COMPLEX MANIFOLDS 02.10.2023
A BIASED REVISION OF RIEMANN SURFACES

Excercise 1 (cf. [Huy05, §2.4]). Consider the complex projective plane P? with homogeneous coor-

dinates [X : Y : Z]. Let P € C[X,Y, Z] be a homogeneous polynomial.

(a) Show that the zero locus of P is a well defined subset of P2, call it C.

(b) Show that C'is a smooth submanifold of P? 1f and only if the derivatives gX, gy, gIZD do not have
common zeros (Hint: use Euler identity X + Ya + Z = (deg P) - P)

(c) Let (z,y) = (£,%) be the affine coordlnates of the piece U = {Z # 0} of P2. Show that the
2-form dx A dy extends to a meromorphic 2-form on P?, with pole of order 3 along {Z =0}.

(d) Write p(z,y) = P(z,y,1) € Clz,y]. Prove that the 1-forms (%) - dz and ( L)1 dy glue
to a meromorphic form « on C', such that any 1-form a on U such that ayne = a\Umc satisfies
a Ndp =dx A dy. We call « the residue of dx A dy along C, and write a = dxé;?dy.

(e) Assume that d = degP > 3, and let ¢ € C|x,y] be a polynomial of degree at most d — 3.
d:c/\dy

Prove that the 1-forms ¢ extend to holomorphic 1-forms on C'. We will see later that all

holomorphic 1-forms on C are of this type, cf. [GHT78, p. 148].
(f) Show that if d € {1,2} then C is isomorphic to P!, so it does not admit holomorphic 1-forms.

Excercise 2 (cf. [Donll, §I1.6.1]). Let X be a compact Riemann surface with a nonvanishing holo-
morphic 1-form «. Prove that X is isomorphic to a quotient of C by a lattice of rank 2, as follows.

(a) Endow a universal cover p: X — X with a structure of a Riemann surface.

(b) Prove that a map F': X —cC given by x f7 a, where v is a path joining x with a chosen base
point, is holomorphic and satisfies dF = p*«a. In particular, F' is a local homeomorphism.

(c) Prove that F' is a covering map, hence an isomorphism since C is simply connected (This is a bit
technical. As a warm-up, give an example of a local diffeomorphism which is not a covering).

(d) Infer from compactness of X that the group 7 (X) C Aut (C) is a lattice of rank 2.

Deduce that a smooth cubic curve on P? is isomorphic to a torus C/A for some lattice A of rank 2

(Hint: use the 1-form dwé;)dy from Exercise 1(e)).

Exercises 3-5, which follow the discussion in [Donll, §4.2.2-4.2.3], give a hands-on topological
construction of a normalization of a Riemann surface.

Excercise 3. Let f: X — Y be a proper holomorphic map of connected Riemann surfaces, let
A C Y be the image of the zero locus of df, and let R = f~(A).

(a) Prove that the restriction f|x\g: X \ R — Y \ A is a proper covering. Let d be its degree.

(b) Define the monodromy representation 7 (X \ A) — Sy, where Sy is the symmetric group on d
letters, as follows: take a loop in Y with base point y, lift it to a path with endpoints in f~*(y),
and consider the induced permutation of f~1(y).

(c) Let p € C[z] be a polynomial, let X = {(z,y) € C?: y? = p(x)}, and let f: X — C be the
projection onto the first factor. Describe the monodromy representation of f.

Excercise 4. Let Y be a connected Riemann surface, let A be a discrete subset of Y, and let

p: m(Y \ A) — S, be a transitive representation. Construct a proper map of Riemann surfaces

f: X — Y whose monodromy representation is p, as follows.

(a) Consider a simple case when (Y,A) = (D,0), and p maps the generator v € m; (Y \ A), to a
d-cycle. Then X =D, and f: X — Y is given by z — 2¢.

(b) Construct a local model as above for an arbitrary permutation p(vy) € Sy.

(c) Define X by patching together Y \ A and the above local models. Check carefully that the
resulting topological space is Hausdorff, and endow it with a holomorphic structure.

Excercise 5. Let C' C P? be a plane curve, i.e. a zero set of an irreducible polynomial P. Let Sing C
be its singular locus, i.e. the common zero set of the derivatives of P.

(a) Apply Exercises 3 and 4 to construct a map C —> C which is an isomorphism away Sing C'. We
call C' the normalization of C.
(b) Prove that the composition C — C < P? is holomorphic.
(c) Describe the normalization of cubics {z?z = 3*} and {z%z = y?(y — 2)}.
(d) Compare this construction with the one via the integral closure of the coordinate ring.
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Below, we denote by x the topological Euler characteristic. Please choose your favorite definition
(via triangulations, singular homology, de Rham cohomology, or Poincaré-Hopf formula). The genus
of a compact Riemann surface X is 1 — 2x(X).

Excercise 6. Let N be a complex submanifold of a complex manifold M. Prove that x(M) =
X(M\ N) + x(N). Show that in the real case, the analogous formula holds mod 2.

Excercise 7 (Hurwitz formula). Let f: X — Y be a holomorphic map of compact Riemann surfaces.
We say that x € X is a ramification point of f with index r; if locally around z, f is given by z + 2",
Let d be the degree of f, i.e. the number of points in a general fiber. Prove that

X(X)=d-x(Y) =) (rs = 1)

zeX

by lifting a triangulation of Y to that of X (it is a fact that Y admits a triangulation).

