Excercise 1 (cf. [Huy05, §2.4]). Consider the complex projective plane \mathbb{P}^{2} with homogeneous coordinates $[X: Y: Z]$. Let $P \in \mathbb{C}[X, Y, Z]$ be a homogeneous polynomial.
(a) Show that the zero locus of P is a well defined subset of \mathbb{P}^{2}, call it C.
(b) Show that C is a smooth submanifold of \mathbb{P}^{2} if and only if the derivatives $\frac{\partial P}{\partial X}, \frac{\partial P}{\partial Y}, \frac{\partial P}{\partial Z}$ do not have common zeros (Hint: use Euler identity $\left.X \frac{\partial P}{\partial X}+Y \frac{\partial P}{\partial Y}+Z \frac{\partial P}{\partial Z}=(\operatorname{deg} P) \cdot P\right)$
(c) Let $(x, y)=\left(\frac{X}{Z}, \frac{Y}{Z}\right)$ be the affine coordinates of the piece $U=\{Z \neq 0\}$ of \mathbb{P}^{2}. Show that the 2 -form $d x \wedge d y$ extends to a meromorphic 2 -form on \mathbb{P}^{2}, with pole of order 3 along $\{Z=0\}$.
(d) Write $p(x, y)=P(x, y, 1) \in \mathbb{C}[x, y]$. Prove that the 1 -forms $\left(\frac{\partial p}{\partial y}\right)^{-1} \cdot d x$ and $-\left(\frac{\partial p}{\partial x}\right)^{-1} \cdot d y$ glue to a meromorphic form α on C, such that any 1-form $\widetilde{\alpha}$ on U such that $\widetilde{\alpha}_{U \cap C}=\left.\alpha\right|_{U \cap C}$ satisfies $\widetilde{\alpha} \wedge d p=d x \wedge d y$. We call α the residue of $d x \wedge d y$ along C, and write $\alpha=\frac{d x \wedge d y}{d p}$.
(e) Assume that $d:=\operatorname{deg} P \geqslant 3$, and let $q \in \mathbb{C}[x, y]$ be a polynomial of degree at most $d-3$. Prove that the 1 -forms $q \frac{d x \wedge d y}{d p}$ extend to holomorphic 1 -forms on C. We will see later that all holomorphic 1-forms on C are of this type, cf. [GH78, p. 148].
(f) Show that if $d \in\{1,2\}$ then C is isomorphic to \mathbb{P}^{1}, so it does not admit holomorphic 1-forms.

Excercise 2 (cf. [Don11, §II.6.1]). Let X be a compact Riemann surface with a nonvanishing holomorphic 1-form α. Prove that X is isomorphic to a quotient of \mathbb{C} by a lattice of rank 2 , as follows.
(a) Endow a universal cover $p: \widetilde{X} \longrightarrow X$ with a structure of a Riemann surface.
(b) Prove that a map $F: \widetilde{X} \longrightarrow \mathbb{C}$ given by $x \mapsto \int_{\gamma} \alpha$, where γ is a path joining x with a chosen base point, is holomorphic and satisfies $d F=p^{*} \alpha$. In particular, F is a local homeomorphism.
(c) Prove that F is a covering map, hence an isomorphism since \mathbb{C} is simply connected (This is a bit technical. As a warm-up, give an example of a local diffeomorphism which is not a covering).
(d) Infer from compactness of X that the group $\pi_{1}(X) \subseteq \operatorname{Aut}(\mathbb{C})$ is a lattice of rank 2 .

Deduce that a smooth cubic curve on \mathbb{P}^{2} is isomorphic to a torus \mathbb{C} / Λ for some lattice Λ of rank 2 (Hint: use the 1 -form $\frac{d x \wedge d y}{d p}$ from Exercise 1(e)).

