
Complex manifolds 02.10.2023
A biased revision of Riemann surfaces

Excercise 1 (cf. [Huy05, §2.4]). Consider the complex projective plane P2 with homogeneous coor-
dinates [X : Y : Z]. Let P ∈ C[X,Y, Z] be a homogeneous polynomial.

(a) Show that the zero locus of P is a well defined subset of P2, call it C.
(b) Show that C is a smooth submanifold of P2 if and only if the derivatives ∂P

∂X , ∂P
∂Y , ∂P∂Z do not have

common zeros (Hint: use Euler identity X ∂P
∂X + Y ∂P

∂Y + Z ∂P
∂Z = (degP ) · P )

(c) Let (x, y) = (XZ ,
Y
Z ) be the affine coordinates of the piece U = {Z 6= 0} of P2. Show that the

2-form dx ∧ dy extends to a meromorphic 2-form on P2, with pole of order 3 along {Z = 0}.
(d) Write p(x, y) = P (x, y, 1) ∈ C[x, y]. Prove that the 1-forms (∂p∂y )−1 · dx and −( ∂p∂x)−1 · dy glue

to a meromorphic form α on C, such that any 1-form α̃ on U such that α̃U∩C = α|U∩C satisfies

α̃ ∧ dp = dx ∧ dy. We call α the residue of dx ∧ dy along C, and write α = dx∧dy
dp .

(e) Assume that d := degP > 3, and let q ∈ C[x, y] be a polynomial of degree at most d − 3.

Prove that the 1-forms q dx∧dydp extend to holomorphic 1-forms on C. We will see later that all

holomorphic 1-forms on C are of this type, cf. [GH78, p. 148].
(f) Show that if d ∈ {1, 2} then C is isomorphic to P1, so it does not admit holomorphic 1-forms.

Excercise 2 (cf. [Don11, §II.6.1]). Let X be a compact Riemann surface with a nonvanishing holo-
morphic 1-form α. Prove that X is isomorphic to a quotient of C by a lattice of rank 2, as follows.

(a) Endow a universal cover p : X̃ −→ X with a structure of a Riemann surface.

(b) Prove that a map F : X̃ −→ C given by x 7→
∫
γ α, where γ is a path joining x with a chosen base

point, is holomorphic and satisfies dF = p∗α. In particular, F is a local homeomorphism.
(c) Prove that F is a covering map, hence an isomorphism since C is simply connected (This is a bit

technical. As a warm-up, give an example of a local diffeomorphism which is not a covering).
(d) Infer from compactness of X that the group π1(X) ⊆ Aut (C) is a lattice of rank 2.

Deduce that a smooth cubic curve on P2 is isomorphic to a torus C/Λ for some lattice Λ of rank 2

(Hint : use the 1-form dx∧dy
dp from Exercise 1(e)).

Exercises 3–5, which follow the discussion in [Don11, §4.2.2–4.2.3], give a hands-on topological
construction of a normalization of a Riemann surface.

Excercise 3. Let f : X −→ Y be a proper holomorphic map of connected Riemann surfaces, let
∆ ⊆ Y be the image of the zero locus of df , and let R = f−1(∆).

(a) Prove that the restriction f |X\R : X \R −→ Y \∆ is a proper covering. Let d be its degree.
(b) Define the monodromy representation π1(X \∆) −→ Sd, where Sd is the symmetric group on d

letters, as follows: take a loop in Y with base point y, lift it to a path with endpoints in f−1(y),
and consider the induced permutation of f−1(y).

(c) Let p ∈ C[x] be a polynomial, let X = {(x, y) ∈ C2 : y2 = p(x)}, and let f : X −→ C be the
projection onto the first factor. Describe the monodromy representation of f .

Excercise 4. Let Y be a connected Riemann surface, let ∆ be a discrete subset of Y , and let
ρ : π1(Y \ ∆) −→ Sd be a transitive representation. Construct a proper map of Riemann surfaces
f : X −→ Y whose monodromy representation is ρ, as follows.