Excercise 8 (Genus—degree formula). Let C C P? be a smooth curve of degree d. Prove that the
genus of C' equals %(d — 1)(d — 2) (Hint: use Hurwitz formula to the map induced by a projection

from a point off C'). Deduce that not all Riemann surfaces embed as smooth curves in P2.

Excercise 9. Prove that P! x P! contains Riemann surfaces of arbitrary genus. Does every Riemann
surface embed into P! x P1?

Excercise 10. Let X be a compact Riemann surface with a meromorphic form 5. We will see later
that the degree of 3, i.e. the number of zeroes minus the number of poles, equals —x(X), cf. [Donll,
§7.1.2]. Using this fact, give another proof of the Hurwitz formula (Exercise 7) and the genus-degree
formula (Exercise 8).

Excercise 11 (Hyperelliptic curves). Let p € C[z] be a polynomial of degree d with no multiple roots,
and let g = [2d] — 1. Let Co = {y* = p(z)} C C2, and let C be the normalization of the closure
Co C P?, see Exercise 5.

(a) Assume that d = 2g + 2 is even. Write p = ¢ - H?Zl(a: — a;) for some ay,...,aq € C, and let
Ch={@,y) € C*: > = ¢-[[,(1 — a;7))}. Show that C is isomorphic to the Riemann surface
obtained by gluing Cy with Cf, by (Z,7) ~ (z71,yz7971).

(b) Prove that C' is a curve of genus g, as follows. Like before, let a1, ..., ass+2 denote the roots of
p, With agg4o = oo if d is odd. Cut P! along some arcs 7i,. .. ,7Yg joining ag;_1 to ag;, and let V
be the resulting compact surface with boundary. Now, glue two copies of V' along 9V, and show
that the resulting compact surface is diffeomorphic to C.

A Riemann surface isomorphic to the above curve C for g > 2 is called a hyperelliptic curve.

Excercise 12. Prove that {(z,y) € C? : y?> = sinz} is a Riemann surface which cannot be realized
as an interior of a compact manifold with boundary (Hint: what would be its genus?).

The following Exercises 13-14, taken from [Aral2, §1.6], give explicit examples of the Jacobian
variety of a Riemann surface. The same construction in arbitrary dimension, called the Albanese
variety, will appear later in the lecture. Let us accept the following fact.

Proposition. Let X be a compact Riemann surface of genus g. Then the space Q!(C) of holomorphic
1-forms has dimension g. Let aq,..., a4 be its basis. Let X — C be the universal cover, choose a
base point 29 € X and let f;: X — C be a map defined by = fv «a, for any path «y joining xo with
x. Then the map (f1,..., fy): C — CY descends to a map a: C' — C9/A for some lattice A.

The variety CY9/A is called the Jacobian of C, and denoted by J(C'). Every holomorphic map from
X to an Abelian variety (i.e. manifold of type C"/I" for some lattice I') factors through a.

Excercise 13. Let C be a compact Riemann surface of genus 3. Define the “Gauss map” o/ : C — P?
by assigning to each point of C' the image of the derivative of the map C' — J(C).

(a) Assume that C is hyperelliptic, given by y? = p(x) for some polynomial p of degree 7 or 8, see
vdr - 22dr of OL(C), prove that o/ (z,y) = [1: z : 22], i.e. of

dx
V@) \/p)’ \/p(x)

Exercise 11. Using a basis

is the 2-1 cover C — P!,
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(b) Assume that C' C P? is given by a homogeneous polynomial ¢ of degree 4, cf. Exercise 8. Using

the basis of Q'(C) given by 1-forms dxé\qdy, xdxé;dy, yd”‘;%dy from Exercise 1(e), prove that the

Gauss map is the original embedding C' — P?.
(c) Conclude that the quartic in P? is not hyperelliptic (for another proof see [Har77, Exercise 3.2]).

Excercise 14. Let C, E be the (hyper)elliptic curves defined by y? = 2% + 1 and v? = v® — 1, so
C has genus 2 and E has genus 1. Define holomorphic maps 71, m: C — E by mi(z,y) = (22,y),
mo(z,y) = (272,12 yo~3), and describe the factorization of (71, 72): C — E x E through J(C).

Excercise 15 (Milnor fibration, cf. [Mil68]). Let f: C2 — C be a holomorphic function such that
f71(0) = 0, and 0 is the unique critical point of f. Let B C P? be a closed ball of small radius ¢ > 0
around the origin, and let F' = f~1(§) N B for some € > 6 > 0 be the Milnor fiber of f.

(a) Consider a vector field v on f~1(9Ds) such that f,v is the unit vector field on dDs. Prove that v
can be chosen in such a way that its time one flow : f~1(§) — f~1(0) exists and is the identity
outside F'. In particular, ¢ restricts to the monodromy diffeomorphism ¢: F — F', which does
not depend on v up to an isotopy.

(b) Consider f(x,y) = zy. Prove that F is diffeomorphic to a cylinder S' x [0, 1], and ¢ is isotopic
to a Dehn twist.

(c) Can a similar picture be drawn for f(z,y) = z*y for any k > 2? (Note that now each point (0, %)
is a critical point of f).

(d) Describe the Milnor fiber F' and the monodromy ¢ for f(z,y) = 2> — 3>.
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