Countdown μ -calculus

(with Automata and Games)

Jędrzej Kołodziejski (+ Bartek Klin)

MFCS 2022 Vienna

Powered by BeamerikZ

μ -calculus = modal logic + fixpoints

▶ interpreted in vertices of a directed graph $\mathcal{M} = (M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in Var$)

- ▶ interpreted in vertices of a directed graph $\mathcal{M} = (M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in Var$)
- ▶ " $\Diamond x$ " means "there exists a child satisfying x"

- ▶ interpreted in vertices of a directed graph $\mathcal{M} = (M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in Var$)
- " $\Diamond x$ " means "there exists a child satisfying x"

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

▶ since x appears only positively in $\Diamond x$, F is monotone...

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

▶ since x appears only positively in $\Diamond x$, F is monotone...

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

► since x appears only positively in $\diamondsuit x$, F is monotone... $S \subseteq S' \implies F(S) \subseteq F(S')$ ←

▶ ...and so *F* has the greatest and the least fixpoint!

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

► since x appears only positively in $\diamondsuit x$, F is monotone... $S \subseteq S' \implies F(S) \subseteq F(S')$

► ...and so *F* has the greatest and the least fixpoint! $[[\nu x. \diamondsuit x]] = \mathsf{GFP}.F$

$$S \stackrel{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in S \} = \llbracket \diamondsuit x \rrbracket^{x ::=S}$$

▶ since x appears only positively in $\diamondsuit x$, F is monotone... $S \subseteq S' \implies F(S) \subseteq F(S')$

► ...and so *F* has the greatest and the least fixpoint! $\llbracket \nu x. \Diamond x \rrbracket = \mathsf{GFP}.F \qquad \llbracket \mu x. \Diamond x \rrbracket = \mathsf{LFP}.F$

\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

add countdown operator
$$\,
u^{\omega} {m x}. \diamondsuit {m x} \,$$
 to the syntax!

add countdown operator
$$\,
u^{\omega} {m x}. \diamondsuit {m x} \,$$
 to the syntax!

 \blacktriangleright we compute fixpoints by (transfinite) iteration of F:

add countdown operator
$$\,
u^{\omega} {m x}. \diamondsuit {m x} \,$$
 to the syntax!

countdown calculus = μ -calculus + ν^{ω}

$\mu\text{-calculus}\sim\text{parity games}$

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

countdown game = parity game + subset $\mathcal{D} \subseteq \{0, ..., d\}$

nonstandard ranks

▶ counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in D$

- ▶ initially all C_r equal ω
- ▶ from $(v, \overline{C_r})$:
 - ► first, owner of v chooses vEw,

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

countdown game = parity game + subset $\mathcal{D} \subseteq \{0, ..., d\}$

► counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$

▶ initially all C_r equal ω

) nonstandard ranks

- ▶ from $(v, \overline{C_r})$:
 - First, owner of v chooses vEw,
 - ► then, counters are updated depending on rank(w):

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

countdown game = parity game + subset $\mathcal{D} \subseteq \{0, ..., d\}$

- ► counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$
- ▶ initially all C_r equal ω
- ▶ from $(v, \overline{C_r})$:
 - First, owner of v chooses vEw,
 - ► then, counters are updated depending on rank(w):
 - $\blacktriangleright C'_r = C_r \text{ for } r > \operatorname{rank}(w), \qquad [unchanged]$

nonstandard ranks

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

▶ counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$

- ▶ initially all C_r equal ω
- ▶ from $(v, \overline{C_r})$:
 - First, owner of v chooses vEw,
 - ► then, counters are updated depending on rank(w):
 - $C'_r = C_r \text{ for } r > \operatorname{rank}(w), \qquad [unchanged]$ $C'_r = \omega \text{ for } r < \operatorname{rank}(w), \qquad [reset]$

nonstandard ranks

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

▶ counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$

- ▶ initially all C_r equal ω
- ▶ from $(v, \overline{C_r})$:
 - First, owner of v chooses vEw,
 - ► then, counters are updated depending on rank(w):
 - $\blacktriangleright C'_r = C_r \text{ for } r > \operatorname{rank}(w), \qquad [unchanged]$

nonstandard ranks

- $\blacktriangleright C'_r = \omega \text{ for } r < \operatorname{rank}(w), \qquad [reset]$
- ▶ if $rank(w) \in D$, the owner of rank(w) chooses:

