Fano varieties. Problem list.

General properties of Fano varieties

(1) Let \(f : X \to Z \) be a projective surjective morphism of smooth varieties. Assume that \(X \) is Fano. Show that
 (a) \(H^i(Z, \mathcal{O}_Z) = 0 \) \(\forall i \geq 1 \);
 (b) \(H^0(Z, nK_Z) = 0 \) \(\forall n \geq 1 \);
 (c) if \(Z \) is a curve, then \(Z \simeq \mathbb{P}^1 \);
 (d) if \(Z \) is a surface, then \(Z \) is rational.

(2) Let \(X \) be a Fano variety. Show that \(\pi_{\text{alg}}(X) = \{1\} \).

(3) Let \(X \) be a Fano variety and let \(\varphi : X \to X \) be an automorphism of prime order. Show that \(\varphi \) has a fixed point.

(4) Let \(X = \text{Gr}(n, k) \) be the Grassmann variety. Show that \(\text{Pic}(X) \simeq \mathbb{Z} \). Compute the canonical class. Show that \(X \) is Fano.

(5) Let \(X \) be a smooth projective variety of dimension \(n \) and let \(D \subset X \) be a prime divisor such that \(X \setminus D \simeq \mathbb{A}^n \). Show that \(X \) is Fano. Give some examples.

(6) Let \(\mathbb{P} := \mathbb{P}(a_0, \ldots, a_n) \) be a weighted projective space. Assume that the collection of weights \((a_0, \ldots, a_n) \) is well-formed, that is, \(\gcd(a_0, \ldots, a_i, \ldots, a_n) = 1 \) for all \(i \). Prove that \(K_{\mathbb{P}} = -(\sum a_i)A \), where \(A \) is the positive generator of \(\text{Cl}(\mathbb{P}) \), the Weil divisor class group.

(7) Let \(f : Y \to X \) be the blowup of some number of points on a smooth projective variety. Assume that \(Y \) is a Fano. Show that so \(X \) is.

(8) Let \(f : X \to \mathbb{P}^n \) be the blowup of a point. Show that \(X \) is Fano. What is the type of the second extremal ray? Can the blowup of two points on \(\mathbb{P}^n \) be a Fano variety?

(9) Let \(X \) be a three-dimensional variety and let \(f : X \to \mathbb{P}^1 \) be a smooth projective morphism such that \(-K_X \) is relatively ample. Show that \(\rho(X) = 11 - K_X^3 \).

Del Pezzo surfaces

(10) Let \(X \subset \mathbb{P}^n \) be a smooth surface such that its general hyperplane section is an elliptic curve. Show that \(X \) is either a del Pezzo surface or a \(\mathbb{P}^1 \)-bundle over an elliptic curve.

(11) Let \(X \subset \mathbb{P}^1 \times \mathbb{P}^2 \) be a smooth divisor of bidegree \((1, 1)\). Show that \(X \) is a del Pezzo surface. Compute the degree of \(X \).

(12) Show that any del Pezzo surface of degree 6 is isomorphic to a smooth divisor of tridegree \((1, 1, 1)\) in \(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \). Write down such a surface \(S \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \) by an explicit equation and find all the lines on \(S \).

(13) Show that any del Pezzo surface of degree 6 is isomorphic to a smooth intersection of two divisors of bidegree \((1, 1)\) in \(\mathbb{P}^2 \times \mathbb{P}^2 \).
(14) Find all del Pezzo surfaces that are isomorphic to complete intersections of hypersurfaces in some Grassmannian $\text{Gr}(k, N) \subset \mathbb{P}(\wedge^k \mathbb{C}^n)$.

(15) Show that any del Pezzo surface of degree 5 is isomorphic to a smooth section of $\text{Gr}(2, 5) \subset \mathbb{P}^9$ by a subspace of codimension 4.

(16) Show that any del Pezzo surface of degree 5 is isomorphic to a smooth divisor of bidegree $(1, 2)$ in $\mathbb{P}^1 \times \mathbb{P}^2$. Show that the projection to \mathbb{P}^2 is the blowup of 4 points.

(17) Show that any del Pezzo surface of degree 4 is isomorphic to an intersection of two quadrics in \mathbb{P}^4.

