
equal to the trivial group (see [BSY10]).

Example 1.77 ([Web16, Theorem 7.2]). Let X be a quasiprojective A-variety. We
have an equality

mCA
y (X → pt) = χy(X) ,

where the class χy is the Hirzebruch genus (cf. [Hir56, BSY10]).

Let us state some important facts concerning the motivic Chern class



32 1. TOOLS

Theorem 1.78 (Verdier-Riemann-Roch formula [AMSS19, Theorem 4.2 (4)]). Let
M and N be smooth quasi-projective A-varieties. Let π : N → M be a smooth,
A-equivariant map. For any A-equivariant map f : Z → M the following holds:

λy(T
∗
π ) · π∗ mCA

y (Z
f−→ M) = mCA

y (Z ×M N
π∗f−→ N) ∈ KA(N)[y] .

Where Tπ denotes the relative tangent bundle to π.

Corollary 1.79. Let M be a smooth A-variety and U ⊂ M an invariant open
subset. For any A-equivariant map f : Z → M we have

mCA
y (Z

f−→ M)|U = mCA
y (f−1(U) → U) ∈ KA(U)[y] .

Proposition 1.80. [AMSS19, Theorem 4.2 (3)] LetM and N be smooth A-varieties.
Consider A-equivariant maps f : X → M and g : Y → N . Then

mCA
y (X

f−→ M) ⊠ mCA
y (Y

g−→ N) = mCA
y (X × Y

f×g−→ M ×N) .

Theorem 1.81 ([FRW21, Theorem 4.2], see also [Web17, Theorem 10] and [Kon21,
Theorem 4.4]). Let M be a smooth quasiprojective A-variety and F ⊂ MA a com-
ponent of the fixed point set. Let Z be a quasiprojective A-variety and f : Z → M
an equivariant map. Then for almost all one parameter subgroups σ : C∗ → A (i.e.
the set of exceptions is contained in a finite union of hyperplanes) we have

lim
σ

mCA
y (Z

f−→ M)|F

eu(F ⊂ M)

 = mCy(f
−1(M+

F )
f−→ F ) ∈ KA(F )[y] .

Where limσ is the map defined in section 1.2.2.

The above theorem and proposition 1.43 are our main tools for comparing Newton
polytopes. Combining these results we obtain the following corollary.

Corollary 1.82. Consider the situation as in the above theorem. Suppose that
F = e is an isolated fixed point. Then

NA(mCA
y (Y

f−→ M)|e) ⊂ NA(eu(e ⊂ M)) = NA(eu(TeM)) .

Proposition 1.83. Let M be a smooth A-variety and D =
⋃n

i=1 Di an invariant
SNC divisor. Consider a subset I ⊂ {1, 2, ..., n}. Let

M o = M \
n⋃

i=1

Di DI =
⋂
i∈I

Di Do
I = DI \

⋃
i/∈I

Di .

Then

mCA
y (M o ⊂ M)|DI

= (1 + y)|I| · mCA
y (Do

I ⊂ DI) ·
∏
i∈I

OM(−Di)|DI
.

For the proof we need several lemmas.

Lemma 1.84. Let M be a smooth A-variety and D a smooth invariant subvariety of
codimension one. Then

mCA
y (M → M)|D = mCA

y (idD) · (1 + yOM(−D)|D) ,

mCA
y (D ⊂ M)|D = mCA

y (idD) · (1 −OM(−D)|D) ,

mCA
y (M \D ⊂ M)|D = mCA

y (idD) · (1 + y) · OM(−D)|D .
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Proof. The first equality follows from a short exact sequence

0 −→ OM(−D)|D −→ T ∗M|D −→ T ∗D −→ 0 .

The second from proposition 1.18. The third is a difference between the first and
the second. □

Lemma 1.85. Let M be a smooth A-variety and D =
⋃n

i=1Di an invariant SNC
divisor. Consider a subset I ⊂ {1, 2, ..., n}. Then

mCA
y (DI ⊂ M)|D1 =

{
mCA

y (DI ⊂ D1) · (1 −OM(−D1)|D1) if 1 ∈ I ,

mCA
y (DI∪1 ⊂ D1) · (1 + yOM(−D1)|D1) if 1 /∈ I .

Proof. In the case 1 ∈ I, the lemma follows from proposition 1.18. Suppose
that 1 /∈ I. Then, we have a pullback square

DI∪1

j′

��

i′ // D1

j
��

DI
i // M

which satisfies the assumptions of proposition 1.9 (2). Therefore

mCA
y (DI ⊂ M)|D1 = j∗i∗ mCA

y (idDI
) = i′∗j

′∗ mCA
y (idDI

)

= i′∗

(
mCA

y (idDI∪1
) · (1 + yOM(−D1)|DI∪{1})

)
= mCA

y (DI∪1 ⊂ D1) · (1 + yOM(−D1)|D1) ,

where the third equality follows from lemma 1.84 for M = DI and D = DI∪1 and
the fourth from the projection formula. □

Lemma 1.86. Let M be a smooth A-variety and D =
⋃n

i=1 Di an invariant SNC
divisor. Then

mCA
y (M o ⊂ M)|D1 = (1 + y) · mCA

y (Do
1 ⊂ D1) · OM(−D1)|D1 .

Proof. The inclusion–exclusion formula implies that

mCA
y (M o ⊂ M)|D1 =

∑
I⊂{1,...,n}

(−1)|I|mC(DI ⊂ M)|D1

=
∑
1∈I

(−1)|I| mCA
y (DI ⊂ M)|D1 +

∑
1/∈I

(−1)|I| mCA
y (DI ⊂ M)|D1

=
∑

I⊂{2,...,n}

(−1)|I| mCA
y (DI ⊂ M)|D1 · (1 + y) · OM(−D1)|D1

= mCA
y (Do

1 ⊂ D1) · (1 + y) · OM(−D1)|D1 .

Where the third equality is a consequence of lemma 1.85. □

Proof of proposition 1.83. We proceed by induction on |I|. For |I| = 0 the
proposition is trivial. It is enough to prove that if it holds for some subset I then
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it holds also for I ∪ x for a given x /∈ I. Without loss of generality we assume that
x = 1 (and 1 /∈ I). By the inductive assumption we have

mCA
y (M o ⊂ M)|DI

= (1 + y)|I| · mCA
y (Do

I ⊂ DI) ·
∏
i∈I

OM(−Di)|DI
.

Lemma 1.86 for a variety DI and divisor
⋃

i/∈I Di ∩DI implies that

mCA
y (Do

I ⊂ DI)|DI∪1
= (1 + y) · mCA

y (Do
I∪1 ⊂ DI∪1) · OM(−D1)|DI∪1

.

The two above equations imply that the proposition holds for I ∪ 1. □

Corollary 1.87. For a smooth invariant subvariety F ⊂ DI we have

mCA
y (M o ⊂ M)|F

∏
j∈I

OY (Dj)|F = (1 + y)|I| mCA
y (Do

I ⊂ DI)|F .

At the end of this section, we present some examples of computations.

Example 1.88 ([FRW21, Subsection 2.7]). Consider the affine line C with the stan-
dard C∗-action. Let t ∈ KC∗

(pt) be a class corresponding to this representation.
Inclusion i : {0} ↪→ C induces an isomorphism

i∗ : KC∗
(C) → KC∗

(pt).

By the normalization property

i∗ mCA
y (C ⊂ C) = 1 + y/t .

Moreover, using functoriality and proposition 1.18 we get

i∗ mCA
y ({0} ⊂ C) = i∗i∗(1) = 1 − 1/t .

The additivity property implies that

i∗ mCA
y (C− {0} ⊂ C) = (1 + y/t) − (1 − 1/t) = (1 + y)/t .

More generally, consider a torus A and the affine line C equipped with a linear A-
action. Let α ∈ KA(pt) be a class corresponding to this representation. Inclusion
i : {0} ↪→ C induces an isomorphism i∗ : KA(C) → KA(pt) . Then,

i∗ mCA
y ({0} ⊂ C) = 1 − 1/α, i∗ mCA

y (C ⊂ C) = 1 + y/α,

i∗ mCA
y (C− {0} ⊂ C) = (1 + y/α) − (1 − 1/α) = (1 + y)/α.

Example 1.89. Let M be a quasiprojective smooth A-variety. Let i : N ↪→ M be
an inclusion of an invariant closed smooth subvariety. Then

mCA
y (N ⊂ M)|N =i∗i∗λy(T

∗N) = λy(T
∗N) · λ−1(ν

∗(N ⊂ M)) .(3)

Moreover

mCA
y (N ⊂ M) =i∗ mCA

y (idN) = i∗λy(T
∗N)

=i∗[ON ] + yi∗[T
∗N ] + y2i∗[Λ

2T ∗N ] + ... + ydimN i∗[detT ∗N ] .

Thus, the motivic Chern class mCA
y (N ⊂ M) may be considered as a y-deformation

of the element i∗[ON ], which is the fundamental class of N in M . This point of view
is pursued in [Rim21].
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Example 1.90. Let M be a quasiprojective smooth A-variety. Let i : Y ↪→ M be
an inclusion of an invariant locally closed smooth subvariety. Let Y be the closure
of Y and e ∈ Y an isolated fixed point. Suppose that there is a map f : Z → Y
such that:

• Z is a smooth A-variety.
• The map f is surjective, proper and A-equivariant.
• The subvariety ∂Z = f−1(Y \ Y ) is a simple normal crossing divisor.
• The restriction f|f−1(Y ) : f−1(Y ) → Y is an isomorphism.

Z

f
��

Y //

??

Y
i // M

Later, we will call such a map a SNC resolution of singularities (see definition 3.1).
Let ∂Z =

⋃m
i=1 Di. For a subset I ⊂ {1, ...,m} let DI =

⋂
i∈I Di. It follows that

mCA
y (Y −→ M) =i∗ mCA

y (Y −→ Y )

=f∗i∗ mCA
y (Y −→ Z)

=(i ◦ f)∗ mCA
y

(
Z \

⋃
Di ⊂ Z

)
=(i ◦ f)∗

∑
I⊂{1,...,m}

(−1)|I| mCA
y (DI ⊂ Z) .

Suppose that the preimage f−1(e) is a finite set. The Lefschetz-Riemann-Roch
formula (theorem 1.24) implies that

mCA
y (Y −→ M)|e =

∑
e′∈f−1(e)

λ−1(T
∗
eM)

λ−1(T ∗
e′Z)

∑
I⊂{1,...,m}

(−1)|I| mCA
y (DI ⊂ Z)|e′

 .(4)

Consider a point e′ ∈ f−1(e). Let Ie′ = {i ∈ {1, ...,m}|e′ ∈ Di}. Let

di = O(Di)|e′ ∈ KA(e′)

be a weight of normal space to Di at e′. Divisors {Di}i∈Ie′ are SNC, thus their normal
spaces at e sum up to a linear space of dimension |Ie′|. Denote by α1, ..., αdimZ−|Ie′ |

the remaining weights in the tangent space Te′Z. The class mCA
y (DI ↪→ Z)|e′ may

be nonzero only when I ⊂ Ie′ . For such I we have

mCA
y (DI ⊂ Z)|e′ =λ−1(ν

∗
e′(DI ⊂ Z)) · λy(T

∗
e′DI)

=λy(T
∗
e′DIe′

) · λ−1(ν
∗
e′(DI ⊂ Z)) · λy(ν

∗
e′(DIe′

⊂ DI))

=

dimZ−|Ie′ |∏
i=1

(
1 +

y

αi

)
·
∏
i∈I

(
1 +

y

di

)
·
∏

i∈Ie′\I

(
1 − 1

di

)
.
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Therefore, the formula (4) simplifies∑
I⊂{1,...,m}

(−1)|I| mCA
y (DI ⊂ Z)|e′ =

∑
I⊂Ie′

(−1)|I| mCA
y (DI ⊂ Z)|e′

=

dimZ−|Ie′ |∏
i=1

(
1 +

y

αi

)
·
∏
i∈Ie′

(
1 + y

di

)
If the fixed point e lies in Y than we have |f−1(e)| = 1 and Ie = ∅. Therefore, we
recover the formula from example 1.89.

Remark 1.91. Consider a locally closed smooth subvariety Y ⊂ M and SNC res-
olution Z → Y as in the above example. Suppose that the fixed point set ZA is
finite. The above example implies that we may compute the motivic Chern class
mCA

y (Y ⊂ M) using only the calculus of rational functions.



CHAPTER 2

Motivic Chern class as stable envelope

2.1. Statement of result

Let A be an algebraic torus. Let M be a smooth, projective A-variety. Suppose that
the fixed point set MA is finite. Consider the induced action of the product torus
T = A× C∗ on the cotangent variety X = T ∗M such as in example 1.61. Denote
by π the projection

π : T ∗M → M.

Let σ : C∗ → A be a good one parameter subgroup (cf. definition 1.62).

In this chapter we consider the stable envelope for the cotangent variety X, the
trivial slope θ and the one parameter subgroup σ (see definition 1.68). Our aim is to
prove that after a suitable normalization the motivic Chern class of BB-cell satisfies
all but one of the axioms of the stable envelope.

Definition 2.1. Suppose that Y is a T-variety, such that the factor C∗ acts trivially.
Let ρ be the map

ρ : KA(Y )[y] → KT(Y )

given by ρ(y) = −h.

Theorem 2.2. Let e ∈ MA be a fixed point. The class

h− dim(M+
e )π∗ρ(mCA

y (M+
e → M)) ∈ KT(X)

satisfies the normalization axiom and the Newton inclusion property of the stable
envelope Stabθ(e). Moreover, it satisfies the distinguished point axiom.

The rest of this chapter is devoted to the proof of the above theorem. This theorem
is a direct consequence of propositions 2.5, 2.6 and 2.9.

Remark 2.3. The map ρ commutes with pullbacks. Thus, for an arbitrary fixed
point e′ ∈ MA there is an equality

π∗ρ(mCA
y (M+

e → M))|e′ = ρ(mCA
y (M+

e → M)|e′) ∈ KT(e′)

Remark 2.4. In this chapter we do not assume any regularity conditions on the
BB-decomposition of M . In particular we do not assume that the pair (M,σ) is
admisible (definition 1.64). As noted in remark 1.71 the support axiom cannot be
stated on this level of generality.

2.2. Normalization axiom

Proposition 2.5. Consider a fixed point e ∈ MA. The class

h− dim(M+
e )π∗ρ(mCA

y (M+
e → M)) ∈ KT(X)

37
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satisfies the normalization axiom of the stable envelope Stabθ(e). Namely

h− dim(M+
e )π∗ρ(mCA

y (M+
e → M))|e = (−1)dim(M+

e ) eu(T−
e X)

det(T+
e M)

Proof. Let i denote inclusion of the closure of the BB-cell

i : M+
e → M.

