
Complex manifolds, due 16.10.2023
Projective space, line bundles and Grassmanians

General rules. Each week, there will be a series of exercises. In the beginning of the classes, please
declare which ones you would like to present at the blackboard. Note that there usually will be more
exercises than we will be able to discuss: you are not expected to solve all of them, please choose one
or two from each series which suits you best. Of course, you are also encouraged to present partial
solutions, comments, etc. The exercises marked with an asterisk are not necessarily more difficult, but
they are less directly related to the lecture, so I suggest focusing more on the ones without asterisk.

Notation. Today, all manifolds and bundles are holomorphic, unless stated otherwise. For a vector
bundle E we denote by H0(E) the vector space of its global sections.

Recall that OPn(−1) denotes the tautological line bundle on Pn. We denote its dual by OPn(1), and
write OPn(k) = OPn(k) = O(1)⊗k. Recall that the homogeneous coordinates z0, . . . , zn define global
sections of O(1). In the exercises below, you will need the following fact [Huy05, Proposition 2.4.1]:

Proposition. The sections z0, . . . , zn span the vector space H0(OPn(1)). As a consequence, the space
H0(OPn(k)) can be identified with the space of homogeneous polynomials of degree k in n variables.

Excercise 1. Let L be a line bundle. Show that L is trivial if and only if both L and its dual L∗
admit global sections which are not identically zero.

Excercise∗ 2. Show that the tautological line bundle over Pn with zero section removed can be
identified with Cn+1 \ {0}. Use this to construct a C∞ fibration S2n−1 −→ Pn with fiber S1: for n = 1,
one recovers this way the classical Hopf fibration.

Excercise 3 (Globally generated line bundles give morphisms to PN ). Let L be a line bundle over a
complex manifold X. Let V be a vector subspace of H0(L), and let Bs(V ) denote the common zero
locus of all elements of V . Let s0, . . . , sN be a basis of V .
(a) Show that the formula

ϕV := [s0 : · · · : sN ] : X \ Bs(V ) −→ PN

defines a holomorphic map such that ϕ∗VOPN (1) = L. Show that ϕV is independent of the choice
of the basis of V , up to an automorphism of the target. For V = H0(L) we simply write ϕV = ϕL.

(b) Fix a point x ∈ Pn, and let V = {σ ∈ H0(O(1)) : σ(x) = 0}. Describe the map ϕV .
(c) The map ϕOP1 (n)

: P1 −→ Pn is called the n-th Veronese embedding. Describe it for n = 1, 2.
(d) Describe the restriction of the map ϕV : P2 −→ P1 from (b) to the image of the second Veronese

embedding (there are two cases to consider: either the point x ∈ P2 lies on that image or not).

Excercise∗ 4 (Euler sequence, cf. [Huy05, 2.4.4] or [GH78, p. 409]). Prove that on Pn we have an
exact sequence of vector bundles

0 −→ OPn −→
n⊕

j=0

OPn(1) −→ TPn −→ 0

where TPn is the tangent bundle to Pn; the first map is given by global sections z0, . . . , zn, and j-th
coordinate of the second map is given by 1 7→ ∂

∂zj
. Describe the dual to this sequence, and use it to

prove that any holomorphic n-form on Pn has a pole along a hypersurface of degree n + 1 (last time
we proved it for n = 2 by an explicit computation).

Excercise 5. Let E be a vector bundle on a complex manifold X. Repeating fiberwise the definition
of Pn and OPn(−1), define the projective bundle P(E) −→ X, whose fiber over x ∈ X is the projec-
tivization of the fiber Ex; and the tautological line bundle OP(E)(−1). Prove that for any line bundle
L on X we have an isomorphism P(E ⊗ L) ∼= P(E).

Warning : some authors call P(E) what we call P(E∗), see e.g. [Har77, p. 162].