(18) Let $Q_1, Q_2 \subset \mathbb{P}^4$ be two distinct quadrics. Show that the intersection $Q_1 \cap Q_2$ is smooth if and only if the pencil $\langle Q_1, Q_2 \rangle$ contains exactly 5 degenerate members.

(19) Show that any del Pezzo surface of degree 4 can be given in \mathbb{P}^4 by the equations
\[x_0^2 + \cdots + x_4^2 = \lambda_0 x_0^2 + \cdots + \lambda_4 x_4^2 = 0. \]

(20) Let $X \subset \mathbb{P}^4$ be a del Pezzo surface of degree 4 and let \mathcal{Q} be the pencil of quadrics in \mathbb{P}^4 passing through X. Show that 5 degenerate quadrics $Q_i \in \mathcal{Q}$ define 5 double coverings $X \to \mathbb{P}^1 \times \mathbb{P}^1$. Therefore, there are 5 (biregular) involutions τ_i on X. What are branch divisors of these coverings? Write down involutions τ_i explicitly and show that they generate a normal subgroup $N \subset \text{Aut}(X)$ isomorphic to $(\mathbb{Z}/2\mathbb{Z})^4$.

(21) Let $X \subset \mathbb{P}^3$ be a cubic given by $x_0^3 + \cdots + x_3^3 = 0$ (Fermat cubic). Find all the lines on X. Compute the automorphism group.

(22) Let $X \subset \mathbb{P}^3 \subset \mathbb{P}^4$ be a cubic given by $x_0 + \cdots + x_4 = x_0^3 + \cdots + x_4^3 = 0$ (Clebsch diagonal cubic). Find all the lines on X. Compute the automorphism group.

(23) A point P on a cubic surface $X \subset \mathbb{P}^3$ is called an Eckardt point if there are three lines $L_i \subset X$ passing through P. Show that a general cubic surface contains no Eckardt points. Compute the codimension of the family of all cubic surfaces having Eckardt points.

(24) Show that on a del Pezzo surface X of degree $2 \leq d \leq 7$ any effective divisor is linearly equivalent to a linear combination of lines with non-negative integer coefficients. Is it true for del Pezzos of degree 1?

(25) Let X be a del Pezzo surface and let $\tau \in \text{Aut}(X)$ be an element of order 2 such that the locus of fixed points is a finite set. Prove that K_X^2 is even.

(26) Find all del Pezzo surfaces that are isomorphic to weighted complete intersections in some weighted projective space $\mathbb{P}(a_0, \ldots, a_n)$.
Fano threefolds

(27) Find all Fano threefolds that are isomorphic to complete intersections of hypersurfaces in some Grassmannian \(\text{Gr}(k, N) \subset \mathbb{P}(\wedge^k \mathbb{C}^n) \).

(28) Find all Fano threefolds that are isomorphic to complete intersections of divisors in products \(\mathbb{P}^{N_1} \times \cdots \times \mathbb{P}^{N_m} \).

(29) Let \(X \) be a Fano threefold and let \(f : X \to Z \) be a surjective morphism to a smooth surface \(Z \). Show that \(Z \) is del Pezzo. *Hint.* Use the formula \(-4K_Z \equiv f_* K_X^2 + \Delta \), where \(\Delta \subset Z \) is the discriminant curve.

(30) Show that the complete flag variety of \(\mathbb{P}^2 \) is a Fano threefold \(V_6 \subset \mathbb{P}^7 \).

(31) Let \(X \subset \mathbb{P}^4 \) be a smooth cubic hypersurface and let \(L \subset X \) be a line. Let \(f : Y \to X \) be the blowup of \(L \). Show that \(Y \) is Fano. What is the type of the second extremal ray?

(32) Let \(X \subset \mathbb{P}^5 \) be a smooth intersection of two quadrics and let \(L \subset X \) be a line. Let \(f : Y \to X \) be the blowup of \(L \). Show that \(Y \) is Fano. What is the type of the second extremal ray?

(33) Let \(f : X \to \mathbb{P}^3 \) be the blowup of a smooth curve \(C \subset \mathbb{P}^3 \). Find a sufficient condition for \(X \) to be a Fano variety.