The center of the cell e ∈ M+
e is a smooth point. Thus, the motivic Chern class

localized at e is equal to (cf. formula (3))

mCA
y (M+

e → M)|e =
(
i∗i∗ mCA

y

(
M+

e → M+
e

))
|e

= eu(T−
e M) · mCA

y

(
idM+

e

)
|e

= λ−1((T
−
e M)∗) · λy((T

+
e M)∗) ∈ KA(M)[y] .

Equality (1) of T-representation implies that:

T−
e X = T−

e M ⊕ (Ch ⊗ (T+
e M)∗) .

It follows that

eu(T−
e X) = λ−1((T

−
e M)∗) · λ−1(C1/h ⊗ T+

e M) ∈ KT(e) .

We apply proposition 1.17 for E = C1/h ⊗ T+
e M and obtain

eu(T−
e X) =λ−1(C1/h ⊗ T+

e M) · λ−1((T
−
e M)∗)

=(−1)dim(M+
e ) · det(C1/h ⊗ T+

e M) · λ−1(Ch ⊗ (T+
e M)∗) · λ−1((T

−
e M)∗)

=(−h)dim(M+
e ) · det(T+

e M) · λ−h((T
+
e M)∗) · λ−1((T

−
e M)∗) .

Setting ρ(y) = −h we deduce

(−1)dim(M+
e ) eu(T−

e X)

det(T+
e M)

=h− dim(M+
e ) · λ−1((T

−
e M)∗) · λ−h((T

+
e M)∗)

=h− dim(M+
e )ρ
(
λ−1((T

−
e M)∗) · λy((T

+
e M)∗)

)
=h− dim(M+

e )ρ
(
mCA

y (M+
e → M)

)
|e

=h− dim(M+
e )π∗ρ

(
mCA

y (M+
e → M)

)
|e .

□

2.3. Newton inclusion property

Proposition 2.6. Consider a fixed point e ∈ MA. The class

h− dim(M+
e )π∗ρ(mCA

y (M+
e → M)) ∈ KT(X)

satisfies the Newton polytope property of the stable envelope Stabθ(e), i.e. for any
fixed point e′ < e we have

NA
(
h− dim(M+

e )π∗ρ(mCA
y (M+

e → M))|e′
)
⊂ NA

(
eu(T−

e′X)
)
− we′(detT+

e′M)

Before presenting the proof of the above proposition we prove two technical lemmas.
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Lemma 2.7. There is an equality

NA
(
h− dim(M+

e )π∗ρ(mCA
y (M+

e → M))|e′
)

= NA
(
mCA

y (M+
e → M)|e′

)
Proof. It follows from remark 2.3 and example 1.32 that

NA
(
h− dim(M+

e )π∗ρ(mCA
y (M+

e → M))|e′
)

= NA
(
ρ
(
mCA

y (M+
e → M)|e′

))
.

Moreover, the factor C∗ of T = A×C∗ acts trivially on M , thus (cf. proposition 1.33)

NA
(
ρ
(
mCA

y (M+
e → M)|e′

))
= NA

(
mCA

y (M+
e → M)|e′

)
.

□

Lemma 2.8. For any fixed point e ∈ MA we have

NA(eu(TeM)) ⊂ NA
(
eu(T−

e X)
)
− we(detT+

e M) .

Proof. There is an equality

NA (eu (TeM)) = NA
(
λ−1

((
T−
e M

)∗) · λ−1

((
T+
e M

)∗))
.

We use proposition 1.28 (e) for a homomorphism KC∗
(e) → KC∗

(e) which sends h
to zero and obtain

NA
(
λ−1

((
T−
e M

)∗) · λ−1

((
T+
e M

)∗)) ⊂ NA
(
h− dim(M+

e )λ−1

((
T−
e M

)∗) · λ−h

((
T+
e M

)∗))
.

The proof of proposition 2.5 implies that

(−h)dim(M+
e ) · λ−1((T

−
e M)∗) · λ−h

((
T+
e M

)∗)
=

eu(T−
e X)

det(T+
e M)

.

To conclude, we have

NA (eu (TeM)) ⊂ NA

(
eu(T−

e X)

det(T+
e M)

)
= NA

(
eu(T−

e X)
)
− we(detT+

e M) ,

which proves the lemma. □

Proof of proposition 1.28. Due to lemmas 2.7 and 2.8 it is enough to prove
that

NA
(
mCA

y (M+
e → M)|e′

)
⊂ NA (eu(Te′M)) .(5)

This follows from corollary 1.82. □

2.4. Distinguished point

Proposition 2.9. For a pair of fixed points e′, e ∈ MA such that e > e′, we have

−we′(detT+
e′M) /∈ NA

(
h− dim(M+

e )π∗ρ(mCA
y (M+

e → M))|e′
)
.

Proof. Due to lemma 2.7 it is enough to prove that

−we′(detT+
e′M) /∈ NA

(
mCA

y (M+
e → M)|e′

)
.

For any any one parameter subgroup σ′ : C∗ → A we consider the induced maps

σ′∗ : KA(M) → KC∗
(M) , πσ′ : Hom(A,C∗) ⊗ R → Hom(C∗,C∗) ⊗ R .
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It is enough to show that for some one parameter subgroup σ′ we have

πσ′(−we′(detT+
e′M) /∈ πσ′

(
NA

(
mCA

y (M+
e → M)|e′

))
.

Consider the one parameter group σ which induces the BB-decomposition of M .
Then, the point πσ(−we′(detT+

e′M)) is the lowest term of the line segment

N C∗ (
σ∗eu(T−

e′X)
)
.

Theorem 1.81 implies that

lim
σ

(
mCA

y (M+
e ⊂ M)|e′

eu(T−
e′X)

)
= mCy(M

+
e ∩M+

e′ → e′) = mCy(∅ → e′) = 0 .

Thus, the lowest term of the line segment N C∗ (
σ∗ mCA

y (M+
e → M)|e′

)
is greater

than the lowest term of the line segment N C∗ (
σ∗eu(T−

e′X)
)

i.e.

πσ(−we′(detT+
e′M) /∈ N C∗ (

σ∗ mCA
y (M+

e → M)|e′
)
.

Moreover, we have

N C∗ (
σ∗ mCA

y (M+
e → M)|e′

)
= πσ

(
NA

(
mCA

y (M+
e → M)|e′

))
.

Therefore
πσ(−we′(detT+

e′M) /∈ πσ

(
NA

(
mCA

y (M+
e → M)|e′

))
,

which proves the proposition. □

Remark 2.10. In [Kon22, Section 6] it is proved that the motivic Chern class
satisfies also the axioms of the stable envelope for a small anti-ample slope. Here we
omit this proof. It is a consequence of a more general statement (see corollary 4.3).



CHAPTER 3

Twisted motivic Chern class

3.1. Definition

Let A be an algebraic torus. Let (W,∂W ) be a pair, consisting of an algebraic
quasiprojective A-variety W and an invariant closed subvariety ∂W ⊂ W . We as-
sume that W o = W \∂W is smooth. We call the subvariety ∂W boundary of W . Let
∆ be a Q-Cartier divisor on W with support contained in the boundary |∆| ⊂ ∂W .

Definition 3.1. Let (W,∂W ) be as above. Consider an algebraic map

f : (Y, ∂Y ) → (W,∂W )

such that

• Y is a smooth A-variety
• The map f is surjective, proper and A-equivariant.
• The subvariety ∂Y = f−1(∂W ) is a simple normal crossing divisor.
• Let Y o = Y \ ∂Y . The restriction f|Y o : Y o → W o is an isomorphism.

We call such a map a SNC resolution of singularities.

Theorem 3.2 ([Hir64]). Let (W,∂W ) be as above. There exists a SNC resolution
of singularities f : (Y, ∂Y ) → (W,∂W ).

Definition 3.3 ([Laz04, Definition 9.1.2]). Let ∆ =
∑

qiDi be a Q-divisor on X.
We define the round-up divisor ⌈D⌉ as

⌈D⌉ =
∑

⌈qi⌉Di ,

where the round-up ⌈q⌉ of a rational number q is the smallest integer greater or
equal than q, i.e.

⌈q⌉ = min{n ∈ Z|n ≥ q} .

Definition 3.4. Let (W,∂W ) and ∆ be as above. Let f : (Y, ∂Y ) → (W,∂W ) be
a SNC resolution of singularities. The twisted motivic Chern class mCA

y (W,∂W ; ∆)
is defined by the formula

mCA
y (X, ∂X; ∆) = f∗

(
OY (⌈f ∗(∆)⌉) · mCA

y (Y o ⊂ Y )
)
∈ GA(W )[y] .

The twisted motivic Chern class is an element of the equivariant K-theory of coherent
sheaves tensored with the polynomial ring Q[y]. In the next section we will prove
that it does not depend on the choice of SNC resolution. In our application we will
study the image of mCA

y (W,∂W ; ∆) in the K-theory of a smooth ambient space.
There the K-theory of coherent sheaves is isomorphic to the K-theory of locally free
sheaves.

41
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Example 3.5. Let (W,∂W ) = (P1, {0}) with the standard A = C∗–action. The
tangent character at 0 ∈ (P1)A is equal to t and the character at ∞ is equal to t−1.
Let ∆ = λ{0}, where λ ∈ Q. Since P1 is smooth, we may take P1 = Y and f = id
as a SNC resolution of singularities. Hence,

mCA
y (P1, ∂P1;λ{0}) = OP1(⌈λ⌉{0}) · mCA

y (P1 \ {0} ⊂ P1) .

The weights of the divisor ∆ at the fixed points are

w0(∆) = λ , w∞(∆) = 0 .

The restrictions of the class mCA
y (P1, ∂P1;λ{0}) to the fixed points are

mCA
y (P1, ∂P1;λ{0})|0 = t⌈λ⌉ · (1 + y)t−1 ,

mCA
y (P1, ∂P1;λ{0})|∞ = 1 + yt .

Remark 3.6. Suppose that ∆1 is an integral Cartier divisor. Then for an arbitrary
Q-Cartier divisor ∆2

mCA
y (X, ∂X; ∆1 + ∆2) = OX(∆1) · mCA

y (X, ∂X; ∆2)

by the projection formula (proposition 1.8). This agrees with the behaviour of stable
envelopes [AMSS19, Lemma 8.2c].

Proposition 3.7. Let ∆1 be an arbitrary Q-Cartier divisor. Let ∆2 be an effective
Q-Cartier divisor. Suppose that ∆2 is small enough. Then

mCA
y (X, ∂X; ∆1 − ∆2) = mCA

y (X, ∂X; ∆1) .

For example
mCA

y (X, ∂X;−∆2) = mCA
y (Xo ⊂ X) .

Proof. The resolution of singularities f is surjective and birational, therefore
the divisor f ∗∆2 is effective. If the coefficients of ∆2 are small enough then

⌈f ∗∆1 − f ∗∆2⌉ = ⌈f ∗∆1⌉
due to semi-continuity of the ceiling function. □

Remark 3.8 (About relation with multiplier ideals, [BL04, Laz04]). The construc-
tion of the twisted motivic Chern class has a lot in common with the definition of
multiplier ideals [Laz04, Definition 9.2.1]. Let X be a smooth variety of dimension n.
Let ∆ be an effective Q-divisor and ∂X any subvariety such that |KX + ∆| ⊂ ∂X.
Then the coefficient of yn of the class

(−1)n mCA
y (X, ∂X;−KX − ∆)

is equal to the K-theory class of the multiplier ideal for ∆.

Proposition 3.9. Let (W,∂W ) and ∆ be such as in definition 3.4. Then

(1) For an open invariant subvariety U ⊂ W

mCA
y (U, ∂W ∩ U ; ∆ ∩ U) = mCA

y (W,∂W ; ∆)|U ∈ GA(U)[y] .

(2) For a smooth A-variety S

mCA
y (W × S, ∂W × S; ∆ × S) = mCA

y (idS) ⊠ mCA
y (W,∂W ; ∆) ∈ GA(W × S)[y] .

Proof. To compute the twisted motivic Chern classes in (i) and (ii) we can use
the resolution of (W,∂W ) restricted to U or multiplied by S. □
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3.2. Independence from the resolution

To prove that the class given in definition 3.4 does not depend on the choice of resolu-
tion we apply the weak factorization theorem [AKMW02], [W lo09, Theorem 0.0.1].
It is enough to consider two resolutions which differ by a single blow-up in a cen-
ter contained in the boundary, which has normal intersections (see e.g. [Kol07,
Definition 3.24]) with components of the boundary divisor.

Proposition 3.10. Let Y be a smooth A-variety and let ∂Y =
⋃m

k=1 ∂Yk be a
SNC divisor. Let C ⊂ ∂Y be a smooth invariant subvariety such that for each
component ∂Yk either

(1) C is contained in ∂Yk,
(2) C intersect ∂Yk normally.

Let b : Z → Y be the blow-up of Y in C and E the exceptional divisor. Denote maps
according to the diagram

E
i //

g
��

Z

b
��

C
i′
// Y

Let D be a SNC, Q-Cartier divisor on Y with support contained in the boundary ∂Y .
Let ∂Z = b−1(∂Y ) and Zo = Z \ ∂Z. Then

b∗
(
OZ(⌈b∗D⌉) · mCA

y (Zo ⊂ Z)
)

= OY (⌈D⌉) · mCA
y (Y o ⊂ Y ).

Remark 3.11. The A-action on the variety Y induces an A-action on the blow
up Z.

Remark 3.12. If

OZ(⌈b∗D⌉) = OZ(b∗⌈D⌉)
then the proposition follows from the projection formula (proposition 1.8).

Before the proof let us state an important corollary.

Corollary 3.13. The twisted motivic Chern class does not depend on the choice
of resolution.

Proof. Let (W,∂W ) and ∆ be such as in definition 3.4. Let

f : (Y, ∂Y ) → (W,∂W )

be a SNC resolution. By [AKMW02], [W lo09, Theorem 0.0.1] any two resolutions
can be joined by a sequence of blow-ups or blow-downs with centers normally inter-
secting the components of the boundary divisor. For such a blow-up

Z
b−→ Y

f−→ W ,

we use proposition 3.10 for D = f ∗∆ and acquire

f∗
(
OY (⌈f ∗∆⌉) · mCA

y (Y o ⊂ Y )
)

= (f ◦ b)∗
(
OZ(⌈(f ◦ b)∗∆⌉) · mCA

y (Zo ⊂ Z)
)
.

□
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The rest of this section is devoted to the proof of proposition 3.10. Let

∂Z = E ∪
m⋃
k=1

∂Zi ,

where ∂Zi is a proper transform of the divisor ∂Yi. Let

D =
m∑
k=1

ck∂Yk .