Excercise 6 (Hirzebruch surfaces). Fix an integer n > 0 and let Fn = P(OP1 ⊕OP1(−n)).
(a) Prove that F0 is isomorphic to P1 × P1, and F1 is a blowup of P2 at a point.
(b) Prove that Fn is isomorphic to the hypersurface {xn0y1 = xn1y2} ⊆ P1 × P2, where [x0 : x1] and

[y0 : y1 : y2] are homogeneous coordinates on P1 and P2, respectively.
(c) Let C = P1 × {[1 : 0 : 0]} and Sp = {([u : v], [p(u, v) : vn : un]) : [u : v] ∈ P1} for homogeneous

p ∈ C[u, v] of degree n. Prove that C and Sp are sections of the P1-bundle Fn −→ P1, such that
C ∩ Sp = ∅ and, for general p, q, Sp meets Sq normally in n points.
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(d) Let OFn(1) be the dual to the tautological bundle defined in Exercise 5, and let ϕ = ϕOFn (1)

be the map from Exercise 3(a). Prove that ϕ(Fn) is a cone over the image of the n-th Veronese
embedding ϕO(n) : P1 −→ Pn, see Exercise 3(c), with vertex at ϕ(C). Draw pictures for n = 0, 1, 2.

The remaining parts require some background in algebraic topology.
(e)* Prove that H2(Fn;Z) is freely generated by the classes of C and the fiber F ; and the intersection

form is given by F 2 = 0, F ·C = 1, C2 = −n (Hint: to get the last equality, prove that the section
Sp from (c) satisfies S2

p = n, Sp · C = 0, and write Sp as a linear combination of C and F ).
(f)* Up to a diffeomorphism, there are exactly two S2-bundles over S2 (indeed, they are classified

by π1(SO(3)) = Z2, cf. discussion of clutching functions in [Hat17, p. 22]). Prove that Fn is
diffeomorphic to the trivial one if n is even, and to the non-trivial one if n is odd.

Excercise 7 (Grassmannian). Let Grk(V ) be the set of k-dimensional subspaces of a vector space V .
(a) Say that V = Cn. For a subspace W ⊆ Cn, choose its basis and write its elements in an n × k

matrix of rank k. Let Mn,k be the set of such matrices. Show that Grk(Cn) can be identified
with the quotient of Mn,k by the left action of Gln(C). This way, Grk(Cn) becomes a compact
topological space.

(b) For a k-element subset I ⊆ {1, . . . , n}, letMI be the i-th k×k minor of a matrixM ∈Mn,k. Prove
that UI := {[M ] : det(MI) 6= 0} is a well-defined, open subset of Grk(Cn); and Grk(Cn) =

⋃
I UI

is an open covering.
(c) Show that every class [M ] ∈ UI admits a unique representative N such that NI = idk×k. Let

N ′I be the matrix obtained from N by removing the minor NI . Show that the map ϕI : UI −→
Mat((n− k)× k,C) ∼= C(n−k)k given by ϕI [M ] = N ′I is a homeomorphism.

(d) Prove that the collection {UI , ϕI} defines a holomorphic atlas on Grk(Cn). This way, Grk(Cn)
becomes a compact complex manifold of dimension (n− k)k.

(e) Prove that Gr1(V ) ∼= P(V ) and GrdimV−1(V ) ∼= P(V ∗).

Excercise∗ 8 (Plücker embedding). Let V be a complex vector space. To a k-dimensional subspace
W ⊆ V , we associate a line in

∧k V spanned by w1 ∧ · · · ∧wk for any basis {w1, . . . , wk} of W . Prove
that the resulting map Grk(V ) −→ P(

∧k V ) is a holomorphic embedding: it is called the Plücker
embedding. Conclude that all Grassmanians are projective.

Excercise∗ 9 (Tautological bundle on Grk(V )). Let S −→ Grk(V ) be the sub-bundle of the trivial
bundle V ×Grk(V ) −→ Grk(V ) whose fiber over a point W ∈ Grk(V ) is the subspace W ⊆ V itself.
(a) Show that S is indeed a holomorphic subbundle: the frame at a point is given by the columns of

the matrix N from Exercise 7(c).
(b) Prove that the map ϕ∧k S∗ : Grk(V ) −→ P(

∧k V ) defines the Plücker embedding.
(c) Let Q be the quotient of the trivial bundle by S. Show that there is a canonical isomorphism

Q⊗ S∗ ∼= TGrk(V ). This generalizes the Euler sequence from Exercise 4.

Excercise∗ 10. Let E be a vector bundle of rank k on X, and let V ⊆ H0(E) be an n-dimensional
subspace such that for every point x ∈ X, the values {σ(x) : σ ∈ V } span the fiber Ex. As in Exercise
3, define a map ϕV : X −→ Grn−k(V ) such that ϕ∗V S

∗ = E.

References

[GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience
[John Wiley & Sons], New York, 1978.

[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, 52.
[Hat17] A. Hatcher, Vector bundles & K-theory, https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf, 2017.
[Huy05] D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction.

https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf

	References

