Complex manifolds 02.10.2023 A biased revision of Riemann surfaces

Excercise 1 (cf. [Huy05, §2.4]). Consider the complex projective plane \mathbb{P}^2 with homogeneous coordinates [X : Y : Z]. Let $P \in \mathbb{C}[X, Y, Z]$ be a homogeneous polynomial.

- (a) Show that the zero locus of P is a well defined subset of \mathbb{P}^2 , call it C.
- (b) Show that C is a smooth submanifold of \mathbb{P}^2 if and only if the derivatives $\frac{\partial P}{\partial X}, \frac{\partial P}{\partial Y}, \frac{\partial P}{\partial Z}$ do not have common zeros (*Hint:* use Euler identity $X\frac{\partial P}{\partial X} + Y\frac{\partial P}{\partial Y} + Z\frac{\partial P}{\partial Z} = (\deg P) \cdot P$)
- (c) Let $(x, y) = (\frac{X}{Z}, \frac{Y}{Z})$ be the affine coordinates of the piece $U = \{Z \neq 0\}$ of \mathbb{P}^2 . Show that the 2-form $dx \wedge dy$ extends to a meromorphic 2-form on \mathbb{P}^2 , with pole of order 3 along $\{Z = 0\}$.
- (d) Write $p(x,y) = P(x,y,1) \in \mathbb{C}[x,y]$. Prove that the 1-forms $(\frac{\partial p}{\partial y})^{-1} \cdot dx$ and $-(\frac{\partial p}{\partial x})^{-1} \cdot dy$ glue to a meromorphic form α on C, such that any 1-form $\tilde{\alpha}$ on U such that $\tilde{\alpha}_{U\cap C} = \alpha|_{U\cap C}$ satisfies $\tilde{\alpha} \wedge dp = dx \wedge dy$. We call α the *residue* of $dx \wedge dy$ along C, and write $\alpha = \frac{dx \wedge dy}{dp}$.
- (e) Assume that $d := \deg P \ge 3$, and let $q \in \mathbb{C}[x, y]$ be a polynomial of degree at most d 3. Prove that the 1-forms $q \frac{dx \wedge dy}{dp}$ extend to holomorphic 1-forms on C. We will see later that all holomorphic 1-forms on C are of this type, cf. [GH78, p. 148].
- (f) Show that if $d \in \{1, 2\}$ then C is isomorphic to \mathbb{P}^1 , so it does not admit holomorphic 1-forms.

Excercise 2 (cf. [Don11, §II.6.1]). Let X be a compact Riemann surface with a nonvanishing holomorphic 1-form α . Prove that X is isomorphic to a quotient of \mathbb{C} by a lattice of rank 2, as follows.

- (a) Endow a universal cover $p\colon \widetilde{X} \longrightarrow X$ with a structure of a Riemann surface.
- (b) Prove that a map $F: \widetilde{X} \longrightarrow \mathbb{C}$ given by $x \mapsto \int_{\gamma} \alpha$, where γ is a path joining x with a chosen base point, is holomorphic and satisfies $dF = p^* \alpha$. In particular, F is a local homeomorphism.
- (c) Prove that F is a covering map, hence an isomorphism since \mathbb{C} is simply connected (*This is a bit technical. As a warm-up, give an example of a local diffeomorphism which is not a covering*).
- (d) Infer from compactness of X that the group $\pi_1(X) \subseteq \operatorname{Aut}(\mathbb{C})$ is a lattice of rank 2.

Deduce that a smooth cubic curve on \mathbb{P}^2 is isomorphic to a torus \mathbb{C}/Λ for some lattice Λ of rank 2 (*Hint*: use the 1-form $\frac{dx \wedge dy}{dp}$ from Exercise 1(e)).

Exercises 3–5, which follow the discussion in [Don11, §4.2.2–4.2.3], give a hands-on topological construction of a normalization of a Riemann surface.