Without loss of generality assume that C is contained in the intersection of the
boundary components

⋂r
k=1 ∂Yk and is not contained in any divisor ∂Yi for i > r.

Thus, the multiplicity of E in b∗D is equal to
∑r

k=1 ck. The difference

b∗(⌈D⌉) − ⌈b∗D⌉ =

(
r∑

k=1

⌈ck⌉ −

⌈
r∑

k=1

ck

⌉)
E

is equal to sE, where s is a nonnegative integer smaller than r. We need to compute

b∗

(
OZ(⌈b∗D⌉) · mCA

y (Zo ⊂ Z)
)

=

b∗

(
OZ(b∗⌈D⌉ − (b∗⌈D⌉ − ⌈b∗D⌉)) · mCA

y (Zo ⊂ Z)
)

=

b∗

(
OZ(b∗⌈D⌉) · OZ(−sE) · mCA

y (Zo ⊂ Z)
)

=

OY (⌈D⌉) · b∗
(
OZ(−sE) · mCA

y (Zo ⊂ Z)
)
.

It is enough to prove that for s ∈ {0, 1, ..., r − 1}

b∗

(
OZ(−sE) · mCA

y (Zo ⊂ Z)
)

= mCA
y (Y o ⊂ Y ) .

First, we consider the case when C ∩∂Yi = ∅ for i > r. We need a technical lemma.

Lemma 3.14. Let C be a smooth algebraic A-variety. Let V → C be an A-vector
bundle with a collection {Vk}rk=1 of codimension one invariant subbundles Vk ⊂ V .
Suppose that r ≤ rkV and the bundles Vk are in general position at each point of C.
Consider the projective bundle g : E = P(V ) → C and the divisors Bk = P(Vk). Let
B =

⋃r
k=1 Bk. Then

g∗
(
OE/C(s) · mCA

y (E \B ⊂ E)
)

= 0 for s ∈ {1, 2, . . . , r − 1} .

Proof. Let W be an arbitrary A-vector bundle over C. Let gW : P(W ) → C be
the associated projective bundle and Ω1

P(W )/C ∈ V ectA(P(W )) the relative cotangent
bundle. We apply the Euler sequence

0 → Ω1
P(W )/C → g∗WW ∗(−1) → OP(W ) → 0 ,(6)

where the twist (−1) denotes the tensor product with the relative OP(W )/C(−1)
bundle. It follows that the motivic Chern class of idP(W ) can be presented as

mCA
y (idP(W )) =g∗W (mCA

y (idC)) · λy(Ω
1
P(W )/C)

=g∗W (mCA
y (idC)) · λy(g

∗W ∗(−1))/(1 + y) ∈ KA(P(W ))[y] .
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The first equality follows from the Verdier-Riemann-Roch theorem 1.78 and the
second from the exact sequence (6).
For any subset I ⊂ {1, 2, . . . , r} let

VI =
⋂
i∈I

Vi and BI = P(VI) .

The vector bundles Vi are in general position, thus for an arbitrary I the variety VI

is also a vector bundle over C. Denote by gI = g|BI
: BI → C projections and by

iI : BI ↪→ E inclusions. Consider vector bundles

Lk = ker(V ∗ → V ∗
k ) .

The bundles Vk are in general position, so ⊕r
k=1Lk is a subbundle of V ∗. Let

K = V ∗/⊕r
k=1 Lk. Thus, for any subset I

V ∗
I = K +

∑
k/∈I

Lk ∈ KA(C) .

Previous discussion for W = VI implies that in KA(BI)[y] we have an equality

(1 + y) mCA
y (idBI

) =g∗I mCA
y (idC) · λy(g

∗
IV

∗
I (−1))

=g∗I mCA
y (idC) ·

(∏
k/∈I

1 + yg∗ILk(−1)

)
· λy(g

∗
IK

∗(−1)) .

By definition OE(Bk) = g∗L∗
k(1). Moreover the divisor B is SNC, so proposition 1.19

implies

iI∗(1) = [OBI
] =

∏
k∈I

1 −OE(−Bk) =
∏
k∈I

1 − g∗Lk(−1) ∈ KA(E) .(7)

Thus

(1 + y) · mCA
y (BI ⊂ E) = (1 + y) · iI∗ mCA

y (idBI
) =

= iI∗i
∗
I

((∏
k/∈I

1 + yg∗Lk(−1)

)
· g∗ mCA

y (idC) · λy(g
∗K∗(−1))

)

= iI∗(1) ·

(∏
k/∈I

1 + yg∗Lk(−1)

)
· g∗ mCA

y (idC) · λy(g
∗K∗(−1))

=

(∏
k∈I

(1 − g∗Lk(−1))
∏
k/∈I

(1 + yg∗Lk(−1))

)
· g∗ mCA

y (idC) · λy(g
∗K∗(−1)) .
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The second equality follows from gI = iI ◦ g and i∗IOE/C(1) = OBI/C(1), the fourth
from equation (7). By additivity of the motivic Chern class we obtain

(1 + y) · mCA
y (E \B ⊂ E) = (1 + y) ·

∑
I

(−1)|I| mCA
y (BI ⊂ E) =

=

(
r∏

k=1

(1 + yg∗Lk(−1)) − (1 − g∗Lk(−1))

)
· g∗ mCA

y (idC) · λy(g
∗K∗(−1))

= (1 + y)r

(
r∏

k=1

g∗Lk(−1)

)
· g∗ mCA

y (idC) · λy(g
∗K(−1)) ∈ KA(E)[y] .

Therefore

g∗
(
OE/C(s) · mCA

y (E \B ⊂ E)
)

=

= mCA
y (idC) · (1 + y)r−1 ·

r∏
k=1

Lk ·

(
rkV−r∑
k=0

ΛkK · g∗OE/C(s− r − k)

)
.

So it is enough to prove that for 1 ≤ s ≤ r − 1 and 0 ≤ k ≤ rkV − r we have

g∗(OE/C(s− r − k)) = 0 .(8)

The above inequalities imply

1 − rkV ≤ s− r − k ≤ −1 .

So equation (8) is a direct consequence of proposition 1.10. □

Lemma 3.15. Consider the situation as in proposition 3.10. Suppose that C ⊂
⋂r

k=1 ∂Yk

and C ∩ ∂Yk = ∅ for k > r. Then

b∗
(
OZ(−sE) · mCA

y (Zo ⊂ Z)
)

= mCA
y (Y o ⊂ Y )

for 0 ≤ s ≤ r − 1.

Proof. For s = 0 the proposition is trivial. It is enough to prove that for
s ∈ {1, 2, ..., r − 1} the pushforward of difference between

(9) OZ((−s + 1)E) · mCA
y (Zo ⊂ Z)

and

(10) OZ(−sE) · mCA
y (Zo ⊂ Z)

vanishes. Note that L := i∗OZ(−E) is the relative OE/C(1) for the projective bundle
b|E : E → C. By lemma 1.20 for D = E and

α = OZ((−s + 1)E) · mCA
y (Zo ⊂ Z)

we obtain that the difference (9)–(10) is equal to

i∗OE · OZ((−s + 1)E) · mCA
y (Zo ⊂ Z) = i∗i

∗ (OZ((−s + 1)E) · mCA
y (Zo ⊂ Z)

)
= i∗

(
Ls−1 · i∗ mCA

y (Zo ⊂ Z)
)
.

Moreover

i∗ mCA
y (Zo ⊂ Z) = (1+y)L ·mCA

y

(
E \

m⋃
k=0

∂Zk

)
= (1+y)L ·mCA

y

(
E \

r⋃
k=0

∂Zk

)
.
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The first equality follows from proposition 1.83 and the second from the fact that
C ∩ ∂Yk = ∅ for k > r. Thus, the pushforward b∗ of the difference (9)–(10) is equal
to

(1 + y) · i′∗g∗

(
Ls · mCA

y

(
E \

r⋃
k=0

∂Zk ⊂ E

))
The conclusion follows from lemma 3.14 for V = ν(C ⊂ Y ) and Vi = ν(C ⊂ ∂Yi)
for i ∈ {1, ..., r}. □

Example 3.16 (Evidence by calculus). Let

Y = Ar , ∂Y =
r⋃

k=1

Ar−1 , C = {0} .

We consider the natural action of the torus A = (C∗)r on Ar. Then E = Pr−1 and
∂Z ∩ E is the sum of coordinate hyperspaces. We want to compute

g∗
(
OE/C(s) · mCA

y (E \ ∂Z ⊂ E)
)

= g∗
(
OPr−1(s) · mCA

y

(
Pr−1 \ ∂Z ⊂ Pr−1

))
By Lefschetz-Riemann-Roch theorem (theorem 1.24) it is enough to compute re-
strictions of the above class to the fixed point set (Pr−1)A. It can be done using the
fundamental calculation of [FRW21, Section 2.7] and the product property of mCA

y

classes [AMSS19, Theorem 4.2 (3)]. We obtain that the above pushforward is equal
to

r∑
k=1

t−s
k

∏
l ̸=k

(1 + y)tk/tl
1 − tk/tl

= (1 + y)r−1

r∏
l=1

t−1
l ·

r∑
k=1

tr−s
k∏

l ̸=k(1 − tk/tl)

Due to Lefschetz-Riemann-Roch formula we have
r∑

k=1

tr−s
k∏

ℓ̸=k(1 − tk/tℓ)
= χ(Pr−1,OPr−1(s− r))

which is zero for s ∈ {1, 2, . . . , r − 1}.

The working assumption of lemma 3.15 that C lies entirely in the intersection of
components of ∂Y may be removed.

Lemma 3.17. Consider the situation as in proposition 3.10. Suppose that C ⊂
⋂r

k=1 ∂Yk

and C is not contained in ∂Yk for k > r. Then

b∗
(
OZ(−sE) · mCA

y (Zo ⊂ Z)
)

= mCA
y (Y o ⊂ Y )

for 0 ≤ s ≤ r − 1.

Proof. The subvariety C is contained in
⋂r

k=1 ∂Yk. There exists some l (possi-
bly l = m) such that {

C ∩ ∂Yk = ∅ for k > l ,

C ∩ ∂Yl ̸= ∅ .

We need to prove the lemma for l ∈ {r, r + 1, ...,m}. We proceed by induction on
the difference l− r. In the case l = r the proposition simplifies to lemma 3.15. This
allows to start induction.
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Fix a value of l−r and suppose that the lemma holds for all smaller values. The divi-
sor ∂Zl is the proper transform of ∂Yl. It follows that (cf. [Vak18, Paragraph 22.2.6])

b′ = b|∂Zl
: ∂Zl → ∂Yl

is the blow-up of ∂Yl in the center

C ′ = C ×Y ∂Yl .

The divisor ∂Yl meets C normally, thus

C ∩ ∂Yl = C ×Y ∂Yl = C ′ .

The exceptional divisor of b′ is E ′ = E×Z ∂Zl (cf. [Vak18, Paragraph 22.2.6]). Thus,
E ′ = E ∩ ∂Zl since E meets ∂Zl transversely. The center C ′ of the blow up b′ is
entirely contained in the intersection of r divisors in ∂Yl

C ′ ⊂
r⋂

k=1

(∂Yl ∩ ∂Yk) .

Moreover, for k > l
C ′ ∩ (∂Yl ∩ ∂Yk) = ∅ .

It follows that we can use the inductive assumption for the blow up b′ of the pair
(∂Yl,

⋃
k ̸=l ∂Yl ∩ ∂Yk) and the blow up b of the pair (Y,

⋃
k ̸=l ∂Yk). Let us recall that

Y o = Y \
m⋃
k=0

∂Yk , Zo = Z \

(
E ∪

m⋃
k=0

∂Zk

)
and introduce the following notation

∂Y o
l = ∂Yl \

m⋃
k ̸=l

(∂Yk ∩ ∂Yl) , ∂Zo
l = ∂Zl \

(
(E ∩ ∂Zl) ∪

m⋃
k ̸=l

(∂Zk ∩ ∂Zl)

)
.

Consider the disjoint unions

Y # := Y o ∪ ∂Y o
l , Z# := Zo ∪ ∂Zo

l .

Denote by j : ∂Yl → Y and j̃ : ∂Zl → Z the inclusions. By the inductive assumption
we have

b∗
(
OZ(−sE) · mCA

y (Z# ⊂ Z)
)

= mCA
y (Y # ⊂ Y )

and
b′∗
(
OZ(−sE ′) · mCA

y (∂Zo
l ⊂ ∂Zl)

)
= mCA

y (∂Y o
l ⊂ ∂Yl) .

Therefore, by additivity of the motivic Chern class

b∗
(
OZ(−sE) · mCA

y (Zo ⊂ Z)
)

=

= b∗
(
OZ(−sE) · mCA

y (Z# ⊂ Z)
)
− b∗

(
OZ(−sE) · j̃∗ mCA

y (∂Zo
l ⊂ ∂Zl)

)
= b∗

(
OZ(−sE) · mCA

y (Z# ⊂ Z)
)
− b∗j̃∗

(
OZ(−sE ′) · mCA

y (∂Zo
l ⊂ ∂Zl)

)
= b∗

(
OZ(−sE) · mCA

y (Z# ⊂ Z)
)
− j∗b

′
∗
(
OZ(−sE ′) · mCA

y (∂Zo
l ⊂ ∂Zl)

)
= mCA

y (Y # ⊂ Y ) − j∗
(

mCA
y (∂Y o

l ⊂ ∂Yl)
)

= mCA
y (Y o ⊂ Y )

□
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This ends the proof of proposition 3.10.





CHAPTER 4

Twisted motivic Chern class as stable envelope

4.1. Statement of result

In this chapter our aim is a generalization of results of chapter 2 to the case of an
arbitrary slope. Let A be an algebraic torus. Let M be a smooth, projective A-
variety. Suppose that the fixed point set MA is finite. Consider the induced action
of the product torus T = A× C∗ on the cotangent variety X = T ∗M defined as in
example 1.61. Denote by π the projection

π : T ∗M → M.

Let σ : C∗ → A be a good one parameter subgroup (see definition 1.62). For a fixed
point e ∈ MA let

ie : M+
e ↪→ M

be an inclusion of the closure of the BB-cell. Let

∂M+
e := M+

e \M+
e

denote the boundary of the BB-cell. Consider a slope s ∈ Pic(M) ⊗Z Q. In sec-
tion 4.2 we will associate with it a Q-Cartier divisor ∆e,s on M+

e with support

contained in the boundary ∂M+
e . We prove that after a suitable normalization the

twisted motivic Chern class of BB-cell satisfies all but one of the axioms of the stable
envelope for the slope s.

Definition 4.1. Suppose that Y is a T-variety, such that the factor C∗ acts trivially.
Let ρ be a map

ρ : KA(Y )[y] → KT(Y )

given by ρ(y) = −h.