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

▶ counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$

- ▶ initially all C_r equal ω
- ▶ from $(v, \overline{C_r})$:
 - First, owner of v chooses vEw,
 - ► then, counters are updated depending on rank(w):
 - $\blacktriangleright C'_r = C_r \text{ for } r > \operatorname{rank}(w), \qquad [unchanged]$

nonstandard ranks

- $\blacktriangleright C'_r = \omega \text{ for } r < \operatorname{rank}(w), \qquad [reset]$
- ▶ if rank(w) ∈ D, the owner of rank(w) chooses: $C'_{rank(w)} < C_{rank(w)}$ [decremented]

$$\mathcal{G} = (V, E, \mathsf{rank} : V \rightarrow \{0, \dots, d\}, \mathcal{D})$$

► counter $C_r \in \{0, 1, ...\omega\}$ for each $r \in \mathcal{D}$

▶ initially all C_r equal ω

▶ from $(v, \overline{C_r})$:

- First, owner of v chooses vEw,
- ► then, counters are updated depending on rank(w):
 - $\blacktriangleright C'_r = C_r \text{ for } r > \operatorname{rank}(w), \qquad [unchanged]$

nonstandard ranks

[decremented]

- $\blacktriangleright C'_r = \omega \text{ for } r < \operatorname{rank}(w), \qquad [reset]$
- ▶ if $rank(w) \in D$, the owner of rank(w) chooses:

 $C'_{rank(w)} < C_{rank(w)}$

▶ and the game moves to $(w, \overline{C'_r})$.

▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank *r*, belonging to ∀dam (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

 $\exists ve wins \mathcal{G}(\nu x. \Diamond x)$

 \iff

 \exists infinite path

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ same as for $\nu x. \diamondsuit x$ except that rank *r* is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

Game for
$$u^\omega x. \diamondsuit x$$
:

- ▶ same as for νx . $\Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

Game for
$$u^\omega x. \diamondsuit x$$
 :

- ▶ same as for νx . $\Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ same as for νx . $\Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

▶ same as for $\nu x . \Diamond x$ except that rank r is nonstandard

► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ same as for $\nu x . \Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

▶ same as for $\nu x . \Diamond x$ except that rank r is nonstandard

► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ same as for νx . $\Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

- ▶ same as for $\nu x . \Diamond x$ except that rank r is nonstandard
- ► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

- ▶ \exists ve picks a path $v_1 \rightarrow v_2 \rightarrow ...$ vertex by vertex
- ▶ one rank r, belonging to $\forall dam$ (meaning: he looses all infinite plays)

▶ same as for νx . $\Diamond x$ except that rank r is nonstandard

► first, \forall dam picks counter value $C_r = \alpha < \omega$. Then, after each \exists ve's move he decrements C_r .

equivalent to alternating parity automata countdown!

$\begin{array}{c} \text{countdown } \mu \text{-calculus} \sim \overrightarrow{\text{parity}} \text{ games} \\ \text{countdown}! \end{array}$

wining regions definable in logic

equivalent to alternating parity automata countdown!

$\begin{array}{c} \mathsf{countdown} \ \mu \mathsf{-} \mathsf{calculus} \sim \mathbf{parity} \ \mathsf{games} \ \mathsf{-} \\ \mathsf{countdown}! \end{array}$

✓ vectorial, i.e. multiple variables bound simultaneously

wining regions definable in logic

• (finite) model checking is decidable

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators = certain multi-valued μ -ML

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators = certain multi-valued μ -ML

 μ -ML, but with logical values from [0, 1] instead of just $\{0, 1\}$ and the function $t \mapsto \frac{1}{2}t$ as an extra unary connective

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators = certain multi-valued μ -ML
- more nesting of countdown operators \implies more power

 μ -ML, but with logical values from [0, 1] instead of just $\{0, 1\}$ and the function $t \mapsto \frac{1}{2}t$ as an extra unary connective

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators = certain multi-valued μ -ML
- more nesting of countdown operators \implies more power
- nothing special about ω , take your favourite ordinal instead!

 μ -ML, but with logical values from [0, 1] instead of just $\{0, 1\}$ and the function $t \mapsto \frac{1}{2}t$ as an extra unary connective

Thank you! :)

