
Complex Manifolds, due 18.12.2023
Riemann Surfaces (again)

Exercise 1. (a) Prove that every Riemann surface is Kähler.
(b) Using Kodaira embedding theorem, infer that every compact Riemann surface is projective.

Another, more explicit proof of part (b) will be given in exercises below.

Notation. In the following, X is a compact Riemann surface of genus g, and KX is its canonical
divisor. For any divisor D on X, we write hi(D) := dimH i(OX(D)).

Exercise 2. Let D be a divisor on X.
(a) Prove that χ(OX) = 1− g.
(b) Prove the Riemann–Roch formula: χ(OX(D)) = 1− g + degD.

(Hint: use induction on degD and an exact sequence 0 −→ OX(−p) −→ OX −→ Cp for a point
p ∈ X, where Cp is the skyscraper sheaf on p)

(c) Using Serre duality, prove that χ(OX) = h0(D)− h0(KX −D).

Exercise 3. Prove (using either Riemann–Roch, or Hurwitz formula) that degKX = 2g − 2.

Definition. Let L be a line bundle. We say that L is globally generated if the common zero locus of
all its nonzero sections is empty; so the map φL : X −→ P(H0(L)) is everywhere defined; see Exercise
3 from set 2. We say that L is very ample if φL is an embedding.

Exercise 4. Let D be a divisor on X. Prove that
(a) OX(D) is globally generated if and only if h1(D − p) = 0 for all points p ∈ X (i.e. |D| is base

point free)
(b) OX(D) is very ample if and only if h1(D − p − q) = 0 for all points p, q ∈ X (i.e. |D| separates

points and tangent vectors)
(c) Check directly that the above conditions hold for D being a point on P1.

Exercise 5. Let D be a divisor on X.
(a) Using Exercise 4(b) prove that the line bundle OX(D) is very ample if degD ⩾ 2g + 1.
(b) Deduce that every compact Riemann surface is projective.
(c) Is the bound in (a) optimal?

Definition. We say that X is hyperelliptic if it admits a holomorphic map X −→ P1 of degree 2.
One can construct hyperelliptic curves explicitly, as follows (cf. Exercise 11 from set 1).

Exercise 6. Fix g ⩾ 1. Let p ∈ C[x] be a polynomial of degree 2g+2, with no multiple roots. Define
a compact Riemann surface X by gluing two copies of an affine curve {y2 = p(x)} ⊆ C2 via

(x, y) 7→
(
1

x
,

y

xg+1

)
.

(a) Prove that the projection (x, y) 7→ x extends to a 2-1 cover X −→ P1, ramified at the roots of p.
(b) Using Hurwitz formula, prove that X has genus g.
(c) Prove that the forms xj

y dx for j ∈ {0, . . . , g − 1} form a basis of H1,0(X).
(d) Deduce that the map X −→ Pg−1 given by the canonical line bundle is the composition of the

projection from (a) and the Veronese embedding P1 ↪→ Pg−1.
(e) What happens if we take a polynomial p of odd degree?
(f) Is X the same as the closure of {y2 = p(x)} in P2?

Exercise∗ 7. Give an alternative proof of Exercise 6(b), showing that, as a smooth manifold, X can
be constructed as follows. Let a1, . . . , a2g+2 ∈ C be roots of p. Cut slits in the affine plane C along
some paths joining a1 with a2, a3 with a4, etc., and glue two copies of C along those slits.

Exercise 8 (Canonical embedding). Assume that g ⩾ 2. Using Exercise 4(b), prove that the canonical
divisor KX is very ample if and only if X is not hyperelliptic.

Exercise 9. Deduce from Exercise 8 that if g ⩾ 2 then the automorphism group of X is finite.
(Hint: if X is not hyperelliptic, embed it into Pg−1 using the canonical bundle, and prove that auto-
morphisms of X extend to automorphisms of Pg−1).
(Bonus vague question: Can you generalize this argument to higher dimensions?)
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Exercise∗ 10 (Hurwitz theorem). Assume that g ⩾ 2. Applying Hurwitz formula to the quotient map
X −→ X/Aut(X), prove that #Aut(X) ⩽ 84(g − 1).

Exercise 11. (a) Prove that every compact Riemann surface of genus 1 is hyperelliptic.
(b) Prove that a quartic curve in P2 has genus 3, but is not hyperelliptic.
(c) Prove that every genus 3 curve in P1 × P1 is hyperelliptic.

Exercise∗ 12 (The Abel–Jacobi map). Let Y be a compact Kähler manifold.
(a) Prove that the image of the natural map H1(Y,Z) −→ H1(Y,OY ) is a lattice of maximal rank.
(b) Using the exponential sequence, identify the quotient H1(Y,OY )/H

1(Y,Z) with the group Pic0(Y )
of line bundles with trivial first Chern class. This group is called the Picard torus of Y .

(c) Identify the dual torus to Pic0(Y ) with H0(Y,ΩY )
∗/H1(Y,Z), where γ ∈ H1(Y,Z) corresponds to

a functional α 7→
∫
γ α. This group is called the Albanese torus, and is denoted by Alb(Y ).

(d) Fix a base point x0 ∈ Y . The Abel–Jacobi map µ : Y −→ Alb(Y ) associates to x a functional
[α 7→

∫ x
x0

α], where the integral is taken along any path in X joining x0 with x. Prove that this
map is well defined and holomorphic.

(e) Prove that the Abel–Jacobi map induces a surjection on the level of holomorphic 1-forms.
(f) Prove that if Y is a complex torus Cn/Λ then the Abel–Jacobi map is an isomorphism.
(g) Prove that for n ≫ 0, the map Y n ∋ (x1, . . . , xn) 7→

∑n
i=1 µ(xi) ∈ Alb(Y ) is surjective, and

submersive over a dense open subset in Alb(Y ).

Abel–Jacobi theorem. On a compact Riemann surface X, Pic0(X) is naturally identified with
Alb(X), and the Abel–Jacobi map becomes x 7→ OX(x − x0). Either of these tori is called the
Jacobian of X, and denoted by J(X).

Exercise 13. Let X,E be hyperelliptic curves given by y2 = x6 + 1 and y2 = x3 + 1, see Exercise
6. Consider a map X −→ E × E given by (x, y) 7→ ((x2, y), (x−2, yx−3). Prove that the induced map
J(X) −→ J(E × E) ∼= E × E is a quotient by a finite subgroup.

Exercise 14. Let X be a Riemann surface of genus 1.
(a) Using Abel–Jacobi theorem, prove that X is isomorphic to a complex torus C/Λ.
(b) Prove that the series

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)
.

is absolutely convergent on C \ Λ, and defines a meromorphic function on X.
(c) * Prove that the formula [℘ : ℘′ : 1] : X −→ P2 defines an embedding.


