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µ-calculus = modal logic + �xpoints

boolean operations + 3(_): 3x , x ∧3y , ...

(x , y , ... ∈ Var)

I interpreted in vertices of a directed graphM = (M ,→)
(labelled with interpretation S ⊆ M for each x ∈ Var)

I �3x� means �there exists a child satisfying x�

νx .3x , µy .x ∧3y ...
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I 3x induces an operation F : P(M)→ P(M):

S
F7→ {m | ∃m→nn ∈ S} = J3xKx ::=S

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F
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I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

S0 = M S1 = F (S0)

· · ·

·
·
·

S1 = F (S0) =�∃ a child�

· · ·

· · ·

·
·
·

Sω = �arbitrarily long paths�

· · ·

·
·
·

Sω+1 = Sω+2 = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

countdown calculus = µ-calculus + νω
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µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games
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countdown game = parity game + subset D ⊆{0,...,d}

G = (V ,E , rank : V →{0,...,d},D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):

I �rst, owner of v chooses vEw ,

I then, counters are updated depending on rank(w):

I C′r = Cr for r > rank(w), [unchanged]

I C′r = ω for r < rank(w), [reset]

I if rank(w) ∈ D, the owner of rank(w) chooses:

C′
rank(w) < Crank(w) [decremented]

I and the game moves to (w ,C′r).
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Game for νx .3x :

I ∃ve picks a path v1 → v2 → ... vertex by vertex

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x except that rank r is nonstandard

I �rst, ∀dam picks counter value Cr = α < ω. Then, after each

∃ve's move he decrements Cr .

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths
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Thank you! :)