Exercises 3-5, which follow the discussion in [Don11, §4.2.2-4.2.3], give a hands-on topological construction of a normalization of a Riemann surface.
Excercise 3. Let $f: X \longrightarrow Y$ be a proper holomorphic map of connected Riemann surfaces, let $\Delta \subseteq Y$ be the image of the zero locus of $d f$, and let $R=f^{-1}(\Delta)$.
(a) Prove that the restriction $\left.f\right|_{X \backslash R}: X \backslash R \longrightarrow Y \backslash \Delta$ is a proper covering. Let d be its degree.
(b) Define the monodromy representation $\pi_{1}(X \backslash \Delta) \longrightarrow S_{d}$, where S_{d} is the symmetric group on d letters, as follows: take a loop in Y with base point y, lift it to a path with endpoints in $f^{-1}(y)$, and consider the induced permutation of $f^{-1}(y)$.
(c) Let $p \in \mathbb{C}[x]$ be a polynomial, let $X=\left\{(x, y) \in \mathbb{C}^{2}: y^{2}=p(x)\right\}$, and let $f: X \longrightarrow \mathbb{C}$ be the projection onto the first factor. Describe the monodromy representation of f.
Excercise 4. Let Y be a connected Riemann surface, let Δ be a discrete subset of Y, and let $\rho: \pi_{1}(Y \backslash \Delta) \longrightarrow S_{d}$ be a transitive representation. Construct a proper map of Riemann surfaces $f: X \longrightarrow Y$ whose monodromy representation is ρ, as follows.
(a) Consider a simple case when $(Y, \Delta)=(\mathbb{D}, 0)$, and ρ maps the generator $\gamma \in \pi_{1}(Y \backslash \Delta)$, to a d-cycle. Then $X=\mathbb{D}$, and $f: X \longrightarrow Y$ is given by $z \mapsto z^{d}$.
(b) Construct a local model as above for an arbitrary permutation $\rho(\gamma) \in S_{d}$.
(c) Define X by patching together $Y \backslash \Delta$ and the above local models. Check carefully that the resulting topological space is Hausdorff, and endow it with a holomorphic structure.
Excercise 5. Let $C \subseteq \mathbb{P}^{2}$ be a plane curve, i.e. a zero set of an irreducible polynomial P. Let $\operatorname{Sing} C$ be its singular locus, i.e. the common zero set of the derivatives of P.
(a) Apply Exercises 3 and 4 to construct a map $\widetilde{C} \longrightarrow C$ which is an isomorphism away $\operatorname{Sing} C$. We call \widetilde{C} the normalization of $\underset{C}{C}$.
(b) Prove that the composition $\widetilde{C} \longrightarrow C \hookrightarrow \mathbb{P}^{2}$ is holomorphic.
(c) Describe the normalization of cubics $\left\{x^{2} z=y^{3}\right\}$ and $\left\{x^{2} z=y^{2}(y-z)\right\}$.
(d) Compare this construction with the one via the integral closure of the coordinate ring.

Below, we denote by χ the topological Euler characteristic. Please choose your favorite definition (via triangulations, singular homology, de Rham cohomology, or Poincaré-Hopf formula). The genus of a compact Riemann surface X is $1-\frac{1}{2} \chi(X)$.

Excercise 6. Let N be a complex submanifold of a complex manifold M. Prove that $\chi(M)=$ $\chi(M \backslash N)+\chi(N)$. Show that in the real case, the analogous formula holds mod 2 .

Excercise 7 (Hurwitz formula). Let $f: X \longrightarrow Y$ be a holomorphic map of compact Riemann surfaces. We say that $x \in X$ is a ramification point of f with index r_{x} if locally around x, f is given by $z \mapsto z^{r_{x}}$. Let d be the degree of f, i.e. the number of points in a general fiber. Prove that

$$
\chi(X)=d \cdot \chi(Y)-\sum_{x \in X}\left(r_{x}-1\right)
$$

by lifting a triangulation of Y to that of X (it is a fact that Y admits a triangulation).
Excercise 8 (Genus-degree formula). Let $C \subseteq \mathbb{P}^{2}$ be a smooth curve of degree d. Prove that the genus of C equals $\frac{1}{2}(d-1)(d-2)$ (Hint: use Hurwitz formula to the map induced by a projection from a point off $C)$. Deduce that not all Riemann surfaces embed as smooth curves in \mathbb{P}^{2}.