(a) Consider a simple case when (Y,∆) = (D, 0), and ρ maps the generator γ ∈ π1(Y \ ∆), to a
d-cycle. Then X = D, and f : X −→ Y is given by z 7→ zd.

(b) Construct a local model as above for an arbitrary permutation ρ(γ) ∈ Sd.
(c) Define X by patching together Y \ ∆ and the above local models. Check carefully that the

resulting topological space is Hausdorff, and endow it with a holomorphic structure.

Excercise 5. Let C ⊆ P2 be a plane curve, i.e. a zero set of an irreducible polynomial P . Let SingC
be its singular locus, i.e. the common zero set of the derivatives of P .

(a) Apply Exercises 3 and 4 to construct a map C̃ −→ C which is an isomorphism away SingC. We

call C̃ the normalization of C.
(b) Prove that the composition C̃ −→ C ↪→ P2 is holomorphic.
(c) Describe the normalization of cubics {x2z = y3} and {x2z = y2(y − z)}.
(d) Compare this construction with the one via the integral closure of the coordinate ring.
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Below, we denote by χ the topological Euler characteristic. Please choose your favorite definition
(via triangulations, singular homology, de Rham cohomology, or Poincaré-Hopf formula). The genus
of a compact Riemann surface X is 1− 1

2χ(X).

Excercise 6. Let N be a complex submanifold of a complex manifold M . Prove that χ(M) =
χ(M \N) + χ(N). Show that in the real case, the analogous formula holds mod 2.

Excercise 7 (Hurwitz formula). Let f : X −→ Y be a holomorphic map of compact Riemann surfaces.
We say that x ∈ X is a ramification point of f with index rx if locally around x, f is given by z 7→ zrx .
Let d be the degree of f , i.e. the number of points in a general fiber. Prove that

χ(X) = d · χ(Y )−
∑
x∈X

(rx − 1)

by lifting a triangulation of Y to that of X (it is a fact that Y admits a triangulation).

Excercise 8 (Genus–degree formula). Let C ⊆ P2 be a smooth curve of degree d. Prove that the
genus of C equals 1

2(d − 1)(d − 2) (Hint: use Hurwitz formula to the map induced by a projection

from a point off C). Deduce that not all Riemann surfaces embed as smooth curves in P2.

Excercise 9. Prove that P1×P1 contains Riemann surfaces of arbitrary genus. Does every Riemann
surface embed into P1 × P1?

Excercise 10. Let X be a compact Riemann surface with a meromorphic form β. We will see later
that the degree of β, i.e. the number of zeroes minus the number of poles, equals −χ(X), cf. [Don11,
§7.1.2]. Using this fact, give another proof of the Hurwitz formula (Exercise 7) and the genus-degree
formula (Exercise 8).

Excercise 11 (Hyperelliptic curves). Let p ∈ C[x] be a polynomial of degree d with no multiple roots,
and let g = d12de − 1. Let C0 = {y2 = p(x)} ⊆ C2, and let C be the normalization of the closure

C0 ⊆ P2, see Exercise 5.

(a) Assume that d = 2g + 2 is even. Write p = c ·
∏d
i=1(x − ai) for some a1, . . . , ad ∈ C, and let

C ′0 = {(x̃, ỹ) ∈ C2 : ỹ2 = c ·
∏
i(1 − aix̃))}. Show that C is isomorphic to the Riemann surface

obtained by gluing C0 with C ′0 by (x̃, ỹ) ∼ (x−1, yx−g−1).
(b) Prove that C is a curve of genus g, as follows. Like before, let a1, . . . , a2g+2 denote the roots of

p, with a2g+2 = ∞ if d is odd. Cut P1 along some arcs γ1, . . . , γg joining a2i−1 to a2i, and let V
be the resulting compact surface with boundary. Now, glue two copies of V along ∂V , and show
that the resulting compact surface is diffeomorphic to C.

