Complex manifolds, due 13.11.2023 $\partial \overline{\partial}$ -lemmas

Last time, we did exercises 8–10 from series due 15.10. Next time (13.10), you can still declare exercises from series due 15.10, 6.11, and this one. Since there is a lot of exercises from previous series, this one is shorter.

Recall that a smooth form α is called *d*- (respectively, ∂ -, $\overline{\partial}$ -) closed if $d\alpha = 0$ (resp. $\partial \alpha = 0$, $\overline{\partial} \alpha = 0$), it is called *d*- (resp. ∂ -, $\overline{\partial}$ -) exact if there is a form β such that $d\alpha = \beta$ (resp. $\partial \alpha = \beta$, $\overline{\partial} \alpha = \beta$).

Exercise 1. Prove that $\overline{\partial}\overline{\alpha} = \overline{\partial}\alpha$. Infer that a real (p, p)-form is ∂ -closed (exact) if and only if it is $\overline{\partial}$ -closed (exact).

Exercise 2 (∂ -lemma). Prove that for $p \ge 1$, any ∂ -closed (p,q)-form on a polydisc is ∂ -exact

Exercise 3 ($\partial \overline{\partial}$ -lemma). Let $p, q \ge 1$ and let α be a *d*-closed (p, q)-form on a polydisc $U \subseteq \mathbb{C}^n$.

- (a) Prove that there is a (p-1, q-1)-form β on U such that $\alpha = \partial \overline{\partial} \beta$ (*Hint:* combine all the Poincaré lemmas you know: first for d, next for ∂ and $\overline{\partial}$).
- (b) Compute β for α being the standard Kähler form $\sum_i dx_i \wedge dy_i$ on \mathbb{C}^n .