Excercise 9. Prove that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ contains Riemann surfaces of arbitrary genus. Does every Riemann surface embed into $\mathbb{P}^{1} \times \mathbb{P}^{1}$?

Excercise 10. Let X be a compact Riemann surface with a meromorphic form β. We will see later that the degree of β, i.e. the number of zeroes minus the number of poles, equals $-\chi(X)$, cf. [Don11, $\S 7.1 .2$]. Using this fact, give another proof of the Hurwitz formula (Exercise 7) and the genus-degree formula (Exercise 8).

Excercise 11 (Hyperelliptic curves). Let $p \in \mathbb{C}[x]$ be a polynomial of degree d with no multiple roots, and let $g=\left\lceil\frac{1}{2} d\right\rceil-1$. Let $C_{0}=\left\{y^{2}=p(x)\right\} \subseteq \mathbb{C}^{2}$, and let C be the normalization of the closure $\bar{C}_{0} \subseteq \mathbb{P}^{2}$, see Exercise 5 .
(a) Assume that $d=2 g+2$ is even. Write $p=c \cdot \prod_{i=1}^{d}\left(x-a_{i}\right)$ for some $a_{1}, \ldots, a_{d} \in \mathbb{C}$, and let $\left.C_{0}^{\prime}=\left\{(\widetilde{x}, \widetilde{y}) \in \mathbb{C}^{2}: \widetilde{y}^{2}=c \cdot \prod_{i}\left(1-a_{i} \widetilde{x}\right)\right)\right\}$. Show that C is isomorphic to the Riemann surface obtained by gluing C_{0} with C_{0}^{\prime} by $(\widetilde{x}, \widetilde{y}) \sim\left(x^{-1}, y x^{-g-1}\right)$.
(b) Prove that C is a curve of genus g, as follows. Like before, let $a_{1}, \ldots, a_{2 g+2}$ denote the roots of p, with $a_{2 g+2}=\infty$ if d is odd. Cut \mathbb{P}^{1} along some $\operatorname{arcs} \gamma_{1}, \ldots, \gamma_{g}$ joining $a_{2 i-1}$ to $a_{2 i}$, and let V be the resulting compact surface with boundary. Now, glue two copies of V along ∂V, and show that the resulting compact surface is diffeomorphic to C.
A Riemann surface isomorphic to the above curve C for $g \geqslant 2$ is called a hyperelliptic curve.
Excercise 12. Prove that $\left\{(x, y) \in \mathbb{C}^{2}: y^{2}=\sin x\right\}$ is a Riemann surface which cannot be realized as an interior of a compact manifold with boundary (Hint: what would be its genus?).

The following Exercises 13-14, taken from [Ara12, §1.6], give explicit examples of the Jacobian variety of a Riemann surface. The same construction in arbitrary dimension, called the Albanese variety, will appear later in the lecture. Let us accept the following fact.

Proposition. Let X be a compact Riemann surface of genus g. Then the space $\Omega^{1}(C)$ of holomorphic 1-forms has dimension g. Let $\alpha_{1}, \ldots, \alpha_{g}$ be its basis. Let $\widetilde{X} \longrightarrow C$ be the universal cover, choose a base point $x_{0} \in \widetilde{X}$ and let $f_{j}: \widetilde{X} \longrightarrow \mathbb{C}$ be a map defined by $x \mapsto \int_{\gamma} \alpha_{j}$, for any path γ joining x_{0} with x. Then the map $\left(f_{1}, \ldots, f_{g}\right): \widetilde{C} \longrightarrow \mathbb{C}^{g}$ descends to a map $\alpha: C \longrightarrow \mathbb{C}^{g} / \Lambda$ for some lattice Λ.

The variety \mathbb{C}^{g} / Λ is called the Jacobian of C, and denoted by $J(C)$. Every holomorphic map from X to an Abelian variety (i.e. manifold of type \mathbb{C}^{n} / Γ for some lattice Γ) factors through α.

