
Language Support for

Lightweight Transactions
Overview

Tim Harris, Keir Fraser
University of Cambridge Computer

Laboratory

Jacek Karaśkiewicz, 2012

Plan of presentation

• Standard approach to concurrency

▫ Problems with standard techniques

• „New” old idea – Conditional Critical Regions
(CCR’s)

▫ Advantages over previous solutions

▫ Implementation

▫ Performance

▫ Possible future development

Standard approach to concurrency

• Multiple threads

▫ Mutual-exclusion locks

▫ Condition variables controlling access to shared
data

Problems with standard approach
Consider this simple code:

public synchronized int get() {

 int result;

 while (items == 0) wait();

 items--;

 result = buffer[items];

 notifyAll();

 return result;

}

Problems with standard approach

• There is no check that the data accesses made

are protected by the locks that are held,

• get() operation cannot proceed concurrently

with put() operation (because of mutual-

exclusion locks), even though they don’t have to

conflict

• Strange looking constructs like wait()

surrounded by a while loop

CCR (Conditional Critical Regions)

• Allow programmers to indicate which groups of

operations should be executed in isolation,

rather than how to enforce it through some

concurrency control mechanism,

• Allow guarding regions by arbitrary boolean
conditions, which causes a thread to be blocked
until a guard is satisfied,

• Eliminate the downsides of previous solution.

CCR
• A basic syntax:

 atomic (condition) {

 statements;

}

• Now our get() method looks like this:

 public int get() {

 atomic (items != 0) {

 items--;

 return buffer[items];

 }

}

CCR

• How to implement this mechanism? We use

Software Transactional Memory (STM),

• STM groups together series of memory accesses

and makes them appear atomic,

• Allows dynamically non-conflicting executions

to operate concurrently,

• Non-blocking implementation is used,
preventing deadlocks and priority inversions.

Non-blocking design

• CCR implementation should be non-blocking,

• Non-blocking design is a design in which a

failure of any number of threads cannot prevent

other threads from making progress,

• Non-blocking design used in this algorithm may

be put into obstruction-freedom category.

Non-blocking design

• Obstruction-free algorithm guarantees, that any

thread can progress as long as it doesn’t contend

with other threads for access to any location,

• This construct is strong enough to prevent
deadlocks and priority inversions from

happening.

Language integration
• The basic syntax is (as we presented earlier):

atomic (condition) {

 statements;

}

• The condition may be simple true,
• A thread executing the CCR sees the updates it makes

according to the usual single-threaded semantics,

• Other threads observe the CCR to take place
atomically at some point between its start and
completion,

• Exactly-once execution of statements.

CCR’s features

• CCR’s are allowed to access any field of any

object,

• They cannot execute, though, native methods

(which could contain arbitrary memory
accesses),

• CCR’s can be nested,

• wait(), notify(), notifyAll() methods

inside CCR are forbidden.

Software Transaction Memory (STM)

• The implementation of CCR is based on STM

• Hardware assumptions:

▫ Atomic word-sized memory accesses

▫ Atomic word-sized compare and swap (CAS)
instruction

▫ Available in all major architectures

STM interface

• Transaction management:

▫ void STMStart();

▫ void STMAbort();

▫ boolean STMCommit();

▫ boolean STMValidate();

▫ void STMWait();

STM interface

• STMStart:
▫ Begins new transaction within the executing

thread,

• STMAbort:
▫ Aborts the transaction in progress by the

executing thread,

• STMCommit:
▫ Attempts to commit the transaction in progress by

the executing thread (returns true if succeeds,
false otherwise),

STM interface

• STMValidate:

▫ Indicates whether the current transaction would
be able to commit,

• STMWait:

▫ Allows thread to block on entry to a CCR

STM interface

• Memory accesses:

▫ stm_word STMRead(addr a)

▫ void STMWrite(addr a, stm_word w)

STM interface
• Now the basic atomic block can be written in

terms of STM interface:

boolean done = false;

while (!done) {

 STMStart();

 try {

 if (condition) {

 statements;

 done = STMCommit();

 } else

 STMWait();

 } catch (Throwable t) {

 done = STMCommit();

 if (done)

 throw t;

 }

}

Heap structure

• 3 kinds of data structure:

▫ application heap (with actual data),

▫ ownership records (orecs), used to coordinate
transactions,

▫ transaction descriptors.