(34) Let \(Q \subset \mathbb{P}^4 \) be a smooth quadric and let \(f : X \to Q \) be the blowup of a smooth curve \(C \subset Q \). Find a sufficient condition for \(X \) to be a Fano variety.

(35) Let \(V = V_d \subset \mathbb{P}^{d+1} \) be a del Pezzo threefold and let \(f : X \to V \) be the blowup of a smooth curve \(C \subset V \). Find a sufficient condition for \(X \) to be a Fano variety.

(36) Let \(f : X \to \mathbb{P}^3 \) be the blowup of a smooth curve \(C \subset \mathbb{P}^3 \). Find a sufficient condition for \(X \) to be a Fano variety.

Automorphisms of Fano varieties

(37) Show that a general del Pezzo surface of degree 3 has no non-trivial automorphisms.

(38) Show that the only non-trivial automorphism of a general del Pezzo surface of degree 1 (resp. 2) is the Bertini (resp. Geiser) involution.

(39) Describe the automorphism group of a del Pezzo surface of degree 6.

(40) Prove that the automorphism group of a del Pezzo surface of degree 5 is isomorphic to \(S_5 \).

(41) Describe the automorphism group of \(V_6 \subset \mathbb{P}^7 \).

(42) Prove that the automorphism group of \(V_5 \subset \mathbb{P}^6 \) is isomorphic to \(PSL_2 \).

(43) Using the action of \(PSL_2 \) on \(V_5 \subset \mathbb{P}^6 \) describe the family of lines.
(44) Let \(C \subset \mathbb{P}^4 \) be a rational normal curve of degree 4. The action of the group \(\text{Aut}(C) = \text{PGL}_2(\mathbb{k}) \) naturally extends to \(\mathbb{P}^4 \). Show that there exists an invariant non-singular quadric \(Q \subset \mathbb{P}^4 \) containing \(C \). Let \(f_1 : X \to Q \) be the blowup of \(C \). Show that \(X \) is a Fano threefold admitting a \(\text{PGL}_2(\mathbb{k}) \)-action.

(45) Let \(\Gamma \subset \mathbb{P}^2 \) is a non-degenerate conic and let \(\Gamma^* \subset \mathbb{P}^2^* \) be its dual, the conic formed by lines that are tangent to \(\Gamma \). Consider the incidence curve
\[
C = \{(P, L) \in \Gamma \times \Gamma^* \subset \mathbb{P}^2 \times \mathbb{P}^2^* \mid L \text{ is tangent to } \Gamma \text{ at } P \}.
\]
Then \(C \) is contained into the flag variety \(\text{Fl}(\mathbb{P}^2) = V_6 \). The action \(\text{Aut}(\Gamma) = \text{PGL}_2(\mathbb{k}) \) extends to \(V_6 = \text{Fl}(\mathbb{P}^2) \). Let \(f : X \to V_6 \) be the blowup of \(C \). Show that \(X \) is a Fano threefold admitting a \(\text{PGL}_2(\mathbb{k}) \)-action.

(46) Let \((a_{i,j}), (b_{i,j}), (c_{i,j}) \) be symmetric \(4 \times 4 \)-matrices and let \(X \subset \mathbb{P}^3 \times \mathbb{P}^3 \) be given by the equations
\[
\sum a_{i,j}x_iy_j = \sum b_{i,j}x_iy_j = \sum c_{i,j}x_iy_j = 0.
\]
If \((a_{i,j}), (b_{i,j}), (c_{i,j}) \) are taken sufficiently general, then \(X \) is a smooth Fano threefold admitting an action of \(\mu_2 \). The projections to both copies of \(\mathbb{P}^3 \) are blowups of curves of degree 6 and genus 3.

(47) Let \(X \) be a del Pezzo surface of degree 1 (resp. 2) and let \(\tau \in \text{Aut}(X) \) be the Bertini (resp. Geiser) involution. Show that
(a) the pair \((\tau, X)\) is minimal;
(b) \(\tau \) is not linearizable;
(c) \(\tau \) is not conjugate to a de Jonquières involution;
(d) if \(\tau' \in \text{Aut} X \) is an involution such that \((\tau', X)\) is minimal, then \(\tau' = \tau \).