Definition. Let M be a compact oriented Riemanian manifold. We say that a closed k-form $\alpha \in$ $\Omega^{k}(M)$ is a calibration if for every $x \in M$, and every k-dimensional subspace $W \subseteq T_{x} M$, we have $\left.\alpha\right|_{W} \leqslant \operatorname{vol}_{W}$, where vol_{W} is the Riemannian volume form. We say that W is calibrated if $\left.\alpha\right|_{W}=\operatorname{vol}_{W}$. A closed k-dimensional submanifold $N \subseteq M$ is calibrated if $T_{x} N \subseteq T_{x} M$ is calibrated for every $x \in N$.

Exercise 1. Prove that a calibrated submanifold minimizes volume in its homology class.
Exercise 2. Let V be a complex vector space, with a J-compatible form ω and associated metric g.
Let $W \subseteq V$ be a real subspace of dimension $2 k$.
(a) Prove that W^{*} admits a g-orthonormal basis $x_{1}, y_{1}, \ldots, x_{k}, y_{k}$ such that $\omega=\sum_{j=1}^{k} x_{j} \wedge y_{j}$.
(b) (Wirtinger inequality) Let $\operatorname{vol}_{2 k}$ be the volume form on $\bigwedge^{2 k} W$ induced by g. Prove that

$$
\left.\frac{1}{k!} \omega^{k}\right|_{W} \leqslant \operatorname{vol}_{W}
$$

with equality if and only if W is a complex subspace, i.e. $J W=W$ (Hint: use part (a) to reduce the proof to the case $k=1$, which boils down to the Cauchy-Schwarz inequality).
Deduce that on a compact Kähler manifold $(X, \omega), k$-dimensional complex submanifolds are calibrated with respect to $\frac{1}{k!} \omega^{k}$ (in particular, they are minimal).
Exercise 3. Let V, g, ω be as in Exercise 2, let $\Omega \in \bigwedge^{n, 0} V^{*}$ be an n-form such that

$$
\begin{equation*}
\frac{1}{n!} \omega^{n}=\left(\frac{\imath}{2}\right)^{n} \cdot(-1)^{\frac{1}{2} n(n-1)} \Omega \wedge \bar{\Omega} \tag{*}
\end{equation*}
$$

and let $W \subseteq V$ be an oriented, n-dimensional subspace.
(a) Prove that $\left.\omega\right|_{W}=0$ (i.e. W is Lagrangian) if and only if W is orthogonal to $J W$.
(b) Let w_{1}, \ldots, w_{n} be an orthonormal basis of W. Prove that $\left|\Omega\left(w_{1}, \ldots, w_{n}\right)\right| \leqslant 1$, and equality holds if and only if W is Lagrangian. (Hint: let $e_{i}, J e_{i}$ be a standard basis. consider a linear map $e_{i} \mapsto w_{i}, J e_{i} \mapsto J w_{i}$, and use Hadamard inequality)
(c) Prove that $\left.\operatorname{Re} \Omega\right|_{W} \leqslant \operatorname{vol}_{W}$, with equality if and only if $\left.\omega\right|_{W}=0$ and $\left.\operatorname{Im} \Omega\right|_{W}=0$, i.e. if W is special Lagrangian.
Deduce that on a Calabi-Yau manifold, i.e. a compact Kähler manifold (X, ω) with a holomorphic n form Ω satisfying equality ($*$), special Lagrangian submanifolds are $\operatorname{Re} \Omega$ - calibrated (hence minimal).