A Riemann surface isomorphic to the above curve C for g > 2 is called a hyperelliptic curve.

Excercise 12. Prove that {(x, y) ∈ C2 : y2 = sinx} is a Riemann surface which cannot be realized
as an interior of a compact manifold with boundary (Hint: what would be its genus?).

The following Exercises 13–14, taken from [Ara12, §1.6], give explicit examples of the Jacobian
variety of a Riemann surface. The same construction in arbitrary dimension, called the Albanese
variety, will appear later in the lecture. Let us accept the following fact.

Proposition. Let X be a compact Riemann surface of genus g. Then the space Ω1(C) of holomorphic

1-forms has dimension g. Let α1, . . . , αg be its basis. Let X̃ −→ C be the universal cover, choose a

base point x0 ∈ X̃ and let fj : X̃ −→ C be a map defined by x 7→
∫
γ αj , for any path γ joining x0 with

x. Then the map (f1, . . . , fg) : C̃ −→ Cg descends to a map α : C −→ Cg/Λ for some lattice Λ.
The variety Cg/Λ is called the Jacobian of C, and denoted by J(C). Every holomorphic map from

X to an Abelian variety (i.e. manifold of type Cn/Γ for some lattice Γ) factors through α.

Excercise 13. Let C be a compact Riemann surface of genus 3. Define the “Gauss map” α′ : C −→ P2

by assigning to each point of C the image of the derivative of the map C −→ J(C).

(a) Assume that C is hyperelliptic, given by y2 = p(x) for some polynomial p of degree 7 or 8, see

Exercise 11. Using a basis dx√
p(x)

, x dx√
p(x)

, x2 dx√
p(x)

of Ω1(C), prove that α′(x, y) = [1 : x : x2], i.e. α′

is the 2-1 cover C −→ P1.
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(b) Assume that C ⊆ P2 is given by a homogeneous polynomial q of degree 4, cf. Exercise 8. Using

the basis of Ω1(C) given by 1-forms dx∧dy
dq , xdx∧dydq , y dx∧dydq from Exercise 1(e), prove that the

Gauss map is the original embedding C ↪→ P2.
(c) Conclude that the quartic in P2 is not hyperelliptic (for another proof see [Har77, Exercise 3.2]).

Excercise 14. Let C,E be the (hyper)elliptic curves defined by y2 = x6 + 1 and v2 = u3 − 1, so
C has genus 2 and E has genus 1. Define holomorphic maps π1, π2 : C −→ E by π1(x, y) = (x2, y),
π2(x, y) = (x−2, ı · yx−3), and describe the factorization of (π1, π2) : C −→ E × E through J(C).

Excercise 15 (Milnor fibration, cf. [Mil68]). Let f : C2 −→ C be a holomorphic function such that
f−1(0) = 0, and 0 is the unique critical point of f . Let B ⊆ P2 be a closed ball of small radius ε > 0
around the origin, and let F = f−1(δ) ∩B for some ε� δ > 0 be the Milnor fiber of f .

(a) Consider a vector field v on f−1(∂Dδ) such that f∗v is the unit vector field on ∂Dδ. Prove that v
can be chosen in such a way that its time one flow ϕ : f−1(δ) −→ f−1(δ) exists and is the identity
outside F . In particular, ϕ restricts to the monodromy diffeomorphism ϕ : F −→ F , which does
not depend on v up to an isotopy.

(b) Consider f(x, y) = xy. Prove that F is diffeomorphic to a cylinder S1 × [0, 1], and ϕ is isotopic
to a Dehn twist.

(c) Can a similar picture be drawn for f(x, y) = xky for any k > 2? (Note that now each point (0, y)
is a critical point of f).

(d) Describe the Milnor fiber F and the monodromy ϕ for f(x, y) = x2 − y3.
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