Theorem 4.2. Let e ∈ MA be a fixed point. The class

h− dim(M+
e )π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)) ∈ KT(X)

satisfies the normalization axiom and the Newton inclusion property of the stable
envelope Stabs(e). Moreover, it satisfies the distinguished point axiom.

Corollary 4.3. Suppose that the slope s is small and antiample. Then the divisor
−∆e,s is small and effective. Due to proposition 3.7 the class

h− dim(M+
e )π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)) = h− dim(M+
e )π∗ρ(mCA

y (M+
e → M))

satisfies all but one axioms of the stable envelope Stabs(e).

The above theorem is a direct consequence of propositions 4.10, 4.11 and 4.17.

Remark 4.4. In this chapter we do not assume any regularity conditions on the
BB-decomposition of M . As noted in remark 1.71 the support axiom cannot be
stated on this level of generality.
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4.2. Boundary divisor

We consider the situation described in the previous section. Let L ∈ Pic(M) be a
line bundle. We will show that a slope

s = L1/n ∈ Pic(M) ⊗Q

determines a Q-Cartier divisor ∆e,s on M+
e . By [Bri15, Lemma 2.14] we can assume

that L admits an A-linearisation and we fix an A-linearisation.

Definition 4.5. Let L ∈ PicA(M) be a linearised line bundle. We say that a
meromorphic section v ∈ i∗eL(U) of the bundle i∗eL is good if

• the section v is an eigenvector of the torus A,
• the section v does not vanish nor has a pole at the center of the cell.

For a slope s = L1/n any good section of L defines the divisor

∆e,s =
1

n
div(v).

Straight from the definition we obtain the following properties of divisor ∆e,s.

Proposition 4.6. Let v be a good section of i∗eL. Let ∆e,s = 1
n
div(v). Then

(1) Divisor ∆e,s is Q-Cartier.
(2) Divisor ∆e,s is A-invariant.

(3) Support of ∆e,s is contained in the boundary ∂M+
e .

In this section we prove that good sections exist and the divisor ∆e,s associated to
the slope s = L1/n is unique.

Proposition 4.7. There exists a good section v of i∗eL.

Proof. First, assume that L is generated by global sections. The torus A acts
on the finitely dimensional vector space of global sections H0(M+

e ; i∗L). Since the
eigenvectors span that space we can find a section v such that

• v ∈ H0(M+
e ; i∗L) is an eigenvector of A,

• v(e) ̸= 0.

In particular, it follows that all very ample line bundles admit a good section. If L
is not globally generated we can tensor it with a suitable power of an equivariant
ample bundle O(1) and argue as before. If v1 is a good section for L(n) and v2 is a
good section of O(n) then v1/v2 is a good section of L. □

Remark 4.8. Due to [Bri15, Proposition 2.10] any linearization of i∗eL differs from
the natural linearization of O(n∆e,s) by a twist. Therefore, for a line bundle L
considered with a fixed linearization and O(n∆e,s) with the natural linearization we
have

i∗eL = twe(L) · O(n∆e,s) ∈ KA(M+
e ) .

Proposition 4.9. Let v1 and v2 be two good meromorphic sections of i∗eL on M+
e .

Then v1 and v2 are proportional.
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Proof. The sections vi are defined on an A-equivariant open neighbourhood
U ⊂ M+

e containing e. Let χi : A → C∗ be the corresponding characters, i.e.

t · vi = χi(t)v

for t ∈ A and i ∈ {1, 2}. The quotient v1/v2 defines a rational function

θ :=
v1

v2

: U → C .

The map θ is A-equivariant if we consider the action of the torus A on C given by
the character χ1

χ2
. Moreover, θ does not have zero nor pole at e. Since e is a fixed

point, θ(e) ̸= 0 is fixed as well. Thus, the action of A on C is trivial. It follows that
characters χ1 and χ2 coincide and the map θ is constant on the orbits of A. The
map θ is defined at e so it is defined and constant on the whole BB-cell M+

e . It
follows that θ is also defined and constant on the closure M+

e of the BB-cell. Thus,
θ = v1/v2 is constant. □

4.3. Normalization axiom

We use notation from section 4.1.

Proposition 4.10. Consider a fixed point e ∈ MA. The class

h− dim(M+
e )π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)) ∈ KT(X)

satisfies the normalization axiom of the stable envelope Stabs(e). Namely

h− dim(M+
e )π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s))|e = (−1)dim(M+
e ) eu(T−

e X)

det(T+
e M)

Proof. The point e lies in the interior of the BB-cell M+
e . Therefore, the stan-

dard and the twisted motivic Chern class coincide at e (due to proposition 3.9 (1))

ie∗ mCA
y (M+

e ; ∂M+
e ; ∆e,s)|e = mCA

y (M+
e ⊂ M)|e.

The proposition follows from proposition 2.5. □

4.4. Newton inclusion property

We use notation from section 4.1.

Proposition 4.11. Consider a fixed point e ∈ MA. The class

h− dim(M+
e )π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s))

satisfies the Newton polytope axiom of the stable envelope Stabs(e). For any fixed
point e′ < e we have

NA
(
π∗ρ(ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)|e′)
)
⊂ NA

(
eu(T−

e′X)
)
−we′(detT+

e′M)+we′(s)−we(s)

According to lemma 2.8 and remark 4.8, we only need to prove that for a fixed point
e′ < e there is an inclusion:

NA
(
ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)|e′
)
− we′(∆e,s) ⊂ NA (eu (Te′M)) .(11)

Consider an A−equivariant SNC resolution of singularities

f : (Y, ∂Y ) → (M+
e ; ∂M+

e ) .



54 4. TWISTED MOTIVIC CHERN CLASS AS STABLE ENVELOPE

Set ∆ = ∆e,s and D = f ∗∆. For a fixed point set component

F ⊂ Y A ∩ f−1(e′)

denote by fF the map to a point f|F : F → e′. The Lefschetz-Riemann-Roch for-
mula 1.24 implies that

ie∗ mCA
y

(
M+

e , ∂M
+
e ; ∆

)
|e′

eu(Te′M)
=
f∗ie∗ mCA

y (Y, ∂Y ;D)|e′

eu(Te′M)

=
∑

F⊂f−1(e′)∩Y A

fF∗

(
mCA

y (Y, ∂Y ;D)|F
eu (ν(F ⊂ Y ))

)
.

This formula can be rewritten as

twe′ (−∆) ie∗ mCA
y

(
M+

e , ∂M
+
e ; ∆)

)
|e′

eu(Te′M)
=

∑
F⊂f−1(e′)∩Y A

fF∗

(
twF (−D) mCA

y (Y, ∂Y ;D)|F
eu (ν(F ⊂ Y ))

)
.

(12)

Remark 4.12. In the above formula we use the extended K-theory ring K̃(e′) (see
section 1.2.3).

Proposition 1.52 implies that to prove the inclusion (11) it is enough to show that
if a one parameter subgroup σ′ : C∗ → A is general enough then the limit limσ′

of a single summand occurring in the equation (12) exists. Using commutation of
the limit map with push-forwards (see proposition 1.43) we only need to prove the
following lemma:

Lemma 4.13. Let Y be a smooth projective A-variety with a chosen SNC divisor ∂Y .
Let D be a Q-Cartier A-invariant SNC divisor on Y with support contained in ∂Y .
Let F ⊂ Y A be a component of the fixed point set. Then the limit

lim
σ′

t−wF (D) mCA
y (Y, ∂Y ;D)|F

eu (ν(F ⊂ Y ))
∈ K(F )[y]

exists for a general one parameter subgroup σ′ : C∗ → A.

Proof of Lemma 4.13. Let Y o = Y \ ∂Y and ∂Y =
⋃m

i=1Di. For a subset of indices
I ⊂ {1, ...,m} consider the bundle:

LI =
∏
j∈I

OY (Dj)|F .

The weight
wF (OY (⌈D⌉)|F ) − wF (D)

lies in the convex hull of the weights wF (LI). By propositions 1.54 and 1.41 it is
enough to show that the limits

lim
σ′

LI · mCA
y (Y o ⊂ Y )|F

eu (ν(F ⊂ Y ))
= lim

σ′

mCA
y (Y o ⊂ Y )|F

eu (ν(F ⊂ Y ))

∏
j∈I

OY (Dj)|F(13)

exist. The following simple observation allows to remove some factors from the
above expression.
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Lemma 4.14. Consider a component Dj ⊂ Y . Let F ⊂ Y A be a component of the
fixed point set. Suppose that F is not contained in Dj. Then the weight of the bundle
OY (Dj) at F is equal to zero, i.e.

wF (OY (Dj)) = 0 .

Proof. We have

F \Dj ̸= ∅ .

Hence, in a point of F not belonging to Dj the weight of OY (Dj) is trivial. The
weight does not depend on the choice of a point in F . □

Thus, when the variety F is not contained in Dj we may omit the bundle OY (Dj)
in the expression (13). Existence of the considered limit follows from the following
lemma.

Lemma 4.15. Consider the situation as in lemma 4.13. Suppose that F is a com-
ponent of the fixed point set Y A. Let σ′ : C∗ → A be a good one parameter subgroup
for Y (i.e. Y A = Y C∗

). Then the limit

lim
σ′

mCA
y (Y o ⊂ Y )|F

eu(ν(F ⊂ Y ))

∏
j∈I

OY (Dj)|F

exists. Moreover, if all the weights of the line bundles OY (Dj)|F are negative then
the limit is equal to

(1 + y)|I| mCA
y

(
(Do

I)
σ′+
F → F

)
.

Otherwise the limit is equal to 0. Here

(Do
I)

σ′+
F = {x ∈ Do

I : lim
t→0

σ′(t) · x ∈ F } .

Proof. Corollary 1.87 implies that

lim
σ′

mCA
y (Y o ⊂ Y )|F

eu(ν(F ⊂ Y ))

∏
j∈I

OY (Dj)|F = lim
σ′

mCA
y (Do

I ⊂ DI)|F
eu(ν(F ⊂ DI))

(1+y)|I|
∏
j∈I

1

1 −OY (−Dj)|F
.

Theorem 1.81 implies that the limit

lim
σ′

mCA
y (Do

I ⊂ DI)|F
eu(ν(F ⊂ DI))

exists and is equal to

mCA
y

(
(Do

I)
σ′+
F → F

)
.

Moreover

lim
σ′

1

1 −OY (−Dj)|F
=

{
0 if the weight of OY (Dj)|F is positive,

1 if the weight of OY (Dj)|F is negative.

Multiplying these limits we arrive at the desired equality. □

Remark 4.16. The weight of OY (Dj)|F is nontrivial because we assumed that
Y C∗

= Y A and F is a fixed point set component.
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4.5. Distinguished point

We use notation from section 4.1.

Proposition 4.17. For a pair of fixed points e′, e ∈ MA such that e > e′, we have

−we′(detT+
e′M)+we′(s)−we(s) /∈ NA

(
h− dim(M+

e )π∗ρ(ie∗ mCA
y (M+

e ; ∂M+
e ; ∆e,s))|e′

)
.

Proof. It is enough to prove that

−we′(detT+
e′M) /∈ NA

(
ie∗ mCA

y (M+
e ; ∂M+

e ; ∆e,s)|e′
)
− we′(∆e,s) .

Consider an A−equivariant SNC resolution of singularities

f : (Y, ∂Y ) → (M+
e ; ∂M+

e ).

Let σ′ : C∗ → A be a one parameter subgroup such that σ′ is good for Y (i.e. Y A = Y C∗
)

and lies in the same weight chamber as the one parameter subgroup σ (with respect
to the variety M). Let

σ′∗ : KA(M) → KC∗
(M) , πσ′ : Hom(A,C∗) ⊗ R → Hom(C∗,C∗) ⊗ R ,

be maps induced be the one parameter subgroup σ. The point πσ′(−we′(detT+
e′M))

is the lowest term of the line segment Nσ′ (
σ′∗eu(T−

e′X)
)
. Therefore, it is enough to

prove that the limit

lim
σ′

twe′ (−∆e,s) ie∗ mCA
y

(
M+

e , ∂M
+
e ; ∆e,s)

)
|e′

eu(Te′M)

is equal to zero. We use notations from the previous section, in which we proved
that this limit exists. It is enough to show that the limit of a single summand of
expression (12) vanishes. Coefficients of the Q-divisor

⌈D⌉ −D

are rational numbers from the interval [0, 1). Therefore, the fractional weight

wF (OY (⌈D⌉)|F ) − wF (D)

can be expressed as a convex combination of the weights wF (LI) with a nonzero
coefficient at wF (L∅). The previous section implies that all the limits

lim
σ′

LI · mCA
y (Y o ⊂ Y )|F

eu (ν(F ⊂ Y ))

exist. Moreover

lim
σ′

L∅ · mCA
y (Y o ⊂ Y )|F

eu (ν(F ⊂ Y ))
= lim

σ′

mCA
y (Y o ⊂ Y )|F

eu (ν(F ⊂ Y ))
=

= mCy(Y
o ∩ Y +

F → F ) = mCy(∅ → F ) = 0 .

Where the second equality follows from theorem 1.81 and the third from Y o = Y +
e .

Proposition 1.53 ends the proof. □

Remark 4.18. If the one parameter subgroup σ is good for Y , then we may take
σ′ = σ.



CHAPTER 5

Support axiom

In the previous sections we proved that the (twisted) motivic Chern class of BB-cell
satisfies all but one of the axioms of the stable envelope for an arbitrary projective
variety M . The remaining axiom is of different nature. To even state it we need
some regularity condition on the BB-decomposition of M (see remark 1.71).

In this chapter we prove that for an interesting class of examples the twisted motivic
Chern class satisfies also the support axiom. First, we give an equivalent statement of
the axiom in terms of divisibility (see proposition 5.2). Then, we present a condition
on the BB-stratification on M which is sufficient to prove that the twisted motivic
Chern class satisfies the support axiom. Lastly, we prove that homogenous varieties
satisfy this condition. The main results of this chapter are theorems 5.12 and 5.15.

5.1. Equivalent statement of the support axiom

Let A be an algebraic torus and T = A× C∗. Let M be a projective smooth
A-variety and X = T ∗M the cotangent variety with the induced T-action (see
example 1.61). Suppose that the fixed point set MA is finite. Let σ : C∗ → A be a
one parameter subgroup such that the pair (M,σ) is admisible (definition 1.64), i.e.
that the set ⋃

e∈MA

X+
e =

⋃
e∈MA

ν∗ (M+
e ⊂ M

)
is closed in X. The support axiom of the stable envelope states that

supp(stab(e)) ⊂
⋃
e′≤e

X+
e′ .

Remark 5.1. The support axiom of the stable envelope does not depend on a slope.
Therefore, in this chapter we omit slope in the notation.

