Last time (23.10), we did Exercises 1-5. Next time, we will continue series due 23.10. I especially encourage you to take a look at Exercises 10-15, concerning applications of the adjunction formula.

Notation. In the following exercises, V is a real vector space of dimension $2 n$, equipped with an almost complex structure $J \in \operatorname{End}_{\mathbb{R}}(V)$, i.e. an endomorphism such that $J^{2}=-\mathrm{id}{ }_{V}$. We write $V_{\mathbb{C}}=V \otimes_{\mathbb{R}} \mathbb{C}$ and deote the extension of J to $\operatorname{End}_{\mathbb{C}}\left(V_{\mathbb{C}}\right)$ by the same letter.

Exercise 1. With the above notation, prove the following.
(a) The formula $i \cdot v=J v$ endows V with a structure of a complex vector space.
(b) The eigenvalues of $J \in \operatorname{End}_{C}\left(V_{\mathbb{C}}\right)$ are i and $-i$. Let $V^{1,0}, V^{0,1}$ be the corresponding eigenspaces.
(c) The composition of the inclusion $V \hookrightarrow V_{\mathbb{C}}$ with the projection onto $V^{1,0}$ (resp. $V^{0,1}$) is a \mathbb{C}-linear (resp. \mathbb{C}-antilinear) isomorphism, given by the formula $v \mapsto \frac{1}{2}(v-i J v)\left(\right.$ resp. $\left.v \mapsto \frac{1}{2}(v+i J v)\right)$.
Exercise 2. Define $\bigwedge^{p, q} V=\bigwedge^{p} V^{1,0} \otimes_{\mathbb{C}} \bigwedge^{q} V^{0,1}$.
(a) Prove that there is a natural isomorphism $\bigwedge^{k} V_{\mathbb{C}}=\bigoplus_{p+q=k} \bigwedge^{p, q} V$.
(b) Prove that the complex conjugation is a (\mathbb{C}-antilinear) isomorphism $\bigwedge^{p, q} V \cong \bigwedge^{q, p} V$.

Exercise 3. Fix $x_{1}, \ldots, x_{n} \in V$. Put $y_{j}=J\left(x_{j}\right) \in V$, and assume that $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is an \mathbb{R}-basis of V. Define $z_{j}=\frac{1}{2}\left(x_{j}-i y_{j}\right) \in V_{\mathbb{C}}$
(a) Prove that $\left\{z_{1}, \ldots, z_{n}\right\}$ and $\left\{\bar{z}_{1}, \ldots, \bar{z}_{j}\right\}$ are \mathbb{C}-bases of $V^{1,0}$ and $V^{0,1}$, respectively.
(b) Prove that for every $m \in\{1, \ldots, n\}$, we have

$$
(2 i)^{m} \cdot(-1)^{\frac{1}{2} m(m+1)}\left(z_{1} \wedge \cdots \wedge z_{m}\right) \wedge\left(\bar{z}_{1} \wedge \cdots \wedge \bar{z}_{m}\right)=\left(x_{1} \wedge y_{1}\right) \wedge \cdots \wedge\left(x_{m} \wedge y_{m}\right)
$$

(c) Let $\left\{x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right\}$ be dual basis of V^{*}, and let $z^{j}=x^{j}+i y^{j} \in V_{\mathbb{C}}$. Prove that $\left\{z^{1}, \ldots, z^{n}\right\}$ and $\left\{\bar{z}^{1}, \ldots, \bar{z}^{n}\right\}$ are dual bases of $\left(V^{1,0}\right)^{*}$ and $\left(V^{0,1}\right)^{*}$, respectively.
(d) Let $\omega:=\sum_{j=1}^{n} x^{j} \wedge y^{j}$ be the standard Kähler form; and let $\Omega:=z^{1} \wedge \cdots \wedge z^{n}$ be the standard holomorphic volume form. Prove that

$$
\begin{equation*}
\frac{1}{n!} \omega^{n}=\left(\frac{i}{2}\right)^{n} \cdot(-1)^{\frac{1}{2} n(n+1)} \Omega \wedge \bar{\Omega} \tag{*}
\end{equation*}
$$

Exercise 4. Prove that a 2-form $\omega \in \bigwedge^{2} V^{*}$ lies in the space $\omega \in \bigwedge^{1,1} V^{*}$ if and only if it is J compatible, i.e. satisfies $\omega(J \cdot, J \cdot)=\omega$.

Exercise 5 (Hodge star). Let (W, g) be an oriented euclidean vector space of dimension m. Recall that g extends to an inner product on each $\bigwedge^{k} W$ in such a way that, if $\left\{e_{1}, \ldots, e_{m}\right\}$ is an orthonormal basis of W, then $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}: 1 \leqslant i_{1} \leqslant \ldots \leqslant i_{k} \leqslant m\right\}$ is an orthonormal basis of $\bigwedge^{k} W$.
(a) Put vol $:=e_{1} \wedge \cdots \wedge e_{m} \in \bigwedge^{m} W$ for some oriented orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$. Prove that this definition does not depend on the choice of the basis.
(b) Define the Hodge star operator $*: \bigwedge^{k} W \longrightarrow \bigwedge^{m-k} W$ by $\alpha \wedge * \beta=g(\alpha, \beta) \cdot$ vol. Prove that on $\bigwedge^{k} W$ we have $g(\alpha, * \beta)=(-1)^{k(m-k)} g(* \alpha, \beta)$ and $*^{2}=(-1)^{k(m-k)} \mathrm{id}_{\wedge^{k} W}$ (Hint: it is enough to check that these formulas are satisfied by elements of some orthonormal basis).
(c) Deduce that $*$ is an isometry.

