
Synthesizing Method 
Sequences for High-
Coverage Testing
Based on "Synthesizing Method Sequences for High-Coverage Testing" by 
Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, 
Zhendong Su - OOPSLA'11
 
Prepared by Kamil Szarek



Agenda

● High-coverage testing and its difficulties
● Automatic test generation, existing tools
● New, Great Approach Called Seeker

○ Problem formulation
○ DynAnalyzer algorithm
○ StatAnalyzer algorithm
○ Examples

● Evaluation
● Future work



High-coverage testing

● Full or at least high code coverage is a 
desirable property of unit tests

● There are several types of coverage (e.g. 
structural coverage, data flow coverage)

● Here we focus on branch coverage: the 
percentage of branches that have been 
exercised by a test case suite



Branch coverage example

B6 B4 B3 B2 B1

Source: C# QuickGraph library



High-coverage testing

● Branch coverage can be quite hard to 
achieve

Source: ibm.com



High-coverage testing

● Potential problems include tons of nested 
conditional statements and lack of 
knowledge about their conditions (e.g. no 
documentation for method whose return 
value is used to determine condition)

● Result: many hours spent on defining test 
environment for covering difficult branches

● Is there a better way...?



Yes, there is: automatic construction

● Two approaches: direct construction, 
sequence generation

● Program synthesis

Desired object state in 
form of conditional branch

Program synthesis

Method sequence that produces 
desired object state



Sequence generation challenges

● Large search space (multiple classes and 
methods)

● Primitive method parameters' values
● Object-oriented features such as 

encapsulation does not make it easier



Existing tools

● Pex
○ "Pex finds interesting input-output values of your 

methods, which you can save as a small test suite with 
high code coverage."

○ Dynamic Symbolic Execution

● Randoop
○ "Randoop generates unit tests using feedback-directed 

random test generation. In a nutshell, this technique 
randomly, but smartly, generates sequences of methods 
and constructor invocations for the classes under test, 
and uses the sequences to create tests."



New approach: "Seeker"

● Combines dynamic and static code analysis 
to reduce search space and generate 
appropriate primitive values

● Handles encapsulation properly
● Major challenges solved - awesome, but 

how does it work, precisely?



Problem formulation - definitions

● C, M - sets of classes and methods
● PrimTy, PrimVal - sets of primitive types 

and their values
● Method signature - M ∈ M :

C x T1 x ... x Tn → T, Ti ∈ C ⋃ PrimTy,

T ∈ C ⋃ PrimTy ⋃ { void }



Problem formulation - definitions

● Method sequence (MCS):
Sequence of method calls (m1, ... , mr) such that:

○ mi = o.Mi(a1, ... , an), where Mi ∈ M

○ o = ret(mk) for some 1 ≤ k < i and for all 1 ≤ j ≤ n

aj ∈ PrimVal ∨ aj = null ∨ aj = ret(ml) for some

1 ≤ l < i.

● In another words: compiler wouldn't 
complain (much).



Problem formulation - definitions

● Sequence skeleton (SKT):
Just like MCS, except that we do not 
require values of primitive type arguments. 
Useful when we don't know what values 
we're going to need.

● Target branch (TB):
Branch of conditional statement to be 
covered. Input of the algorithm.



Problem formulation - definitions

● Method sequence synthesis:
Given a method under test M ∈ M and a 
target branch tb within M, synthesize a 
method sequence (m1, ... , mr) that 

constructs the receiver object and 
arguments of M and drives M to successfully 
cover tb.



Seeker algorithm overview

● Two algorithms in feedback loop: 
DynAnalyzer and StatAnalyzer - dynamic 
and static analysis

● Dynamic analysis attempts to generate 
target sequence

● If it fails, static analysis starts, utilizing 
information from dynamic analysis

● Then dynamic analysis explores static 
analysis results and filters them out



DynAnalyzer

● Input: target branch tb, input sequence 
inpseq

 
1. Identify method m containing tb
2. Append m to inpseq as sequence skeleton 

(no primitive values) producing tmpskt
3. Run DSE subroutine to explore tmpskt for 

generating target sequence that covers tb



DynAnalyzer - DSE

● Symbolic Execution allows method to have 
non-concrete (symbolic) parameters

● When program executes conditional branch 
where condition has symbolic parameter, 
symbolic execution considers both branches

● Constraints on symbols are collected
● Constraint solver or theorem prover is used 

to obtain concrete values



DynAnalyzer - DSE

● Dynamic Symbolic Execution generates 
simple inputs instead of symbols

● After an execution, constraint solver is used 
to change inputs in order to cover different 
branches



DynAnalyzer - DSE

● DSE outputs targetseq (null when it fails), 
CovB (set of covered branches) and 
NotCovB (set of not covered branches)

● Depending on DSE results:
4. If targetseq is not null, we're done
5. If targetseq is null and tb ∈ NotCovB, we return 

StatAnalyzer(tb, inpseq)
6. Otherwise...