Proposition 5.2 (cf. [RTV15, Remark after theorem 3.1], [RTV19, Lemma 5.2-4]).
Consider the above situation. Let e ∈ MA be a fixed point and a ∈ KT(X) a K-theory
class. The following conditions are equivalent

1) The element a satisfies the support axiom

supp(a) ⊂
⋃
e′≤e

X+
e′ .

2) For any fixed point e′ ∈ MA the restriction a|e′ may be nonzero only if
e′ ≤ e. In that case a|e′ is divisible by the class λ−h((T

+
e′M)∗), i.e.{

λ−h((T
+
e′M)∗) | a|e′ if e′ ≤ e,

a|e′ = 0 otherwise.
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For completeness we give a proof of the above proposition. We need some notations
and technical lemmas. For a fixed point e ∈ MA let

Ve =T ∗M|M+
e
, Ue =T ∗M|M+

e
\X+

e .

Lemma 5.3. Consider the situation as in proposition 5.2. Let e ∈ MA be a fixed
point. The following are equivalent

1) The element a restricted to Ve vanishes a|Ve = 0 .
2) The element a restricted to the point e vanishes a|e = 0 .

Proof. The subvariety Ve is an affine space. It follows that the restriction to a
point induces an isomorphism

KT(Ve) ≃ KT(e) .

□

Lemma 5.4. Consider the situation as in proposition 5.2. Let e ∈ MA be a fixed
point. The following are equivalent

1) The element a restricted to Ue vanishes a|Ue = 0 .
2) The restriction a|e is divisible by the class λ−h((T+

e M)∗) i.e.

λ−h((T+
e M)∗) | a|e .

Proof. The subvariety X+
e ⊂ Ve is invariant and closed. Moreover, the varieties

Ue, Ve and X+
e are smooth. The exact sequence of a closed immersion 1.14 for

X+
e ⊂ Ve is of the form

KT(X+
e ) //

≃
��

KT(Ve) //

≃
��

KT(Ue) // 0

KT(e)
α // KT(e) // KT(Ue) // 0

The vertical isomorphism are induced by the restriction to the point e. The formula
1.18 implies that the map α is a multiplication by the class eu(X+

e ⊂ Ve)|e. Therefore,

a|Ue = 0 ⇐⇒ (a|Ve)|Ue = 0 ⇐⇒ eu(X+
e ⊂ Ve)|e | (a|Ve)|e

⇐⇒ λ−1(ν
∗
e(X+

e ⊂ Ve)) | a|e
⇐⇒ λ−1(νe(X

+
e ⊂ Ve)) | a|e

⇐⇒ λ−1(Ch ⊗ (T+
e M)∗) | a|e

⇐⇒ λ−h((T
+
e M)∗) | a|e .

The equivalence

λ−1(ν
∗
e(X+

e ⊂ Ve)) | a|e ⇐⇒ λ−1(νe(X
+
e ⊂ Ve)) | a|e

follows from proposition 1.17. □

Lemma 5.5. Let R be a domain and R[y, y−1] the ring of Laurent polynomials.
Assume that A(y) ∈ R[y, y−1] is a monic Laurent polynomial (the coefficient corre-
sponding to the smallest or the greatest power of y is equal to one). Let r ∈ R be a
nonzero element. Then for any polynomial B(y) ∈ R[y, y−1]

A(y) | B(y) ⇐⇒ A(y) | rB(y) .
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Proof. It is an easy algebra exercise. □

Lemma 5.6. Consider the situation as in proposition 5.2. Let e ∈ MA be a fixed
point. Let πe : Ue → M+

e be a restriction of the projection π : X → M . The element

π∗
eeu(M+

e ⊂ M)

is not a zero divisor in KT(Ue).

Proof. The proof of lemma 5.4 implies that

KT(Ue) = KT(e)/λ−h((T
+
e M)∗)

= KA(e)[h, h−1]/λ−h((T
+
e M)∗) .

Where KT(e)/λ−h((T
+
e M)∗) denotes the ring KT(e) divided by the ideal generated

by λ−h((T
+
e M)∗). We need to prove that for an element x ∈ KA(e)[h, h−1] divisibility

λ−h((T
+
e M)∗) | eu(M+

e ⊂ M)|e · x

implies

λ−h((T
+
e M)∗) | x .

Note that the ring KA(e) is a domain and the polynomial λ−h((T
+
e M)∗) is monic

(its smallest coefficient with respect to h is equal to one). Lemma 5.5 for R = KA(e)
and r = eu(M+

e ⊂ M)|e completes the proof. □

Proof of proposition 5.2. Choose a fixed point e ∈ MA. By [BB76, The-
orem 3] the BB-decomposition of M is filtrable. We may order the fixed point set
e1, e2, ..., en in such a way that all the subsets

t⋃
i=1

M+
ei
⊂ M

are open subvarieties. Moreover, we may assume that for a chosen fixed point e we
have e = er for some r and e > es if and only if s > r. Let

U =
r−1⋃
i=1

Vei ∪
n⋃

i=r

Uei .

The subset U is the complement of the closed subset
⋃

e′≤e X
+
e , so it is open (cf.

definition 1.64).

1) ⇒ 2) We know that

supp(a) ⊂ X+
e ⇒ a|U = 0 ⇒

{
a|Uei

= 0 for i ≥ r ,

a|Vei
= 0 for i < r .

By lemmas 5.3 and 5.4 this is equivalent to condition 2).

2) ⇒ 1) By lemmas 5.3 and 5.4 we know that{
a|Uei

= 0 for i ≥ r ,

a|Vei
= 0 for i < r .

(14)
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Our goal is to glue these equalities to obtain a|U = 0. Let

Ṽt =
t⋃

i=1

Vei , Ũt = U ∩ Ṽt , Xt =

{
Uet for t ≥ r

Vet for t < r .

The inclusion Vet ⊂ Ṽt has a normal bundle equal to the pullback of the bundle
ν(M+

et ⊂ M). The inclusion Xt ⊂ Ũt is restriction of Vt ⊂ Ṽt to the open subset Ũt.
Its normal bundle is equal to the pullback of the bundle ν(M+

et ⊂ M).

We want to prove that a|Ũt
= 0 for all t. We proceed by induction. For t = 1 we

have Ũ1 = U1 and the inductive thesis follows from equations (14). Let us focus on
the inductive step. The inductive assumption states that a|Ũt−1

= 0.

The exact sequence of a closed immersion Xt ⊂ Ũt (proposition 1.14) is of the form

KT(Xt)
i∗−→ KT(Ũt)

j∗−→ KT(Ũt−1) −→ 0 .

Consider the element a|Ũt
∈ KT(Ũt). By the inductive assumption j∗a|Ũt

= 0, thus

a|Ũt
= i∗α. Equations (14) imply that

0 = a|Xt = i∗a|Ũt
= i∗i∗α = α · eu(Xt ⊂ Ũt) ∈ KT(Xt) .

If t < r then the ring KT(Xt) is a domain. If t ≥ r then

eu(Xt ⊂ Ũt) = eu(Uet ⊂ Ũt) = π∗
eteu(M+

et ⊂ M)

is not a zero divisor (lemma 5.6). It follows that in both cases α = 0 and

a|Ũt
= i∗α = 0.

□

5.2. Sufficient condition

In this section we present a condition sufficient to prove that the twisted motivic
Chern class of BB-cell satisfies the support axiom. Let us remind our assumptions.
M is a projective, smooth A-variety and X = T ∗M is the cotangent variety with the
induced T-action (see example 1.61). We denote by π : X → M the T-equivariant
projection. Suppose that the fixed point set MA is finite. Let σ : C∗ → A be a good
one parameter subgroup (see definition 1.62).

Definition 5.7. We say that the pair (M,σ) satisfies the local product property if:

• For any fixed point e ∈ MA there exist an A-equivariant Zariski open
neighbourhood Ue of e, a smooth A-variety Ze (called slice) and an A-
equivariant isomorphism

θe : Ue ≃ (Ue ∩M+
e ) × Ze .

• For any fixed point e′ ∈ MA there exist an invariant subvariety Z ′
e,e′ ⊂ Ze

such that θe induces an isomorphism:

Ue ∩M+
e′ ≃ (Ue ∩M+

e ) × Z ′
e,e′ .

The local product property is a very strong condition. Nevertheless, there are im-
portant examples of spaces having this property, such as homogeneous varieties (cf.
Theorem 5.15).
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Proposition 5.8. Suppose that the pair (M,σ) satisfies the local product property.
Then the pair (M,σ) is admisible (definition 1.64).

Lemma 5.9. Let B,C be smooth varieties. Consider a point b ∈ B and a locally
closed smooth subvariety B̃ ⊂ B . Then

T ∗(C ×B)|C×b ∩ ν∗(C × B̃ ⊂ C ×B) ⊂ ν∗(C × b ⊂ C ×B) .

Proof. It follows from identifications

ν∗(C × B̃ ⊂ C ×B) = C × ν∗(B̃ ⊂ B) ,

T ∗(C ×B)|C×b = T ∗C × T ∗
b B ,

ν∗(C × b ⊂ C ×B) = C × T ∗
b B .

□

Proof of proposition 5.8. We need to show that the subvariety
⊔
X+

e is
closed in X. It is enough to prove that for a pair of fixed points e > e′ we have

(15) X+
e ∩ T ∗M|M+

e′
⊂ X+

e′ .

These subsets are A-equivariant and the variety M+
e′ is contracted to a point by the

one parameter subgroup σ. Thus, it is enough to show that inclusion (15) holds
after intersection with T ∗M|U for some open neighbourhood e′ ∈ U ⊂ M. Take Ue′

from the definition of local product property as a neighbourhood of e′. Then, the
desired inclusion follows from lemma 5.9 for

B = Ze′ , C = M+
e′ ∩ Ue′ , b = Z ′

e′,e′ , B̃ = Z ′
e′,e .

□

Proposition 5.10. Suppose that the pair (M,σ) satisfies the local product property.
Let e ∈ MA be a fixed point. Then

• The motivic Chern class of BB-cell satisfies the support axiom for stab(e),
i.e.

supp(h− dim(M+
e )π∗ρ(mCA

y (M+
e → M))) ⊂

⋃
e′≤e

X+
e′

• Let s ∈ Pic(M)⊗Z Q be a slope and ∆e,s the divisor defined in section 4.2.

Denote by ie : M+
e → M the inclusion of the closure of the BB-cell. The

twisted motivic Chern class of BB-cell satisfies the support axiom, i.e.

supp
(
h− dim(M+

e )π∗ρ(ie∗ mCA
y (M+

e , ∂M
+
e ; ∆e,s))

)
⊂
⋃
e′≤e

X+
e′

Lemma 5.11. Suppose that the pair (M,σ) satisfies the local product property. Let
e, e′ ∈ MA be a pair of fixed points. Let Ue′ be an open neighbourhood of e′ as in the
local product property definition. Let D be an invariant Q-Cartier divisor on M+

e

with support contained in the boundary ∂M+
e . Denote by

Y :=Ue′ ∩M+
e′ , ∂Z ′

e′,e :=Z ′
e′,e \ Z

′
e′,e .

Then, there exists a Q-Cartier divisor D′ on the variety Z ′
e′,e with support in the

boundary, such that θe′ induces an equality

mCA
y (M+

e ∩ Ue′ , ∂M+
e ∩ Ue′ ;D ∩ Ue′) = θ∗e′ mCA

y (Y × Z ′
e′,e, Y × ∂Z ′

e′,e;Y ×D′) .
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Proof. We need to prove that

θe′(M+
e ∩ Ue′) = Y × Z ′

e′,e ,(16)

θe′(∂M+
e ∩ Ue′) = Y × ∂Z ′

e′,e ,(17)

θe′(D ∩ Ue′) = Y ×D′ .(18)

For the first equality (16) note that

θe′
(
Ue′ ∩M+

e

)
= θe′

(
Ue′ ∩M+

e

)
= θe′(Ue′ ∩M+

e ) = Y × Z ′
e′,e = Y × Z ′

e′,e ,

where the first closure is taken in M , the second in Ue′ , the third and the fourth in
Y × Ze′ and the fifth in the slice Ze′ . By definition the isomorphism θe′ satisfies

θe′(Ue′ ∩M+
e ) = Y × Z ′

e′,e .

Taking the set difference with equation (16) we obtain (17).
Equality (18) follows from (17). Namely, the variety Y is irreducible, thus the
irreducible components of

θe′(∂M+
e ∩ Ue′) = Y × ∂Z ′

e′,e

are of the product form. The divisor D is supported on ∂M+
e ∩Ue′ , therefore it is a

formal sum of irreducible components of ∂M+
e ∩ Ue′ . □

Proof of proposition 5.10. The twisted motivic Chern class for a small an-
tiample slope coincides with the standard motivic Chern class (see remark 3.7).
Therefore, it is enough to prove the proposition for the twisted motivic Chern class.
The equivalent statement of the support axiom (proposition 5.2) implies that it is
enough to prove that (

π∗ρ(ie∗ mCA
y (M+

e , ∂M
+
e ; ∆e,s))

)
|e′

is divisible by λ−h((T
+
e′M)∗) when e′ ≤ e and equal to zero in the other case.

By the exact sequence of a closed immersion M+
e ⊂ M the considered class can

be nonzero only for e′ ≤ e. Let us focus on this case. The map ρ is defined by
ρ(y) = −h, thus it is enough to prove that

λy((T
+
e′M)∗) | ie∗ mCA

y (M+
e , ∂M

+
e ; ∆e,s)|e′ .

Let Ue′ be an open neighbourhood of e′ as in the local product property definition.
Denote by

ĩe : M+
e ∩ Ue′ → Ue′ , Y := Ue′ ∩M+

e′ , ι : Z ′
e′,e ↪→ Ze′ .

Then

ie∗ mCA
y (M+

e , ∂M
+
e ; ∆e,s)|e′ =ĩe∗ mCA

y (M+
e ∩ Ue′ , ∂M+

e ∩ Ue′ ; ∆e,s ∩ Ue′)|e′

=ĩe∗ mCA
y (Y × Z ′

e′,e, Y × ∂Z ′
e′,e;Y ×D)|e′

=ĩe∗
(
mCA

y (idY ) ⊠ mCA
y (Z ′

e′,e, ∂Z
′
e′,e;D)

)
|e′

= mCA
y (idY )|e′ · ι∗

(
mCA

y (Z ′
e′,e, ∂Z

′
e′,e;D)

)
|e′

=λy((T
+
e′M)∗) · ι∗

(
mCA

y (Z ′
e′,e, ∂Z

′
e′,e;D)

)
|e′ .
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The first equality follows from proposition 3.9 (1), the second from lemma 5.11 and
the third from proposition 3.9 (2). The fourth is a consequence of ĩe = idY × ι and
the fifth follows from the fact that Y is a smooth variety. □

Theorem 5.12. Let M be a smooth, projective A-variety and σ : C∗ → A a good
one parameter subgroup. Suppose that the fixed point set MA is finite and the pair
(M,σ) satisfies the local product property. Consider the cotangent variety X = T ∗M
with the induced A× C∗-action. Denote by π : X → M the projection. For a fixed
point e ∈ MA let ie : M+

e ⊂ M be an inclusion. Let s ∈ Pic(M) ⊗Z Q be a slope.
Then, the stable envelopes for the variety X are equal to the twisted motivic Chern
classes of BB-cells of M i.e.

h− dim(M+
e )π∗ρ

(
ie∗ mCA

y (M+
e , ∂M

+
e ; ∆e,s)

)
= Stabs(e) .