Excercise 13. Let C be a compact Riemann surface of genus 3. Define the "Gauss map" $\alpha^{\prime}: C \longrightarrow \mathbb{P}^{2}$ by assigning to each point of C the image of the derivative of the map $C \longrightarrow J(C)$.
(a) Assume that C is hyperelliptic, given by $y^{2}=p(x)$ for some polynomial p of degree 7 or 8 , see Exercise 11. Using a basis $\frac{d x}{\sqrt{p(x)}}, \frac{x d x}{\sqrt{p(x)}}, \frac{x^{2} d x}{\sqrt{p(x)}}$ of $\Omega^{1}(C)$, prove that $\alpha^{\prime}(x, y)=\left[1: x: x^{2}\right]$, i.e. α^{\prime} is the 2-1 cover $C \longrightarrow \mathbb{P}^{1}$.
(b) Assume that $C \subseteq \mathbb{P}^{2}$ is given by a homogeneous polynomial q of degree 4 , cf. Exercise 8 . Using the basis of $\Omega^{1}(C)$ given by 1-forms $\frac{d x \wedge d y}{d q}, x \frac{d x \wedge d y}{d q}, y \frac{d x \wedge d y}{d q}$ from Exercise $1(\mathrm{e})$, prove that the Gauss map is the original embedding $C \hookrightarrow \mathbb{P}^{2}$.
(c) Conclude that the quartic in \mathbb{P}^{2} is not hyperelliptic (for another proof see [Har77, Exercise 3.2]).

Excercise 14. Let C, E be the (hyper)elliptic curves defined by $y^{2}=x^{6}+1$ and $v^{2}=u^{3}-1$, so C has genus 2 and E has genus 1. Define holomorphic maps $\pi_{1}, \pi_{2}: C \longrightarrow E$ by $\pi_{1}(x, y)=\left(x^{2}, y\right)$, $\pi_{2}(x, y)=\left(x^{-2}, \imath \cdot y x^{-3}\right)$, and describe the factorization of $\left(\pi_{1}, \pi_{2}\right): C \longrightarrow E \times E$ through $J(C)$.

Excercise 15 (Milnor fibration, cf. [Mil68]). Let $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}$ be a holomorphic function such that $f^{-1}(0)=0$, and 0 is the unique critical point of f. Let $B \subseteq \mathbb{P}^{2}$ be a closed ball of small radius $\varepsilon>0$ around the origin, and let $F=f^{-1}(\delta) \cap B$ for some $\varepsilon \gg \delta>0$ be the Milnor fiber of f.
(a) Consider a vector field v on $f^{-1}\left(\partial \mathbb{D}_{\delta}\right)$ such that $f_{*} v$ is the unit vector field on $\partial \mathbb{D}_{\delta}$. Prove that v can be chosen in such a way that its time one flow $\varphi: f^{-1}(\delta) \longrightarrow f^{-1}(\delta)$ exists and is the identity outside F. In particular, φ restricts to the monodromy diffeomorphism $\varphi: F \longrightarrow F$, which does not depend on v up to an isotopy.
(b) Consider $f(x, y)=x y$. Prove that F is diffeomorphic to a cylinder $\mathbb{S}^{1} \times[0,1]$, and φ is isotopic to a Dehn twist.
(c) Can a similar picture be drawn for $f(x, y)=x^{k} y$ for any $k \geqslant 2$? (Note that now each point ($0, y$) is a critical point of f).
(d) Describe the Milnor fiber F and the monodromy φ for $f(x, y)=x^{2}-y^{3}$.

References

[Ara12] D. Arapura, Algebraic geometry over the complex numbers, Universitext, Springer, New York, 2012.
[Don11] S. Donaldson, Riemann surfaces, Oxford Graduate Texts in Mathematics, vol. 22, Oxford University Press, Oxford, 2011.
[GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley \& Sons], New York, 1978.
[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, 52.
[Huy05] D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction.
[Mil68] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968.