DynAnalyzer - ComputeDominants

6. ComputeDominants
a. Prime dominant: branch whose alternative branch 

is covered by DSE,
b. All other dominant branches of tb between the 

prime dominant and tb.

7. Recursively invoke DynAnalyzer for each 
dominant branch and return method 
sequence if all dominant branches are 
covered along with tb

8. ...Fail otherwise



DynAnalyzer algorithm



StatAnalyzer

● Input same as for DynAnalyzer
● Main purpose: to identify other branches 

that can help cover tb
 
1. DetectField

○ Identifies member field tfield that needs to be 
modified to produce object state for covering tb

○ This is trivial if condition directly refers to field
○ Otherwise, we use execution trace from DSE which 

includes statements executed in each method



StatAnalyzer - DetectField

● DetectField starts from method call 
involved in tb and proceeds backwards

● Denote retvar as variable/value associated 
with the return statement in method call

 
a. If retvar is member field, tfield is retvar
b. If retvar is data-dependent on member 

field, that field is tfield



StatAnalyzer - DetectField

c. If retvar is data-dependent on return of 
nested method call, DetectField is repeated 
with that method call

d. If retvar is control-dependent on member 
field, that field is tfield

e. If retvar is control-dependent on return of 
nested method call, DetectField is repeated 
with that method call



StatAnalyzer - DetectField

● There are two more results of DetectField, 
apart from tfield

● DetectField identifies the condition of 
tfield which is not satisfied - and should be 
in order to cover tb

● DetectField captures field hierarchy that 
includes objects from the one enclosing tb 
to tfield



StatAnalyzer - DetectField - example

● B8 is tb
● DetectField for ints.

HasElements() 
● (e): DetectField for stack.

size()
● (a): _size field in 

ArrayList is tfield

 

● Detected condition:
stack.size() > 0 MyCls root

IntStack ints

Stack stack

ArrayList list

int _size



StatAnalyzer

2. SuggestTargets
○ Identifies pre-target branches that need to be 

covered in order to cover tb

 
a. Find tobject - object that is nearest to 

tfield in field hierarchy and can be 
modified directly or by public method

b. Identify methods (and pre-target branches 
within) that help produce a desired value



StatAnalyzer - SuggestTargets

● The latter part is non-trivial; there might 
be intermediate objects between tobject 
and tfield

● Method-call graph
● Root represents tfield, other nodes are 

methods and form layers of classes
● Edge from root to first layer if method 

modifies tfield
● Edge between layers on method calls



StatAnalyzer - SuggestTargets

● Graph generation based on field hierarchy
● We're looking for statements where tfield 

appears on the left side



StatAnalyzer - SuggestTargets

c. Traverse method-call graph to identify 
methods that can be invoked on tobject to 
achieve desired value for tfield and pre-
target branches within these methods

● ints is tobject
● IntStack.Push is identified 

as method which modifies 
tfield

● We need to cover branch 
in Push method to cover 
tb



StatAnalyzer

3. Try to cover branches recognized by 
SuggestTargets using DynAnalyzer and use 
new sequences to cover tb
○ Static analysis may suggest branches that not 

necessarily help us in our quest, e.g. IntStack.Pop
○ If dynamic analysis successfully covers pre-target 

branch, we're using generated sequence to try to 
cover the original target branch tb using 
DynAnalyzer



StatAnalyzer - algorithm



Seeker algorithm

● That's all! ...
● DynAnalyzer and StatAnalyzer are mutually 

recursive
● We start with DynAnalyzer(tb, null)
● An example follows



Seeker - example

Source: C# QuickGraph library



Seeker - example

● DynAnalyzer(B6, null)
○ B6 ∈ NotCovB after DSE

● StatAnalyzer(B6, null)
○ isComputed is tfield, B4 is pre-target branch

● DynAnalyzer(B4, null)
○ B4 ∈ NotCovB after DSE

● StatAnalyzer(B4, null)
● ...



Seeker - example

● DynAnalyzer(B1, null)

● DynAnalyzer(B2, S2)

● ...And so on



Implementation

● Heavily based on Pex API (not that 
surprising)

● Pex is launched multiple times to synthesize 
target sequences

● Results are cached and shared between 
subsequent launches

● Open-source prototype is available to 
download



Evaluation

● Authors compared Seeker with Pex, Randoop and 
manually written tests (total of 28K lines of code)



Evaluation

● Defects detection 

● Defects detected include OverflowException, 
IndexOutOfRangeException, or even infinite loop in 
QuickGraph



Future work

● Loop-based sequences

● Abstract classes, interfaces and callback 
methods



A few links

● Seeker: http://research.csc.ncsu.edu/ase/projects/seeker/
● Seeker prototype: http://pexase.codeplex.com/releases/view/50822
● Pex: http://research.microsoft.com/en-us/projects/pex/
● Randoop: http://code.google.com/p/randoop/
● DSE: http://people.cs.umass.edu/~yannis/dysy-icse08.pdf
● Program Synthesis: http://research.microsoft.com/en-

us/um/people/sumitg/pubs/synthesis.html



Thank you