Proof. By theorem 4.2 (or theorem 2.2 for a trivial slope) the considered twisted
motivic Chern class satisfies all but one axioms of the stable envelope. By proposition
5.10 the local product property of (M,σ) implies that it satisfies also the support
axiom. □

Corollary 5.13. Consider the situation as in theorem 5.12. Suppose that the slope
s is trivial or small antiample. Then

h− dim(M+
e )π∗ρ

(
mCA

y (M+
e → M)

)
= Stabs(e) .

5.3. Homogenous varieties

Let G be a reductive, complex Lie group with a chosen maximal torus A and a Borel
subgroup B+. Any one parameter subgroup σ : C∗ → A induces a linear functional

φσ : a∗ → C.

For a general enough subgroup σ we can assume that no roots belong to the kernel
of this functional. Consider the Borel subgroups B+

σ such that the corresponding
Lie algebra is the union of these weight spaces whose characters are non-negative
with respect to φσ. Denote its unipotent subgroup by U+

σ . Analogously, one can
define groups B−

σ and U−
σ .

For a parabolic group B+ ⊂ P ⊂ G we consider the homogenous variety G/P with
the induced action of the torus A. The fixed point set (G/P )A is finite. It is a
classical fact that the positive (respectively negative) BB-cells with respect to σ are
orbits of the group B+

σ (respectively B−
σ ). These orbits are called Schubert cells. In

this section we prove that the pair (G/P, σ) satisfies the local product property.

Remark 5.14. For an arbitrary one parameter subgroup σ the maximal torus A is
contained in Bσ i.e. A ⊂ B+

σ . In general the group B+
σ may be not contained in P .

Theorem 5.15. The pair (G/P, σ) satisfies the local product property for general
enough σ. For any fixed point e ∈ (G/P )A there is an A-invariant open neighbour-
hood Ue such that:

(1) There exists an A-equivariant isomorphism

θe : Ue ≃
(
U ∩ (G/P )+e

)
×
(
Ue ∩ (G/P )−e

)
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(2) For any fixed point e′ ∈ (G/P )A the isomorphism θe induces an isomor-
phism:

Ue ∩ (G/P )+e′ ≃
(
U ∩ (G/P )+e

)
×
(
U ∩ (G/P )−e ∩ (G/P )+e′

)
Corollary 5.16. Consider the homogenous variety G/P described above. The
stable envelopes for the cotangent bundle T ∗G/P are equal to the twisted motivic
Chern classes of the Schubert cells, explicitly

h− dim((G/P )+e )π∗ρ
(
ie∗ mCA

y ((G/P )+e , ∂(G/P )+e ; ∆e,s)
)

= Stabs(e) .

For the trivial slope s = θ or a small antiample slope we get

h− dim((G/P )+e )π∗ρ
(
mCA

y ((G/P )+e → G/P )
)

= Stabs(e) .

Proof. It is an immediate consequence of theorems 5.12 and 5.15. □

Remark 5.17. For M = G/B, our result for a small anti-ample slope agrees with
the previous results of [AMSS19, Theorem 8.5 and Remark 8.7] up to a change of
h to h−1. This difference is a consequence of the fact that in [AMSS19] the inverse
action of the factor C∗ is considered.

In the course of proof we use the following interpretation of classical notions of the
theory of Lie groups in the language of BB-decomposition.

Lemma 5.18. Consider the action of the one parameter subgroup σ on the group G
defined by conjugation. Denote by F the component of the fixed point set Gσ which
contains the identity. For a subset Y ⊂ F . Let

G+(Y ) = {x ∈ G| lim
t→0

σ(t) · x ∈ Y } and G−(Y ) = {x ∈ G| lim
t→∞

σ(t) · x ∈ Y }

be the preimages of Y in the A-invariant projections G+
F → F and G−

F → F , respec-
tively.

(1) The Borel subgroup B+
σ (respectively B−

σ ) is the preimage of the maximal
torus A in the projection G+

F → F (respectively G−
F → F ) i.e.

B+
σ = G+(A) .

(2) The unipotent subgroup U+
σ (respectively U−

σ ) is the fiber of the projection
G+

F → F (respectively G−
F → F ) over the identity element i.e.

U+
σ = G+(id) .

Proof. We prove only the first case for the positive Borel subgroup. The other
cases are analogous. It is enough to show that G+(A) is a connected subgroup of G
whose Lie algebra coincides with the Lie algebra of B+

σ .

The subvariety G+(A) is a subgroup of G because the maximal torus A is a group
and the limit preserves multiplication, i.e. for g, h ∈ G+(A) we have

lim
t→0

σ(t) · gh−1 = lim
t→0

σ(t)gh−1σ(t)−1 = lim
t→0

σ(t)gσ(t)−1σ(t)h−1σ(t)−1

= lim
t→0

(σ(t) · g)(σ(t) · h)−1

=
(

lim
t→0

σ(t) · g
)(

lim
t→0

σ(t) · h
)−1

∈ A .
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Moreover, the variety G+(A) is connected because the maximal torus A is con-
nected. So it is enough to compute the tangent space to G+(A) at identity. By
theorem 1.56 (1) it is equal to the nonnegative part of the σ-representation g. This
is exactly the Lie algebra of the Borel subgroup B+

σ . □

Proof of the theorem 5.15. Note that the Weyl group acts transitively on
the fixed point set (G/P )A. Thus, replacing the subgroup σ by its conjugate by a
Weyl group element, we may assume that a fixed point e is equal to the class of
identity.

Let p ⊂ g be the Lie subalgebra of the parabolic subgroup P . Denote by uP the Lie
subalgebra consisting of the root spaces which do not belong to p. Let UP be the
corresponding Lie group. The group UP is unipotent (as a subgroup of the unipotent
group U−). Consider the action of the torus A on UP given by conjugation. Let us
note two facts from the theory of Lie groups.

(1) UP is isomorphic to its complex Lie algebra as a complex A-variety (cf.
[Bor91, Paragraph 15.3b], or [KMT74, Paragraph 8.0]).

(2) The quotient map p : G → G/P induces an A-equivariant isomorphism from
UP to some open neighbourhood of identity.

Choose p(UP ) as a neighbourhood of the class of identity. Let

X+ := p(UP ) ∩ (G/P )+id; X− := p(UP ) ∩ (G/P )−id

The second observation and the second point of lemma 5.18 imply that:

X+ := p(UP ) ∩ (G/P )+id ≃ UP ∩G+(id) ≃ UP ∩ U+
σ ,

analogously

X− := p(UP ) ∩ (G/P )−id ≃ UP ∩G−(id) ≃ UP ∩ U−
σ .

Both isomorphisms are given by the quotient morphism p : G → G/P . We define a
morphism

θid : X+ ×X− → p(UP )

as the multiplication in UP . We aim to prove that this is an isomorphism. We start
by showing injectivity on points. Both varieties X+ and X− are subgroups of UP . So
to prove injectivity it is enough to show that X+ ∩X− = {id}. But X+ is contained
in the positive unipotent group and X− in the negative unipotent group, so their
intersection must be trivial.

As a variety UP is isomorphic to an affine space - its Lie algebra uP . The induced
action of A on the linear space uP is linear as a part of the adjoint representation
of G. It follows that both X+ and X− are BB-cells of a linear action on a linear
space and therefore linear subspaces. Thus, the product X+ × X− is isomorphic
to an affine space of dimension equal to dimension of UP . Therefore, the map θid
is an algebraic endomorphism of an affine space which is injective on points. The
Ax–Grothendieck theorem ([Ax68] or [Gro66, Theorem 10.4.11.]) implies that it is
bijective on points. All affine spaces are smooth and connected so the Zariski main
theorem [Gro61, Theorem 4.4.3] implies that θid is an algebraic isomorphism.

To prove the second property it is enough to show the containment

θid
(
X+ × (p(UP ) ∩ (G/P )+e′)

)
⊂ (G/P )+e′ ,
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for any fixed point e′ ∈ (G/P )A. Note that

X+ ⊂ U+
σ ⊂ B+

σ .

Moreover, the BB-cell (G/P )+y is an orbit of the group B+
σ and the morphism θ

coincides with the action of B+
σ . So the desired inclusion holds. □



CHAPTER 6

Example: Lagrangian Grassmanian LG(2, 4)

6.1. Description of LG(2, 4)

Let v1,v2,v3,v4 be the standard basis of a vector space C4. Let ω be a symplectic
form given by matrix

ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


We consider Grassmanian of Lagrangian subspaces in C4 i.e.

LG(2, 4) := {V ∈ Gr(2, 4) | ω|V = 0} .

This is a homogenous variety of the symplectic group Sp(2). The maximal torus
A ⊂ Sp(2) consists of diagonal matrices which preserve the form ω i.e. of matrices
of the form 

t 0 0 0
0 t−1 0 0
0 0 s 0
0 0 0 s−1



6.1.1. Fixed points and tangent weights. The fixed point set LGA is finite. It
consists of coordinate Lagrangian subspaces

LGA = {span(v2,v4); span(v2,v3); span(v1,v4); span(v1,v3)} .

Let eij := span(vi,vj). Tangent weights at the fixed point set are collected in the
following table

fixed point weights

e24 t2, s2, ts

e23 t2, 1/s2, t/s

e14 1/t2, s2, s/t

e13 1/t2, 1/s2, 1/ts

The GKM graph is of the form (arrows point from the positive weight to the negative
one)

67
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e23
t2

vv
t/s

��

e13 e24
s2

<<

t2

""

stoo

e14
s2

hh

6.1.2. Schubert varieties. Let σ : C∗ → A be a one parameter subgroup given
by

σ(t) = diag{t2, t−2, t, t−1} .
We consider the corresponding BB-decomposition. The BB-order is given by

e24 > e23 > e14 > e13 .

We denote the closure of BB-cell of eij by LGij, i.e.

LGij := LG+
eij

.

The variety LG13 is a single point and LG24 is the whole Lagrangian Grassmanian.
The variety LG14 is isomorphic to P1. The pairs (LGij, ∂ LGij) are of the form

(LG24, ∂ LG24) = (LG(2, 4),LG23) ,

(LG23, ∂ LG23) = (LG23,LG14) ,

(LG14, ∂ LG14) = (LG14,LG13) ≃ (P1, {0}) ,

(LG13, ∂ LG13) = (LG13,∅) = (e13,∅) .

6.1.3. SNC resolutions. The varieties LG13,LG14 and LG24 are smooth. The
variety LG23 has one singular point e13. The point e13 has an open neighbour-
hood U isomorphic to an affine space C3. A point (a, b, c) ∈ C3 corresponds to the
Lagrangian subspace spanned by rows of the matrix[

1 a 0 c
0 −c 1 b

]
In these coordinates the variety LG23 ∩U is given by the equation

c2 + ab = 0 .

The pairs (LG13, ∂ LG13) and (LG14, ∂ LG14) are already SNC. We need to find
resolution of two remaining pairs. Let Z be the blow up of LG(2, 4) at the point e13.
Denote by E its exceptional divisor. The preimage of the neighbourhood U is the
blow up of an affine space in a point. Thus, it may be covered by three A-invariant
open subsets Ua, Ub, Uc isomorphic to C3. On these neighbourhoods we have standard
choices of coordinates (a, b̃a, c̃a), (ãb, b, c̃b), (ãc, b̃c, c) such that

x · ỹx = y ,

for x, y ∈ {a, b, c}.
Consider the projection π : Z → LG(2, 4). Let Z23 be the proper transform of LG23.
The total transform is equal to

π−1(LG23) = Z23 ∪ E .
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Computations in local coordinates show that these two subvarieties form a SNC
divisor. Therefore, (Z, π−1(LG23)) is a SNC resolution of (LG(2, 4),LG23). Denote
the interior of Z by

Zo = Z \ (Z23 ∪ E) .

Consider the projection p : Z23 → LG(2, 4). It is the blow up of LG23 in the singular
point e13. Let Z14 be the proper transform of LG14 and E ′ the exceptional divisor
of p. The total transform is equal to

p−1(LG13) = Z14 ∪ E ′ .

Computations in local coordinates show that these two subvarieties form a SNC
divisor. Therefore, (Z23, p

−1(LG14)) is a SNC resolution of (LG23,LG14). Denote
the interior of Z23 by

Zo
23 = Z \ (Z14 ∪ E ′) .

Remark 6.1. The variety LG23 ∩U is an affine cone over quadric ab + c2 = 0. The
variety Z23 is the blow up at the vertex of this cone.

All tangent weights at e13 have multiplicity one therefore fixed point sets ZA and
ZA

23 are finite. Let ea, eb, ec denote points corresponding to (0, 0, 0) in Ua, Ub and Uc

respectively. We have

ZA = {e24, e23, e14, ea, eb, ec} ,
ZA

23 = {e23, e14, ea, eb} .
The GKM graphs of Z and Z23 are of the form

ea

t2/s2

��

t/s

  

e23
t2oo

t/s

��

ea

t/s

��

e23
t2oo

t/s

��

ec

t/s~~

e24

s2
<<

t2 ""

st
oo

eb e14
s2

oo eb e14
s2
oo

Remark 6.2. The variety Z is not a GKM space (see [GKM98] or [AF21, discussion
after Corrolary 4.3]), there is a family of one dimensional A–orbits between ea and
eb. Normal weight to the subvariety Z23 at ea is t2/s2.

6.1.4. Picard Group. Lagrangian Grassmanian is a Fano variety, therefore

Pic(LG(2, 4)) ≃ H2(LG(2, 4),Z) .

