Ideal in a Dedekind domain is generated by at most two elements.

 Joachim Jelisiejew, December 11, 2019Facts that we proved before the faulty proof:

1. If two ideal $I, J \subset A$ satisfy $I A_{\mathfrak{m}}=J A_{\mathfrak{m}}$ for every $\mathfrak{m} \subset A$ maximal then $I=J$.
2. If A is an Artinian ring then $\operatorname{Spec}(A)=\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{s}\right\}$ is finite, consists of maximal ideals and

$$
A \simeq A_{\mathfrak{m}_{1}} \times A_{\mathfrak{m}_{2}} \times \ldots \times A_{\mathfrak{m}_{s}} .
$$

Theorem 1. Let A be a Dedekind domain and $I \subset A$ be a non-zero ideal. Let $0 \neq f \in I$ be any element. Then there exists $g \in I$ such that $(f, g)=I$.

Proof. The closed set $V(f) \subset \operatorname{Spec}(A)$ is homeomorphic to $\operatorname{Spec}(A /(f))$ hence is a Noetherian topological space and so contains only finitely many elements. Since $f \neq 0$, every element of $V(f)$ is a maximal ideal, so every element of $V(f)$ is minimal with respect to inclusion in $V(f)$. Hence $V(f)$ is finite, say $V(f)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$.

The ring $A /(f)$ is Noetherian and zero-dimensional, hence Artinian, so using the fact above

$$
\begin{equation*}
\frac{A}{(f)}=\prod_{i=1}^{r}\left(\frac{A}{(f)}\right)_{\mathfrak{p}_{i}}=\prod_{i=1}^{r} \frac{A_{\mathfrak{p}_{i}}}{f A_{\mathfrak{p}_{i}}} . \tag{1}
\end{equation*}
$$

Recall that $I A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}$, so the ideal $I /(f)$ corresponds on the right hand side to the ideal

$$
\prod_{i=1}^{r} \frac{\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}}{f A_{\mathfrak{p}_{i}}} .
$$

For every $i=1,2, \ldots, r$ pick $t_{i} \in A$ such that $t_{i} A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i} A_{\mathfrak{p}_{i}}$ is a local parameter. Then the ideal $\prod_{i=1}^{r} \frac{\mathfrak{p}_{i}^{e_{i}} A_{\mathbf{p}_{i}}}{f A_{\mathbf{p}_{i}}}$ in $\prod_{i=1}^{r} \frac{A_{\mathbf{p}_{i}}}{f A_{\boldsymbol{p}_{i}}}$ is actually generated by the single element $\left(t_{1}^{e_{1}}, \ldots, t_{r}^{e_{r}}\right)$. Let $\bar{g} \in A /(f)$ correspond to this element in the isomorphism (1). Then $(\bar{g}+(f)) /(f)=I /(f)$. Let $g \in A$ be any preimage of \bar{g}. Then we have an equality of ideals

$$
\frac{(g)+(f)}{(f)}=\frac{I}{(f)}
$$

It follows that $I+(f)=(g)+(f)$ as ideals of A. Since $f \in I$, the left hand side is just I, so $I=(g, f)$.

Remark 2. On the lecture I wrongly tried to take g equal to $t_{1}^{e_{1}} \ldots t_{r}^{e_{r}}$. This particular choice of g was elegant but incorrect, because we had no guarantee that $g A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}$: we might have chosen for example $t_{1} \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ and then $g A_{\mathfrak{p}_{2}}$ is divisible by $t_{2}^{e_{1}+e_{2}}$. To make g work we need to choose $t_{i} \in \mathfrak{p}_{i} \backslash \bigcup_{j \neq i} \mathfrak{p}_{j}$. This can be done by the Chinese remainder theorem, see below.

Remark 3. The ring $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain but not a PID, for example the ideal $(2,1+\sqrt{-5})$ is not principal. Hence one cannot hope for all ideals to be generated by one element.

Remark 4. The big picture is that Dedekind domains correspond to smooth one-dimensional objects (Dedekind domains that are finitely generated \mathbb{k}-algebras are exactly affine algebraic curves). In the above argument we repeatedly use the trick: reduce to a closed subset of curve (=finitely many points) and then look locally at each point separately.

Second proof - bonus. The closed set $V(f) \subset \operatorname{Spec}(A)$ is homeomorphic to $\operatorname{Spec}(A /(f))$ hence is a Noetherian topological space and so contains only finitely many elements. But $f \neq 0$ so every element of $V(f)$ is a maximal ideal, so every element of $V(f)$ is minimal. Hence $V(f)$ is finite, say $V(f)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$.

Let $t_{i} \in A$ be an element such that $t_{i} A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i} A_{\mathfrak{p}_{i}}$ for $i=1, \ldots, r$. Let $e_{i}=\nu_{\mathfrak{p}_{i}}(I)$ be defined as

$$
I A_{\mathfrak{p}_{i}}=\mathfrak{p}^{e_{i}} A_{\mathfrak{p}_{i}} .
$$

Then $I A_{\mathfrak{p}_{i}}=t_{i}^{e_{i}} A_{\mathfrak{p}_{i}}$ and (f) $A_{\mathfrak{p}_{i}}=t_{i}^{e_{i}^{\prime}} A_{\mathfrak{p}_{i}}$ for some $e_{i}, e_{i}^{\prime} \mathbb{Z}_{\geq 0}$. Since $f \in I$ we have $e_{i}^{\prime} \geq e_{i}$.
The maximal ideals \mathfrak{p}_{i} and \mathfrak{p}_{j} are coprime for every pair $i \neq j$, so also $\mathfrak{p}_{i}^{e_{i}+1}$ and $\mathfrak{p}_{j}^{e_{j}+1}$ are coprime and by the Chinese Remainder theorem (see [Problem 4, Set 10, Exercises]), there exists an element $g \in A$ such that

$$
g \equiv t_{i}^{e_{i}} \quad \bmod \mathfrak{p}_{i}^{e_{i}+1}
$$

for $i=1,2, \ldots, r$. Then $g A_{\mathfrak{p}_{i}}+\mathfrak{p}_{i}^{e_{i}+1} A_{\mathfrak{p}_{i}}=t_{i}^{e_{i}} A_{\mathfrak{p}_{i}}+\mathfrak{p}^{e_{i}+1} A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}$ so by local version of Nakayama we have $g A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}$. Then we also have

$$
g A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}=t_{i}^{e_{i}} A_{\mathfrak{p}_{i}}=I A_{\mathfrak{p}_{i}} .
$$

Consider the ideal $J=(f, g)$ and a maximal ideal $\mathfrak{q} \subset A$. If $\mathfrak{q} \notin\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ then $f \notin \mathfrak{q}$, so f is invertible in $A_{\mathfrak{q}}$ and $J A_{\mathfrak{q}}=A_{\mathfrak{q}}=I A_{\mathfrak{q}}$. If $\mathfrak{q} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ say $\mathfrak{q}=\mathfrak{p}_{i}$, then

$$
J A_{\mathfrak{p}_{i}}=(f) A_{\mathfrak{p}_{i}}+(g) A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}^{\prime}} A_{\mathfrak{p}_{i}}+\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}=\mathfrak{p}_{i}^{e_{i}} A_{\mathfrak{p}_{i}}=I A_{\mathfrak{p}_{i}}
$$

since $e_{i}^{\prime} \geq e_{i}$. We have proven that $J A_{\mathfrak{q}}=I A_{\mathfrak{q}}$ for all maximal \mathfrak{q}, hence $J=I$ by the fact above.

