Complex manifolds, due 06.11.2023 LINEAR ALGEBRA

Last time (23.10), we did Exercises 1–5. Next time, we will continue series due 23.10. I especially encourage you to take a look at Exercises 10-15, concerning applications of the adjunction formula.

Notation. In the following exercises, V is a *real* vector space of dimension 2n, equipped with an *almost* complex structure $J \in \operatorname{End}_{\mathbb{R}}(V)$, i.e. an endomorphism such that $J^2 = -\operatorname{id}_V$. We write $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$ and deote the extension of J to $\operatorname{End}_{\mathbb{C}}(V_{\mathbb{C}})$ by the same letter.

Exercise 1. With the above notation, prove the following.

- (a) The formula $i \cdot v = Jv$ endows V with a structure of a complex vector space.
- (b) The eigenvalues of $J \in \text{End}_C(V_{\mathbb{C}})$ are *i* and -i. Let $V^{1,0}$, $V^{0,1}$ be the corresponding eigenspaces.
- (c) The composition of the inclusion $V \hookrightarrow V_{\mathbb{C}}$ with the projection onto $V^{1,0}$ (resp. $V^{0,1}$) is a \mathbb{C} -linear (resp. \mathbb{C} -antilinear) isomorphism, given by the formula $v \mapsto \frac{1}{2}(v - iJv)$ (resp. $v \mapsto \frac{1}{2}(v + iJv)$).

Exercise 2. Define $\bigwedge^{p,q} V = \bigwedge^p V^{1,0} \otimes_{\mathbb{C}} \bigwedge^q V^{0,1}$.

- (a) Prove that there is a natural isomorphism $\bigwedge^k V_{\mathbb{C}} = \bigoplus_{p+q=k} \bigwedge^{p,q} V$. (b) Prove that the complex conjugation is a (\mathbb{C} -antilinear) isomorphism $\bigwedge^{p,q} V \cong \bigwedge^{q,p} V$.

Exercise 3. Fix $x_1, \ldots, x_n \in V$. Put $y_j = J(x_j) \in V$, and assume that $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ is an \mathbb{R} -basis of V. Define $z_j = \frac{1}{2}(x_j - iy_j) \in V_{\mathbb{C}}$

- (a) Prove that $\{z_1, \ldots, z_n\}$ and $\{\overline{z}_1, \ldots, \overline{z}_j\}$ are \mathbb{C} -bases of $V^{1,0}$ and $V^{0,1}$, respectively.
- (b) Prove that for every $m \in \{1, \ldots, n\}$, we have

$$(2i)^m \cdot (-1)^{\frac{1}{2}m(m+1)} (z_1 \wedge \dots \wedge z_m) \wedge (\overline{z}_1 \wedge \dots \wedge \overline{z}_m) = (x_1 \wedge y_1) \wedge \dots \wedge (x_m \wedge y_m).$$

- (c) Let $\{x^1, \ldots, x^n, y^1, \ldots, y^n\}$ be dual basis of V^* , and let $z^j = x^j + iy^j \in V_{\mathbb{C}}$. Prove that $\{z^1, \ldots, z^n\}$ and $\{\overline{z}^1, \ldots, \overline{z}^n\}$ are dual bases of $(V^{1,0})^*$ and $(V^{0,1})^*$, respectively. (d) Let $\omega := \sum_{j=1}^n x^j \wedge y^j$ be the standard Kähler form; and let $\Omega := z^1 \wedge \cdots \wedge z^n$ be the standard
- holomorphic volume form. Prove that

(*)
$$\frac{1}{n!}\omega^n = \left(\frac{i}{2}\right)^n \cdot (-1)^{\frac{1}{2}n(n+1)}\Omega \wedge \overline{\Omega}.$$

Exercise 4. Prove that a 2-form $\omega \in \bigwedge^2 V^*$ lies in the space $\omega \in \bigwedge^{1,1} V^*$ if and only if it is Jcompatible, i.e. satisfies $\omega(J \cdot, J \cdot) = \omega$.

Exercise 5 (Hodge star). Let (W, g) be an oriented euclidean vector space of dimension m. Recall that g extends to an inner product on each $\bigwedge^k W$ in such a way that, if $\{e_1, \ldots, e_m\}$ is an orthonormal basis of W, then $\{e_{i_1} \land \cdots \land e_{i_k} : 1 \leq i_1 \leq \ldots \leq i_k \leq m\}$ is an orthonormal basis of $\bigwedge^k W$.

- (a) Put vol := e₁ ∧ · · · ∧ e_m ∈ Λ^m W for some oriented orthonormal basis {e₁, . . . , e_m}. Prove that this definition does not depend on the choice of the basis.
 (b) Define the Hodge star operator *: Λ^k W → Λ^{m-k} W by α ∧ *β = g(α, β) · vol. Prove that on Λ^k W we have g(α, *β) = (-1)^{k(m-k)}g(*α, β) and *² = (-1)^{k(m-k)}id_{Λ^k W} (Hint: it is enough to check that these formulas are satisfied by elements of some orthonormal basis).
- (c) Deduce that * is an isometry.