The Bia lynicki-Birula theorem [BB73, Theorem 4.3] implies that the group H2(LG(2, 4),Z)
is the free abelian group generated by the class of LG23. Therefore

Pic(LG(2, 4)) ≃ Z ,

is generated by the class of line bundle OLG(2,4)(LG23). Consider the natural A-
linearisation of OLG(2,4)(LG23). Let us compute its weights at the fixed point set. The
point e24 does not belong to LG23, therefore the weight at e24 is trivial. Weights at
smooth points e23 and e14 are normal weights to the subvariety LG23. The remaining
weight at e13 can be computed using restrictions to one dimensional orbits. It is of
the form tasb. Restricting to the orbit connecting e24 and e13 we acquire a = b and
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restricting to the orbit connecting e23 and e13 we obtain a = −2. To conclude the
weights are given by

e24 e23 e14 e13
OLG(2,4)(LG23) 1 1/s2 1/t2 1/t2s2

Analogously we compute the weights of line bundles OLG14(LG13), OZ(E), OZ(Z23),
OZ23(ZE′) and OZ23(Z14).

e14 e13
OLG14(LG13) 1 1/s2

e23 e14 ea eb
OZ23(Z14) 1 s/t 1 s/t

OZ23(E
′) 1 1 1/t2 1/s2

e14 e23 e14 ea eb ec
OZ(Z23) 1 1/s2 1/t2 t2/s2 s2/t2 1

OZ(E) 1 1 1 1/t2 1/s2 1/ts

The localization theorem (Theorem 1.22) implies that

OLG(2,4)(LG23)|LG13 ≃ C1/s2t2 ,

OLG(2,4)(LG23)|LG14 ≃ OLG14(LG13) ⊗ C1/t2 ,

p∗(OLG(2,4)(LG23)|LG23) ≃ OZ23(2Z14 + E ′) ⊗ C1/s2 ,

π∗OLG(2,4)(LG23) ≃ OZ(Z23 + 2E) .

Therefore, in non-equivariant Picard groups we have equalities

OLG(2,4)(LG23)|LG13 ≃ OLG13 ,

OLG(2,4)(LG23)|LG14 ≃ OLG14(LG13) ,

p∗(OLG(2,4)(LG23)|LG23) ≃ OZ23(2Z14 + E ′) ,

π∗OLG(2,4)(LG23) ≃ OZ(Z23 + 2E) .

6.2. Twisted classes

In this section we collect computed twisted motivic Chern classes of Schubert cells
in LG(2, 4). We present detailed computation only for the class of a Schubert vari-
ety LG23. In our opinion this is the most complicated class.

Denote by ιij the inclusion of Schubert variety

ιij : LGij ⊂ LG(2, 4) .

Let λ ∈ Q be a rational number. We want to compute classes

ιij∗ mCA
y (LGij, ∂ LGij; ∆λ) ∈ KA(LG(2, 4))[y]

where ∆λ is a Q-Cartier divisor corresponding to OLG(2,4)(λ · LG23)|LGij
(see sec-

tion 4.2). For simplicity we denote the above class by mCA
y (ij, λ).

6.2.1. Results. Let α = 2⌈λ⌉ − ⌈2λ⌉. Note that α = 1 when ⌈λ⌉ − λ ≥ 1/2 and
α = 0 in the other case.
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For the point e13 we have

mCA
y (13, λ)|e24 = 0 ,

mCA
y (13, λ)|e23 = 0 ,

mCA
y (13, λ)|e14 = 0 ,

mCA
y (13, λ)|e13 = (1 − s2)(1 − t2)(1 − st) .

For the point e14 we have

mCA
y (14, λ)|e24 = 0 ,

mCA
y (14, λ)|e23 = 0 ,

mCA
y (14, λ)|e14 = (1 − t2)

(
1 − t

s

)(
1 + y

1

s2

)
,

mCA
y (14, λ)|e13 = (1 − t2)(1 − st)(1 + y)s2−2⌈λ⌉ .

For the point e23 we have

mCA
y (23, λ)|e24 = 0 ,

mCA
y (23, λ)|e23 = (1 − s2)

(
1 + y

1

t2

)(
1 + y

s

t

)
,

mCA
y (23, λ)|e14 = (1 − t2)

(
1 + y

1

s2

)
(1 + y)

(s
t

)⌈2λ⌉−1

,

mCA
y (23, λ)|e13 =

{
(1 − st)(1 + y)t1−⌈2λ⌉(s(1 + y) + t + sty) for α = 0 ,

(1 − st)(1 + y)t1−⌈2λ⌉(1 + st(1 + y) + s2y) for α = 1 .

For the point e24 we have

mCA
y (24, λ)|e24 =

(
1 + y

1

t2

)(
1 + y

1

s2

)(
1 + y

1

st

)
,

mCA
y (24, λ)|e23 =

(
1 + y

1

t2

)(
1 + y

s

t

)
(1 + y)s2−2⌈λ⌉ ,

mCA
y (24, λ)|e14 =

(
1 + y

1

s2

)(
1 + y

t

s

)
(1 + y)t2−2⌈λ⌉ ,

mCA
y (24, λ)|e13 =

{
(1 + y)(st)1−⌈2λ⌉(st(1 + y) − y + s2y + t2y + s2t2y2) for α = 0 ,

(1 + y)(st)1−⌈2λ⌉(st(y + y2) + 1 + s2y + t2y − s2t2y) for α = 1 .

6.2.2. Computation for the variety LG23. The pair (LG23, ∂ LG(23)) is not SNC,
because the variety LG23 is not smooth. We take

p : (Z23, Z14 ∪ E ′) → (LG23, ∂LG(23))

as a SNC resolution of singularities. In the previous section we proved that

p∗(OLG(2,4)(LG23)|LG23) ≃ OZ23(2Z14 + E ′) .

Therefore

p∗∆λ = 2λ · Z14 + λ · E ′ .
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We want to compute the class

mCA
y (23, λ) = ι23∗p∗ mCA

y (Z23, Z14 ∪ E ′; 2λZ14 + λE ′)

= (ι23 ◦ p)∗
(
mCA

y (Zo
23 ⊂ Z23) · OZ23(⌈2λ⌉Z14) · OZ23(⌈λ⌉E ′)

)
.

Let α = 2⌈λ⌉ − ⌈2λ⌉. Note that α = 1 when ⌈λ⌉ − λ ≥ 1/2 and α = 0 in the other
case. We compute restrictions at the fixed point set.

OZ23(⌈2λ⌉Z14) OZ23(⌈λ⌉E ′) mCA
y (Zo

23 ⊂ Z23) mCA
y (Z23, Z14 ∪ E ′; p∗∆λ)

e23 1 1 (1 + y 1
t2

)(1 + y s
t
) (1 + y 1

t2
)(1 + y s

t
)

e14 (s/t)⌈2λ⌉ 1 (1 + y 1
s2

)(1 + y) t
s

(1 + y 1
s2

)(1 + y)( s
t
)⌈2λ⌉−1

ea 1 1/t2⌈λ⌉ (1 + y s
t
)(1 + y)t2 (1 + y s

t
)(1 + y)t1−⌈2λ⌉t1−α

eb (s/t)⌈2λ⌉ 1/s2⌈λ⌉ (1 + y)2 · t
s
· s2 (1 + y)2t1−⌈2λ⌉s1−α

Using LRR formula (Theorem 1.24) we compute the pushforward (ι23◦p)∗ and obtain

mCA
y (23, λ)|e24 = 0 ,

mCA
y (23, λ)|e23 = (1 − s2) mCA

y (Z23, ∂Z23; p
∗∆λ)|e23 = (1 − s2)

(
1 + y

1

t2

)(
1 + y

s

t

)
,

mCA
y (23, λ)|e14 = (1 − t2) mCA

y (Z14, ∂Z23; p
∗∆λ)|e14 = (1 − t2)

(
1 + y

1

s2

)
(1 + y)

(s
t

)⌈2λ⌉−1

,

mCA
y (23, λ)|e13 = eu(Te13 LG(2, 4)) ·

∑
i∈{a,b}

mCA
y (Z23, Z14 ∪ E p∗∆λ)|ei

eu(TeiZ23)

= (1 − st)(1 + y)t1−⌈2λ⌉
(

(1 + y s
t
)(1 − s2)t1−α

1 − s/t
+

(1 + y)(1 − t2)s1−α

1 − t/s

)
.

After calculations we get the formula

mCA
y (23, λ)|e13 =

{
(1 − st)(1 + y)t1−⌈2λ⌉(s(1 + y) + t + sty) for α = 0 ,

(1 − st)(1 + y)t1−⌈2λ⌉(1 + st(1 + y) + s2y) for α = 1 .

6.3. Axioms

In this section we manually check that the computed classes satisfy the axioms
of stable envelope. We omit the normalization axiom because its verification is
analogous to the proof of proposition 2.5.

6.3.1. Support axiom. According to proposition 5.2 the support axiom states
that

• mCA
y (ij, λ)|ekl = 0 if eij < ekl .

• For all ij the class mCA
y (ij, λ)|e24 is divisible by(

1 + y
1

t2

)(
1 + y

1

s2

)(
1 + y

1

st

)
.

• For all ij the class mCA
y (ij, λ)|e23 is divisible by(
1 + y

1

t2

)(
1 + y

s

t

)
.
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• For all ij the class mCA
y (ij, λ)|e14 is divisible by(

1 + y
1

s2

)
.

• For all ij the class mCA
y (ij, λ)|e13 is divisible by 1 .

It is straightforward to check that these conditions hold.

6.3.2. Newton inclusion property. Consider the following convex polygons.

A13 A14 A23

B1 B2 B3

B4

B5 B6

B7

Identify the vector space R2 with Hom(A,C∗)⊗ZR in such a way that the character t
corresponds to the vector (1, 0) and the character s to (0, 1). It is easy to check that

NA(mCA
y (13, λ)|e13) = A13 , NA(mCA

y (14, λ)|e14) = A14 , NA(mCA
y (23, λ)|e23) = A23 .

Moreover,

NA(mCA
y (14, λ)|e13) = B1 + (0, 2 − 2⌈λ⌉) ,

NA(mCA
y (23, λ)|e14) = B2 + (1 − ⌈2λ⌉, ⌈2λ⌉ − 1) ,

NA(mCA
y (24, λ)|e23) = B3 + (0, 2 − 2⌈λ⌉) ,

NA(mCA
y (24, λ)|e14) = B4 + (2 − 2⌈λ⌉, 0) ,

NA(mCA
y (24, λ)|e13) = B5 + (1 − ⌈2λ⌉, 1 − ⌈2λ⌉) .

For ⌈λ⌉ − λ < 1/2 (i.e. for α = 0) we have

NA(mCA
y (23, λ)|e13) = B6 + (1 − ⌈2λ⌉, 0) .
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For ⌈λ⌉ − λ ≥ 1/2 (i.e. for α = 1) we have

NA(mCA
y (23, λ)|e13) = B7 + (1 − ⌈2λ⌉, 0) .

Consider the function g : R → R given by

g(x) = x− ⌈x⌉ .
The image of g is the interval (−1, 0]. The Newton inclusion property is equivalent
to the following list of conditions.

• For e14 > e13 we get

B1 + (2 + 2g(λ)) · (0, 1) ⊂ A13 .

• For e23 > e14 we get

B2 + (1 + g(2λ)) · (1,−1) ⊂ A14 .

• For e24 > e23 we get

B3 + (2 + 2g(λ)) · (0, 1) ⊂ A23 .

• For e24 > e14 we get

B4 + (2 + 2g(λ)) · (1, 0) ⊂ A14 .

• For e24 > e13 we get

B5 + (1 + g(2λ)) · (1, 1) ⊂ A13 .

• For e23 > e13 and ⌈λ⌉ − λ < 1/2 we get

B6 + (1 + g(2λ)) · (1, 0) ⊂ A13 .

• For e23 > e13 and ⌈λ⌉ − λ ≥ 1/2 we get

B7 + (1 + g(2λ)) · (1, 0) ⊂ A13 .

It can be easily checked that our polytopes satisfy these conditions.

The distinguished point in NA(mCA
y (ij, λ))|eij is equal to

xij = {− detT+
eij

LG(2, 4)} .
It is the red point in polytopes A13, A14 and A23. The distinguished point axiom
says that we may take Aij \ xij in the above containments.



CHAPTER 7

Appendix A: Stable envelopes

7.1. Setting

The notion of the stable envelope is still evolving. Initially, it was defined for sym-
plectic resolutions [MO19, Oko17, OS16, AO21]. Later, the definition was gener-
alized to symplectic manifolds, whose BB-cells satisfy certain regularity conditions.
See a recent paper [Oko21] for a new development in which manifold is not even
assumed symplectic.

In this section we will present a version of axioms of the stable envelope. We assume
that X is a symplectic manifold, whose BB-cells satisfy certain regularity conditions.
We will prove that these axioms agree with [Oko17, OS16] for a general enough slope
and define a unique element for an arbitrary slope. We do not prove that an element
satisfying these axioms exists.

Let (X,ω) be a symplectic T = A× C∗-variety. Let h be a character of T equal to
the projection to the factor C∗. Suppose that:

• The fixed point set XA is finite.
• The symplectic form ω is an eigenvector of the torus T and h is its character.

The first condition implies that XT = XA. The second implies that the torus A
preserves the symplectic form ω.

Remark 7.1. Suppose that dimX > 0. Let σ : C∗ → A be a one parameter
subgroup such that XC∗

= XA. Then, the above conditions imply that there is no
open BB-cell in X. Therefore, the variety X cannot be projective.

Definition 7.2 (cf. definition 1.64 and remark 1.65). Suppose that a one parameter
subgroup σ : C∗ → A is good for X, i.e. that XA = XC∗

. We say that the pair
(X, σ) is admisible if the sum of BB cells

⊔
X+

e is closed in X.

Remark 7.3 ([MO19, Lemma 3.2.7]). Suppose that X is a symplectic resolution
and the one parameter subgroup σ is good. Then, the pair (X, σ) is admisible.

Definition 7.4. A polarization is an element T 1/2 ∈ KT(X) such that

T 1/2 + C−h ⊗
(
T 1/2

)∗
= TX ∈ KT(X) .

Definition 7.5. For a cocharacter σ we denote by Cσ its weight chamber.

Definition 7.6. Let X be a T-equivariant symplectic variety satisfying the as-
sumptions from the beginning of this section. Let σ : C∗ → A be a one parameter
subgroup such that the pair (X, σ) is admisible. Let T 1/2 be a polarization. Consider
a fractional line bundle s ∈ Pic(X) ⊗Z Q. The K-theoretic stable envelope is a set
of elements StabsCσ ,T1/2

∈ KT(X)(e) indexed by the fixed point set XA, such that

75
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1. Support axiom: For any fixed point e ∈ XA

supp(StabsCσ ,T1/2
(e)) ⊂

⊔
e′≤e

X+
e′ .

2. Normalization axiom: For any fixed point e ∈ XA

StabsCσ ,T1/2
(e)|e = eu(T−

e X)
(−1)rkT

1/2, ≥0
|e

detT
1/2, ≥0
|e

.

3. Newton inclusion property: Choose any A-linearisation of the slope s. For a pair
of fixed points e′, e ∈ MA such that e′ ≤ e we have a containment of the
Newton polytopes

NA
(
StabsCσ ,T1/2

(e)|e′
)

+ we(s) ⊂ NA(eu(T−
e′X)) − we′

(
detT

1/2, ≥0
|e′

)
+ we′(s) .