Excercise 3. Let $f: X \longrightarrow Y$ be a proper holomorphic map of connected Riemann surfaces, let $\Delta \subseteq Y$ be the image of the zero locus of df, and let $R = f^{-1}(\Delta)$.

- (a) Prove that the restriction $f|_{X\setminus R} \colon X \setminus R \longrightarrow Y \setminus \Delta$ is a proper covering. Let d be its degree.
- (b) Define the monodromy representation $\pi_1(X \setminus \Delta) \longrightarrow S_d$, where S_d is the symmetric group on d letters, as follows: take a loop in Y with base point y, lift it to a path with endpoints in $f^{-1}(y)$, and consider the induced permutation of $f^{-1}(y)$.
- (c) Let $p \in \mathbb{C}[x]$ be a polynomial, let $X = \{(x, y) \in \mathbb{C}^2 : y^2 = p(x)\}$, and let $f: X \longrightarrow \mathbb{C}$ be the projection onto the first factor. Describe the monodromy representation of f.

Excercise 4. Let Y be a connected Riemann surface, let Δ be a discrete subset of Y, and let $\rho: \pi_1(Y \setminus \Delta) \longrightarrow S_d$ be a transitive representation. Construct a proper map of Riemann surfaces $f: X \longrightarrow Y$ whose monodromy representation is ρ , as follows.

- (a) Consider a simple case when $(Y, \Delta) = (\mathbb{D}, 0)$, and ρ maps the generator $\gamma \in \pi_1(Y \setminus \Delta)$, to a *d*-cycle. Then $X = \mathbb{D}$, and $f: X \longrightarrow Y$ is given by $z \mapsto z^d$.
- (b) Construct a local model as above for an arbitrary permutation $\rho(\gamma) \in S_d$.
- (c) Define X by patching together $Y \setminus \Delta$ and the above local models. Check carefully that the resulting topological space is Hausdorff, and endow it with a holomorphic structure.

Excercise 5. Let $C \subseteq \mathbb{P}^2$ be a plane curve, i.e. a zero set of an irreducible polynomial P. Let Sing C be its singular locus, i.e. the common zero set of the derivatives of P.

- (a) Apply Exercises 3 and 4 to construct a map $\widetilde{C} \longrightarrow C$ which is an isomorphism away Sing C. We call \widetilde{C} the *normalization* of C.
- (b) Prove that the composition $\widetilde{C} \longrightarrow C \hookrightarrow \mathbb{P}^2$ is holomorphic.
- (c) Describe the normalization of cubics $\{x^2z = y^3\}$ and $\{x^2z = y^2(y-z)\}$.
- (d) Compare this construction with the one via the integral closure of the coordinate ring.

Below, we denote by χ the topological Euler characteristic. Please choose your favorite definition (via triangulations, singular homology, de Rham cohomology, or Poincaré-Hopf formula). The genus of a compact Riemann surface X is $1 - \frac{1}{2}\chi(X)$.

Excercise 6. Let N be a complex submanifold of a complex manifold M. Prove that $\chi(M) = \chi(M \setminus N) + \chi(N)$. Show that in the real case, the analogous formula holds mod 2.

Excercise 7 (Hurwitz formula). Let $f: X \longrightarrow Y$ be a holomorphic map of compact Riemann surfaces. We say that $x \in X$ is a *ramification point of* f with index r_x if locally around x, f is given by $z \mapsto z^{r_x}$. Let d be the *degree* of f, i.e. the number of points in a general fiber. Prove that

$$\chi(X) = d \cdot \chi(Y) - \sum_{x \in X} (r_x - 1)$$

by lifting a triangulation of Y to that of X (it is a fact that Y admits a triangulation).

Excercise 8 (Genus-degree formula). Let $C \subseteq \mathbb{P}^2$ be a smooth curve of degree d. Prove that the genus of C equals $\frac{1}{2}(d-1)(d-2)$ (*Hint:* use Hurwitz formula to the map induced by a projection from a point off C). Deduce that not all Riemann surfaces embed as smooth curves in \mathbb{P}^2 .

