Complex manifolds, due 20.11.2023 FUBINI-STUDY FORM

Exercise 1. Put $d^c = \frac{i}{4\pi} (\overline{\partial} - \partial)$ (*Warning:* this definition follows [GH78], [Huy05] takes $d^c = i(\overline{\partial} - \partial)$). (a) Prove that d^c maps real forms to real forms.

- (b) Prove that for a smooth function f we have $d^c f = -\frac{1}{4\pi} df \circ J$. (c) Let (r, θ) be the polar coordinates on \mathbb{C}^* , i.e. $z = re^{i\theta}$. Prove that $d^c r = \frac{r}{2} d\theta$, $d^c \theta = -\frac{2}{r} dr$.
- (d) Prove that $dd^c = \frac{i}{2\pi} \partial \overline{\partial}$.

Exercise 2 (Fubini–Study form). Consider the form $\omega = dd^c \log ||z||^2$ on $\mathbb{C}^{n+1} \setminus \{0\}$.

- (a) Prove that ω is \mathbb{C}^* -invariant, hence induces a 2-form ω_{FS} on \mathbb{P}^n , called the *Fubini–Study form*.
- (b) Prove that in coordinates (z_1, \ldots, z_n) of an affine piece of \mathbb{P}^n , we have $\omega_{\text{FS}} = dd^c \log(1 + \sum_i |z_i|^2)$.
- (c) Prove that $\omega_{\rm FS}$ is a Kähler form. Deduce that all projective manifolds are compact Kähler.
- (d) Let $\varphi \in \operatorname{Aut}(\mathbb{P}^n)$ be an automorphism of \mathbb{P}^n given by a unitary matrix. Prove that $\varphi^* \omega_{\rm FS} = \omega_{\rm FS}$.
- (e) Prove that the restriction of $\omega_{\rm FS}$ to a hyperplane $\mathbb{P}^{n-1} \subseteq \mathbb{P}^n$ is again the Fubini–Study form.

Exercise 3. Let ω be a Kähler form on a compact complex manifold X of dimension n, and let $g = \omega(J \cdot, \cdot)$ be the associated Riemannian metric.

- (a) Prove that for any vector v, the vectors v and Jv are q-orthogonal.
- (b) Prove that for any complex submanifold $Y \subseteq X$ of dimension d, the restriction $\frac{1}{dt}\omega^d|_Y$ is the volume form induced by the Riemannian metric $\omega(\cdot, J \cdot)$.
- (c) Prove that $\mathbb{R}[x]/(x^{n+1}) \ni x \mapsto [\omega] \in H^*(X,\mathbb{R})$ is a degree 2 injective ring homomorphism. In particular, the even Betti numbers of X cannot vanish.

Exercise 4. (a) Prove that the total volume of \mathbb{P}^1 with respect to the Fubini–Study form is 1.

- (b) Prove that the same holds for \mathbb{P}^n for arbitrary *n* (*Hint:* use part (a), Exercise 2(e), and induction).
- (c) Deduce that the class $[\omega_{\rm FS}]$ generates $H^2(\mathbb{P}^n,\mathbb{Z})$. In particular, it is the first Chern class of $\mathcal{O}_{\mathbb{P}^n}(1)$, and a Poincaré dual to the hyperplane.
- (d) Compute the volume of a smooth hypersurface of degree d.

Exercise 5. Prove that a projective manifold contains a smooth hypersurface which represents a nonzero integral homology class.

Exercise 6 (A non-Kähler complex manifold). Define a \mathbb{Z} -action on $\mathbb{C}^2 \setminus \{0\}$ by $k \cdot (z, w) = (2^{-k}z, 2^{-k}w)$. The quotient $X = (\mathbb{C}^2 \setminus \{0\})/\mathbb{Z}$ is called the *Hopf surface*.

- (a) Prove that the above action is proper and free, hence the quotient X is indeed a complex manifold.
- (b) Prove that X is diffeomorphic to $\mathbb{S}^1 \times \mathbb{S}^3$.
- (c) Conclude that X is non-Kähler.

Exercise^{*} 7 (A non-projective compact Kähler manifold). Let $\Lambda \subseteq \mathbb{C}^2$ be a lattice, and let X be a complex torus \mathbb{C}^2/Λ . Let (z_1, z_2) be the holomorphic coordinates on \mathbb{C}^2 .

- (a) Prove that X is a compact Kähler manifold, with a Kähler form $\frac{i}{2} \sum_{i} dz_i \wedge d\overline{z}_i$.
- (b) Fix a basis $\gamma_1, \ldots, \gamma_4$ of $\Lambda = H_1(X; \mathbb{Z})$ and let $a_{ij} = \int_{\gamma_i} dz_j \in \mathbb{C}$. Prove that there is a basis $\gamma_i \wedge \gamma_j$ of $H_2(X, \mathbb{Z})$ such that $\int_{\gamma_i \wedge \gamma_j} dz_1 \wedge dz_2 = \det \begin{bmatrix} a_{i1} & a_{j1} \\ a_{i2} & a_{j2} \end{bmatrix}$.
- (c) Prove that for a generic choice of Λ , the above determinants are \mathbb{Z} -linearly independent, so for a cycle $Z \in H_2(X, \mathbb{Z})$ we have $\int_{\mathbb{Z}} dz_1 \wedge dz_2 = 0$ if and only if [Z] = 0.

(d) Using Exercise 5, conclude that for a generic choice of Λ , the torus X is non-projective.

Remark: Here X is deformation-equivalent to a projective manifold. See [Voi04] for a beautiful construction of compact Kähler manifolds that are not even homotopically equivalent to projective ones.

References

- [GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978.
- [Huy05] D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction.
- [Voi04] C. Voisin, On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004), no. 2, 329-343.