4. Distinguished point: Choose any A-linearisation of the slope s. For a pair of
fixed points e′, e ∈ MA such that e′ < e the point

we′(s) − we(s) − we′

(
detT

1/2, ≥0
|e′

)
∈ Hom(A,C∗) ⊗Z R

does not belong to the Newton polytope NA
(
StabsCσ ,T1/2

(e)|e′
)
.

Remark 7.7. In the above definition T
1/2, ≥0
|e′ denotes the nonnegative part of the

virtual bundle T
1/2
|e′ ∈ KT(e′) (see proposition 1.13).

Remark 7.8. Suppose that X = T ∗M is a cotangent variety with the T-action
described in example 1.61. Choose T 1/2 = π∗TM . Then the above definition is
equivalent to definition 1.68.

Remark 7.9 ([Oko17, Paragraph 9.1.12]). Stable envelopes corresponding to dif-
ferent polarization are related by a shift of slope and renormalization. Therefore,
theorem 5.12 may be used to obtain a formula for the stable envelope for an arbitrary
polarization.

7.2. Comparison of axioms

Proposition 7.10. Suppose that the slope s is general enough, i.e. that

we′(s) − we(s) − we′

(
detT

1/2, ≥0
|e′

)
is not a lattice point. Then definition 7.6 is equivalent to the one from [Oko17,
Chapter 9] and [OS16, Section 2.1] i.e.

StabsCσ ,T1/2
(e) = h−(1/2) rkT

1/2, ≥0
|e · Ŝtab

s

Cσ ,T1/2
(1e)

where Ŝtab
s

Cσ ,T1/2
is the stable envelope morphism from Okounkov’s papers.

Proof. Note that for a general enough slope the fourth axiom (distinguished
point) follows from the third one (Newton inclusion property). The considered point
is a vertex of the polytope

NA(eu(T−
e′X)) − we′

(
detT

1/2, ≥0
|e′

)
+ we′(s) − we(s) ,
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which is not a lattice point. Therefore, it cannot lie in the smaller lattice polytope

NA
(
StabsCσ ,T1/2

(e)|e′
)
.

Therefore, it is enough to show that the first three axioms are equivalent to Ok-
ounkov’s axioms.

According to [Oko17, Chapter 9] and [OS16, Section 2.1] the stable envelope is a
map of KT(pt)-modules

KT(XA) → KT(X)

given by a correspondence

Ŝtab
s

Cσ ,T1/2
∈ KT(XA ×X) ,

which satisfies three properties [Oko17, Paragraph 9.1.3]. Below we denote both

morphism and correspondence by Ŝtab
s

Cσ ,T1/2
.

The set XA is finite, therefore the morphism Ŝtab
s

Cσ ,T1/2
is uniquely determined by

a set of elements

Ŝtab
s

Cσ ,T1/2
(e) := Ŝtab

s

Cσ ,T1/2
(1e) .

The main ingredient in Okounkov’s definition are attracting sets (cf. [OS16, Para-
graph 2.1.3], [Oko17, Paragraph 9.1.2]). The straightforward comparison of defini-
tions shows that they coincide with the BB-cells

Attr(e) = {x ∈ X| lim
t→0

σ(t) · x = e} = X+
e .

Support axiom: ([OS16, Paragraph 2.1.1], [Oko17, Paragraph 9.1.3 (1)], or [MO19,
Theorem 3.3.4 (i)]) It is required that

supp(Ŝtab
s

Cσ ,T1/2
) ⊂

⊔
e∈XA

(
e×

⊔
e′≤e

Attr(e′)

)
.

This means that for any fixed point e ∈ XA

supp(Ŝtab
s

Cσ ,T1/2
(e)) ⊂

⊔
e′≤e

Attr(e′) .

The attracting sets coincide with the BB-cells, so this is an equivalent formulation
of the first axiom from definition 7.6.

Normalization axiom: ([OS16, Paragraph 2.1.4], [Oko17, Paragraph 9.1.5]) For any

fixed point e ∈ XA. the correspondence Ŝtab
s

Cσ ,T1/2
satisfies

(
Ŝtab

s

Cσ ,T1/2

)
|e×e

= (−1)rkT
1/2, ≥0
|e

(
det ν−(e ⊂ X)

detT
1/2, ̸=0
|e

)1/2

⊗OAttr|e×e ,(19)

where

Attr := {(y, x) ∈ XA ×X| lim
t→0

σ(t) · x = y} .

By definition (
Ŝtab

s

Cσ ,T1/2

)
|e×e

= Ŝtab
s

Cσ ,T1/2
(e) .
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In [OS16, Paragraph 2.1.4] it is noted that

OAttr|e×e = Odiag e · eu(ν−(e ⊂ X)) = eu(T−
e X) ,

det ν−(e ⊂ X)

detT
1/2, ̸=0
|e

=
hrkT

1/2, ≥0
|e(

detT
1/2, ≥0
|e

)2 .
The equation 19 simplifies to

Ŝtab
s

Cσ ,T1/2
(e) = h(1/2) rkT

1/2, ≥0
|e · eu(T−

e X) · (−1)rkT
1/2, ≥0
|e

detT
1/2, ≥0
|e

Up to normalization by h(1/2) rkT
1/2, ≥0
|e this is the second axiom from definition 7.6.

Newton inclusion property: ([OS16, Paragraph 2.1.6], [Oko17, Paragraph 9.1.9]) In

the case of isolated fixed points, the last axiom of stable envelope Ŝtab
s

Cσ ,T1/2
states

that for any pair of fixed points e, e′ ∈ XA we have

NA

((
Ŝtab

s

Cσ ,T1/2

)
|e×e′

· s|e
)

⊂ NA

((
Ŝtab

s

Cσ ,T1/2

)
|e′×e′

· s|e′
)

.

The support condition implies that this requirement is nontrivial only when e ≥ e′.
The normalization axiom implies that the above formula is equivalent to

NA
(
Ŝtab

s

Cσ ,T1/2
(e)|e′ · s|e

)
= NA

h
(1/2) rkT

1/2, ≥0

|e′ · eu(T−
e′X) · (−1)

rkT
1/2, ≥0

|e′

detT
1/2, ≥0
|e′

· se′

 .

We can simplify the above formula

NA
(
Ŝtab

s

Cσ ,T1/2
(e)|e′

)
+ we(s) ⊂ NA(eu(T−

e′X)) − we′

(
detT

1/2, ≥0
|e′

)
+ we′(s) .

This is exactly the third axiom from definition 7.6. □

7.3. Uniqueness

For a slope which is not generic, the first three axioms of the stable envelope do not
define an unique class (see the example below). In this section we prove that addi-
tion of the forth axiom resolves this problem. For a general enough slope uniqueness
of the stable envelope was proved in [Oko17, Proposition 9.2.2]. For the sake of
completeness, we present here the proof for an arbitrary slope. The proof is a gen-
eralisation of the proof of uniqueness of cohomological envelopes [MO19, Paragraph
3.3.4].

Example 7.11. Consider a variety M = P1 with the A = C∗-action given by

t · [a : b] = [ta : b] .

Consider the cotangent variety X = T ∗P1 with the T-action described in exam-
ple 1.61. Denote by α the character of T corresponding to the projection to A. The
pair (X, idA) is admisible.
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Consider the stable envelope for the one parameter subgroup idA, the tangent bundle
TP1 as a polarization and the trivial line bundle θ as a slope. Both

Stabθ([1 : 0]) = 1 −O(−1), Stabθ([0 : 1]) =
1

h
− O(−1)

α

and

Stabθ([1 : 0]) = 1 −O(−1), Stabθ([0 : 1]) =
O(−1)

h
− O(−2)

α

satisfy the first three axioms of the stable envelope.

Proposition 7.12. Consider the situation as in definition 7.6. There exists at most
one class satisfying the axioms of the stable envelope.

Lemma 7.13. Choose a set of fractional weights we ∈ Hom(A,C∗) ⊗ Q indexed by
the fixed point set XA. Suppose that an element a ∈ KT(X) satisfies two conditions

(1) supp(a) ⊂
⊔

e∈XA X+
e ,

(2) For any fixed point e ∈ XA we have a containment of Newton polytopes

NA(a|e) ⊂
(
NA(eu(T−

e X)) \ {0}
)

+ we .

Then a = 0.

Proof. We proceed by induction on the partially ordered set XA. Suppose that
the element a is supported on the closed set Y =

⊔
e∈Z X+

e for some subset Z ⊂ XA.
There is a fixed point e1 ∈ XA, such that the BB cell X+

e1
is an open subvariety

in Y . We aim to show that a is supported on the closed subset
⊔

e∈Z\{e1}X
+
e . By

induction it implies that a = 0.
Choose an open subset U ⊂ X such that U∩Y = X+

e1
. Then X+

e1
⊂ U is an inclusion

of a smooth, closed subvariety. Consider a commutative diagram

U
i // X

e1
s0 // X+

e1

j̃

OO

ĩ // Y

j

OO

The square in the diagram is a pullback. The element a is supported on Y , so there
exists an element α ∈ GT(Y ) such that j∗(α) = a. Then

a|e1 = (j∗α)|e1 = s∗0j̃
∗i∗j∗α = s∗0j̃

∗j̃∗ĩ
∗α = eu(X+

e1
⊂ U) · α|e1 = eu(T−

e1
X) · α|e1 .

The third equality follows form proposition 1.9 (1) and the fourth from proposition
1.18. It follows that:

NA(eu(T−
e1
X) · α|e1) = NA(a|e1) ⊂

(
NA(eu(T−

e1
X)) \ {0}

)
+ we1 .(20)

Assume that α|e1 is a nonzero element. Then the Newton polytope NA(α|e1) is
nonempty. The ring KC∗

(e1) is a domain so proposition 1.28 (b) implies that

NA
(
eu(T−

e1
X)
)
⊂ NA

(
eu(T−

e1
X)
)

+ NA(α|e1) = NA
(
eu(T−

e1
X) · α|e1

)
.(21)

Inclusions (20) and (21) imply that

NA
(
eu(T−

e1
X)
)
⊂
(
NA(eu(T−

e1
X)) \ {0}

)
+ we1 .
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But no polytope can be translated into a proper subset of itself. This contradiction
proves that the element α|e1 is equal to zero. The map s0 is a section of an affine
bundle so it induces an isomorphism of the K-theory. It follows that α|X+

e1
= 0.

Thus, the element α is supported on the closed set
⊔

e∈Z\{e1}X
+
e . Therefore, a is

also supported on this set. □

Proof of proposition 7.12. Let {Stab(e)}e∈XA and {S̃tab(e)}e∈XA be two
sets of elements satisfying the axioms of the stable envelope. It is enough to show

that for a given fixed point e ∈ XA the element Stab(e)−S̃tab(e) satisfies conditions
of lemma 7.13 for some set of vectors we. Let

we′ = we′(s) − we(s) − we′

(
det
(
T

1/2
e′

)≥0
)
.

The first condition of lemma 7.13 follows from the support axiom. Let’s focus on
the second condition. The only nontrivial case is e′ < e. In the other cases we have

Stab(e)|e′ − S̃tab(e)|e′ = 0.

When e′ < e the last two axioms imply that the Newton polytopes NA(Stab(e)|e′)

and NA(S̃tab(e)|e′) are contained in a convex set(
NA(eu(T−

e′X)) \ {0}
)

+ we′ .

Thus

NA
(
Stab(e)|e′ − S̃tab(e)|e′

)
⊂ conv

(
NA(Stab(e)|e′),NA(S̃tab(e)|e′)

)
⊂
(
NA(eu(T−

e′X)) \ {0}
)

+ we′ .

□
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[Loo02] E. Looijenga. Motivic measures. In Séminaire Bourbaki : volume 1999/2000, exposés
865-879, number 276 in Astérisque, pages 267–297. Société mathématique de France,
2002.

[Mac74] R. D. MacPherson. Chern classes for singular algebraic varieties. Annals of Mathe-
matics, 100(2):423–432, 1974.

[MNS20] L. C. Mihalcea, H. Naruse, and Ch. Su. Left demazure-lusztig operators on equivariant
(quantum) cohomology and K theory, 2020. arXiv:2008.12670.

[MO19] D. Maulik and A. Okounkov. Quantum groups and quantum cohomology. Astérisque,
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Math. Journal, 68:447–462, 1992.
[Tho93] R. W. Thomason. Les K-groupes d’un schéma éclaté et une formule d’intersection

excédentaire. Invent. Math., 112(1):195–215, 1993.
[Vak18] R. Vakil. The rising sea foundations of algebraic geometry, 2018. version from novem-

ber 2018.
[Web16] A. Weber. Equivariant Hirzebruch class for singular varieties. Selecta Mathematica,

22(3):1413–1454, 2016.
[Web17] A. Weber. Hirzebruch class and Bia lynicki-Birula decomposition. Transform. Groups,

22(2):537–557, 2017.



BIBLIOGRAPHY 85

[Whi65] H. Whitney. Local properties of analytic varieties. In Differential and Combinatorial
Topology (A Symposium in Honor of Marston Morse), pages 205–244. Princeton Univ.
Press, Princeton, N. J., 1965.

[W lo09] J. W lodarczyk. Simple constructive weak factorization. In Algebraic geometry—Seattle
2005. Part 2, volume 80 of Proc. Sympos. Pure Math., pages 957–1004. Amer. Math.
Soc., Providence, RI, 2009.


	Abstract
	Streszczenie
	Acknowledgements
	Introduction
	Contents
	Notations and assumptions

	Chapter 1. Tools
	1.1. Equivariant K-theory
	1.2. Newton polytopes and the limit map
	1.3. BB-decomposition
	1.4. Stable envelopes
	1.5. Motivic Chern class

	Chapter 2. Motivic Chern class as stable envelope
	2.1. Statement of result
	2.2. Normalization axiom
	2.3. Newton inclusion property
	2.4. Distinguished point

	Chapter 3. Twisted motivic Chern class
	3.1. Definition
	3.2. Independence from the resolution

	Chapter 4. Twisted motivic Chern class as stable envelope
	4.1. Statement of result
	4.2. Boundary divisor
	4.3. Normalization axiom
	4.4. Newton inclusion property
	4.5. Distinguished point

	Chapter 5. Support axiom
	5.1. Equivalent statement of the support axiom
	5.2. Sufficient condition
	5.3. Homogenous varieties

	Chapter 6. Example: Lagrangian Grassmanian LG(2,4)
	6.1. Description of LG(2,4)
	6.2. Twisted classes
	6.3. Axioms

	Chapter 7. Appendix A: Stable envelopes
	7.1. Setting
	7.2. Comparison of axioms
	7.3. Uniqueness

	Bibliography