Excercise 9. Prove that $\mathbb{P}^1 \times \mathbb{P}^1$ contains Riemann surfaces of arbitrary genus. Does every Riemann surface embed into $\mathbb{P}^1 \times \mathbb{P}^1$?

Excercise 10. Let X be a compact Riemann surface with a meromorphic form β . We will see later that the *degree of* β , i.e. the number of zeroes minus the number of poles, equals $-\chi(X)$, cf. [Don11, §7.1.2]. Using this fact, give another proof of the Hurwitz formula (Exercise 7) and the genus-degree formula (Exercise 8).

Excercise 11 (Hyperelliptic curves). Let $p \in \mathbb{C}[x]$ be a polynomial of degree d with no multiple roots, and let $g = \lfloor \frac{1}{2}d \rfloor - 1$. Let $C_0 = \{y^2 = p(x)\} \subseteq \mathbb{C}^2$, and let C be the normalization of the closure $\overline{C}_0 \subseteq \mathbb{P}^2$, see Exercise 5.

- (a) Assume that d = 2g + 2 is even. Write $p = c \cdot \prod_{i=1}^{d} (x a_i)$ for some $a_1, \ldots, a_d \in \mathbb{C}$, and let $C'_0 = \{(\widetilde{x}, \widetilde{y}) \in \mathbb{C}^2 : \widetilde{y}^2 = c \cdot \prod_i (1 a_i \widetilde{x}))\}$. Show that C is isomorphic to the Riemann surface obtained by gluing C_0 with C'_0 by $(\widetilde{x}, \widetilde{y}) \sim (x^{-1}, yx^{-g-1})$.
- (b) Prove that C is a curve of genus g, as follows. Like before, let a_1, \ldots, a_{2g+2} denote the roots of p, with $a_{2g+2} = \infty$ if d is odd. Cut \mathbb{P}^1 along some arcs $\gamma_1, \ldots, \gamma_g$ joining a_{2i-1} to a_{2i} , and let V be the resulting compact surface with boundary. Now, glue two copies of V along ∂V , and show that the resulting compact surface is diffeomorphic to C.
- A Riemann surface isomorphic to the above curve C for $g \ge 2$ is called a hyperelliptic curve.

Excercise 12. Prove that $\{(x, y) \in \mathbb{C}^2 : y^2 = \sin x\}$ is a Riemann surface which cannot be realized as an interior of a compact manifold with boundary (*Hint:* what would be its genus?).

The following Exercises 13–14, taken from [Ara12, §1.6], give explicit examples of the Jacobian variety of a Riemann surface. The same construction in arbitrary dimension, called the *Albanese* variety, will appear later in the lecture. Let us accept the following fact.

Proposition. Let X be a compact Riemann surface of genus g. Then the space $\Omega^1(C)$ of holomorphic 1-forms has dimension g. Let $\alpha_1, \ldots, \alpha_g$ be its basis. Let $\widetilde{X} \longrightarrow C$ be the universal cover, choose a base point $x_0 \in \widetilde{X}$ and let $f_j \colon \widetilde{X} \longrightarrow \mathbb{C}$ be a map defined by $x \mapsto \int_{\gamma} \alpha_j$, for any path γ joining x_0 with x. Then the map $(f_1, \ldots, f_n) \colon \widetilde{C} \longrightarrow \mathbb{C}^g$ descends to a map $\alpha \colon C \longrightarrow \mathbb{C}^g / \Lambda$ for some lattice Λ

x. Then the map $(f_1, \ldots, f_g) : \widetilde{C} \longrightarrow \mathbb{C}^g$ descends to a map $\alpha : C \longrightarrow \mathbb{C}^g / \Lambda$ for some lattice Λ . The variety \mathbb{C}^g / Λ is called the *Jacobian* of *C*, and denoted by J(C). Every holomorphic map from X to an Abelian variety (i.e. manifold of type \mathbb{C}^n / Γ for some lattice Γ) factors through α .