• Ownership function, which maps each address
in the application heap to an associated orec,

• Descriptors are never re-used.

Heap structure - example

Heap structure – ownership records

• An orec holds either a version number or a

current owner (descriptor) for the addresses

that associate with it,

• Version numbers indicate whether a transaction
can be committed,

• A version number is incremented each time a
location in application heap is updated,

• Version numbers are never re-used in the same
ownership record.

Heap structure – transaction descriptors

• Transaction descriptors show current status of each
active transaction and the accesses made to the
application heap,

• Each access is described by a transaction entry, that
contains:
▫ address,

▫ old and new values,
▫ old and new version numbers.

• Each descriptor also has a status field, that may have
one of the values: ACTIVE, COMMITTED,
ABORTED, ASLEEP.

Heap structure – transaction descriptors

• A descriptor is well-formed if for each associated

ownership record it either:

▫ Contains at most one entry associated with that
record,

▫ Contains many entries associated with that
record, but the old and new version numbers are
the same in all of them.

• Descriptors in our implementation are

maintained well-formed.

Logical state concept

• Each address in the application heap is

connected to some logical state,

• Logical state can be described as a pair (x, y),

where x is a value held at the address, and y is a
version number associated with it,

• Logical state can be computed by an analysis of
the heap structure.

STM Operations

• STMStart:
▫ Allocates a fresh descriptor and sets its status to

ACTIVE

• STMAbort:
▫ Changes the value in the status field to ABORTED

• STMRead:
▫ If current descriptor already contains an entry for

requested location, then returns new value,
▫ Otherwise determine the logical state of the

location and initialize a new descriptor entry.

STM Operations

• STMWrite:

▫ Writes new value and increases version number
by 1,

• STMCommit:

▫ Tries to acquire each of the ownership records it
needs – then (if successful) updates the status
field to COMMITTED, makes all necessary
changes to application heap and releases
ownership records.

STM Operations

• STMValidate:

▫ Checks whether version numbers held in
ownership records are equal to version numbers
held in transaction descriptor entries,

• STMWait:

▫ Aborts current transaction and blocks a caller
until an update may have been committed to one
of the locations accessed by the transaction.

Optimizations

• Multiple sleeping threads

▫ More than one thread can sleep on the same
location,

• Read sharing

• Avoiding searching

• Non-blocking commit

Implementation in JVM

• Modifications:

▫ atomic blocks are treated as methods,

▫ To each class a second method table is added – it
holds references to transactional versions of its
methods (compiled on demand) and is used by
method invocations within transactional methods,

▫ Compiler also is responsible for inserting
STMValidate() calls to detect internal looping in
transactions that cannot commit.

Implementation in JVM

• Memory management:

▫ Descriptors allocated on garbage-collected heap,

▫ Ownership records allocated statically

Performance

• Three testing set-ups:
▫ Hashtable test – compares various

implementations of concurrent hashtables:
 Implementation from java.util library (with single

mutex to protect the entire table),
 Concurrent HashMap from util.concurrent package,

 java.util.Hashtable with CCR without locks

▫ Compound test – swapping values for two keys –
combine update must be atomic,

▫ Wait test – threads arranged in a ring with shared
buffers

Performance – results for Hashtable test

Performance – results for Compound test

Performance - summary

• Key feature – transactions which do not contend

for the same ownership record can execute and

commit in parallel,

• STM implementation works best when
concurrent operations are likely to be

dynamically non-conflicting

Future work

• Better benchmarking,

• Extended language-level interface,

• Hardware support

▫ Hardware transactional memories

Thank you

