Countdown μ-calculus

(with Automata and Games)

Jędrzej Kołodziejski (+ Bartek Klin)

MFCS 2022
Vienna

μ-calculus $=$ modal logic + fixpoints

boolean operations $+\diamond\left(_\right): \diamond x, x \wedge \diamond y, \ldots$
$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$
boolean operations $+\diamond\left({ }_{-}\right): \diamond x, x \wedge \diamond y, \ldots$
$(x, y, \ldots \in \operatorname{Var})$
$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$
boolean operations $+\diamond\left(_\right): \diamond x, x \wedge \diamond y, \ldots$

$$
(x, y, \ldots \in \operatorname{Var})
$$

$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$

- interpreted in vertices of a directed graph $\mathcal{M}=(M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in \operatorname{Var}$)
boolean operations $+\diamond\left({ }_{-}\right): \diamond x, x \wedge \diamond y, \ldots$

$$
(x, y, \ldots \in \operatorname{Var})
$$

μ-calculus $=$ modal logic + fixpoints

- interpreted in vertices of a directed graph $\mathcal{M}=(M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in \operatorname{Var}$)
- " $\diamond x$ " means "there exists a child satisfying x "
boolean operations $+\diamond\left({ }_{-}\right): \diamond x, x \wedge \diamond y, \ldots$

- interpreted in vertices of a directed graph $\mathcal{M}=(M, \rightarrow)$ (labelled with interpretation $S \subseteq M$ for each $x \in \operatorname{Var}$)
- " $\diamond x$ " means "there exists a child satisfying x "
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{x::=S}
$$

- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{x::=S}
$$

- since x appears only positively in $\diamond x, F$ is monotone...
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{x::=S}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{x::=S}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{x::=S}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
$\llbracket \nu x . \Delta x \rrbracket=$ GFP. F
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto}\left\{\mathrm{~m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}=\llbracket \diamond x \rrbracket^{\times::=S}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
$\llbracket \nu x . \diamond x \rrbracket=$ GFP.F $\quad \llbracket \mu x . \Delta x \rrbracket=$ LFP..$>$
- we compute fixpoints by (transfinite) iteration of F :
- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :
add countdown operator $\nu^{\omega} \boldsymbol{X} . \diamond \boldsymbol{X}$ to the syntax!

- we compute fixpoints by (transfinite) iteration of F :
add countdown operator $\nu^{\omega} X . \diamond x$ to the syntax!

- we compute fixpoints by (transfinite) iteration of F :
add countdown operator $\nu^{\omega} X . \diamond x$ to the syntax!
countdown calculus $=\mu$-calculus $+\nu^{\omega}$

μ-calculus \sim parity games

\int equivalent to alternating parity automata μ-calculus \sim parity games
\int equivalent to alternating parity automata μ-calculus \sim parity games wining regions definable in logic countdown μ-calculus \sim parity games wining regions definable in logic
\int equivalent to alternating parity automata countdown!
countdown μ-calculus \sim parity games countdown!
wining regions definable in logic

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

$$
\begin{gathered}
\mathcal{G}=(V, E, \text { rank : } V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D}) \\
\frac{\text { countdown game }=\text { parity game }+ \text { subset } \mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}}{\int_{\text {nonstandard ranks }}}
\end{gathered}
$$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right)$:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($v, \overline{C_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($\mathrm{v}, \overline{\bar{C}_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($v, \overline{\bar{C}_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:

$$
-\mathrm{C}_{r}^{\prime}=\mathrm{C}_{r} \text { for } r>\operatorname{rank}(w),
$$

[unchanged]

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($v, \overline{\bar{C}_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:

$$
\begin{aligned}
& -\mathrm{C}_{r}^{\prime}=\mathrm{C}_{r} \text { for } r>\operatorname{rank}(w), \\
& \mathrm{C}_{r}^{\prime}=\omega \text { for } r<\operatorname{rank}(w),
\end{aligned}
$$

[unchanged]
[reset]

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
nonstandard ranks
- from ($v, \overline{\bar{C}_{r}}$):

- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(w)$,
[unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(w)$,
[reset]
- if $\operatorname{rank}(w) \in \mathcal{D}$, the owner of $\operatorname{rank}(w)$ chooses:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($v, \overline{C_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(w)$,
[unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(w)$, [reset]
- if $\operatorname{rank}(w) \in \mathcal{D}$, the owner of $\operatorname{rank}(w)$ chooses:

$$
C_{\operatorname{rank}(w)}^{\prime}<C_{r a n k(w)}
$$

[decremented]

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow\{0, \ldots, \mathrm{~d}\}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq\{0, \ldots, \mathrm{~d}\}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from ($v, \overline{C_{r}}$):
nonstandard ranks
- first, owner of v chooses $v E w$,
- then, counters are updated depending on $\operatorname{rank}(w)$:
- $\mathrm{C}_{r}^{\prime}=\mathrm{C}_{r}$ for $r>\operatorname{rank}(w)$,
[unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(w)$, [reset]
- if $\operatorname{rank}(w) \in \mathcal{D}$, the owner of $\operatorname{rank}(w)$ chooses:

$$
C_{\operatorname{rank}(w)}^{\prime}<C_{r a n k(w)}
$$

[decremented]

- and the game moves to ($w, \overline{C_{r}^{\prime}}$).

Game for $\nu x . \diamond x:$

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

Game for $\nu x . \diamond x:$

- \exists ve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \nabla x$ except that rank r is nonstandard

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

$$
\text { Game for } \nu^{\omega} x . \diamond x
$$

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

$$
\text { Game for } \nu^{\omega} x . \diamond x
$$

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- $\exists \mathrm{ve}$ picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $v_{1} \rightarrow v_{2} \rightarrow \ldots$ vertex by vertex
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \Delta x$ except that rank r is nonstandard
- first, \forall dam picks counter value $C_{r}=\alpha<\omega$. Then, after each $\exists \mathrm{ve}$'s move he decrements C_{r}.
- equivalent to alternating parity automata countdown!
countdown μ-calculus \sim parity games countdown!
wining regions definable in logic
- equivalent to alternating parity automata countdown!
countdown μ-calculus \sim parity games countdown!
variables bound simultaneously
vectorial, i.e. multiple
- equivalent to alternating parity automata countdown!
countdown μ-calculus \sim parity games countdown!
variables bound simultaneously
wining regions definable in logic
vectorial, i.e. multiple

variables bound simultaneously
but not for $\mu^{\omega}-\mathrm{ML}!!!$
wining regions definable in logic

Some facts and results

Some facts and results

- (finite) model checking is decidable

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators $=$ certain multi-valued $\mu-\mathrm{ML}$

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators $=$ certain multi-valued $\mu-\mathrm{ML}$

μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \mapsto \frac{1}{2} t$ as an extra unary connective

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators $=$ certain multi-valued $\mu-\mathrm{ML}$
- more nesting of countdown operators \Longrightarrow more power

μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \mapsto \frac{1}{2} t$ as an extra unary connective

Some facts and results

- (finite) model checking is decidable
- satisfiability decidable for fragments (conjecture: full logic decidable)
- low topological complexity, so provably not closed under projections
- fragment without nesting of countdown operators $=$ certain multi-valued $\mu-\mathrm{ML}$
- more nesting of countdown operators \Longrightarrow more power
- nothing special about ω, take your favourite ordinal instead!

μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \mapsto \frac{1}{2} t$ as an extra unary connective

Thank you! :)

craiyon

Al model drawing images from any prompt!

craiyon
Al model drawing images from any prompt!