Excercise 13. Let C be a compact Riemann surface of genus 3. Define the "Gauss map" $\alpha' \colon C \longrightarrow \mathbb{P}^2$ by assigning to each point of C the image of the derivative of the map $C \longrightarrow J(C)$.

(a) Assume that C is hyperelliptic, given by $y^2 = p(x)$ for some polynomial p of degree 7 or 8, see Exercise 11. Using a basis $\frac{dx}{\sqrt{p(x)}}, \frac{x \, dx}{\sqrt{p(x)}}, \frac{x^2 \, dx}{\sqrt{p(x)}}$ of $\Omega^1(C)$, prove that $\alpha'(x,y) = [1:x:x^2]$, i.e. α' is the 2-1 cover $C \longrightarrow \mathbb{P}^1$.

- (b) Assume that $C \subseteq \mathbb{P}^2$ is given by a homogeneous polynomial q of degree 4, cf. Exercise 8. Using the basis of $\Omega^1(C)$ given by 1-forms $\frac{dx \wedge dy}{dq}$, $x \frac{dx \wedge dy}{dq}$, $y \frac{dx \wedge dy}{dq}$ from Exercise 1(e), prove that the Gauss map is the original embedding $C \hookrightarrow \mathbb{P}^2$.
- (c) Conclude that the quartic in \mathbb{P}^2 is not hyperelliptic (for another proof see [Har77, Exercise 3.2]).

Excercise 14. Let C, E be the (hyper)elliptic curves defined by $y^2 = x^6 + 1$ and $v^2 = u^3 - 1$, so C has genus 2 and E has genus 1. Define holomorphic maps $\pi_1, \pi_2: C \longrightarrow E$ by $\pi_1(x, y) = (x^2, y), \pi_2(x, y) = (x^{-2}, i \cdot yx^{-3})$, and describe the factorization of $(\pi_1, \pi_2): C \longrightarrow E \times E$ through J(C).

Excercise 15 (Milnor fibration, cf. [Mil68]). Let $f: \mathbb{C}^2 \longrightarrow \mathbb{C}$ be a holomorphic function such that $f^{-1}(0) = 0$, and 0 is the unique critical point of f. Let $B \subseteq \mathbb{P}^2$ be a closed ball of small radius $\varepsilon > 0$ around the origin, and let $F = f^{-1}(\delta) \cap B$ for some $\varepsilon \gg \delta > 0$ be the *Milnor fiber* of f.

- (a) Consider a vector field v on $f^{-1}(\partial \mathbb{D}_{\delta})$ such that f_*v is the unit vector field on $\partial \mathbb{D}_{\delta}$. Prove that v can be chosen in such a way that its time one flow $\varphi \colon f^{-1}(\delta) \longrightarrow f^{-1}(\delta)$ exists and is the identity outside F. In particular, φ restricts to the monodromy diffeomorphism $\varphi \colon F \longrightarrow F$, which does not depend on v up to an isotopy.
- (b) Consider f(x, y) = xy. Prove that F is diffeomorphic to a cylinder $\mathbb{S}^1 \times [0, 1]$, and φ is isotopic to a Dehn twist.
- (c) Can a similar picture be drawn for $f(x, y) = x^k y$ for any $k \ge 2$? (Note that now each point (0, y) is a critical point of f).
- (d) Describe the Milnor fiber F and the monodromy φ for $f(x, y) = x^2 y^3$.

References

- [Ara12] D. Arapura, Algebraic geometry over the complex numbers, Universitext, Springer, New York, 2012.
- [Don11] S. Donaldson, *Riemann surfaces*, Oxford Graduate Texts in Mathematics, vol. 22, Oxford University Press, Oxford, 2011.
- [GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978.
- [Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, 52.
- [Huy05] D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction.
- [Mil68] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968.