Synthesizing Method
Sequences for High-
Coverage Testing

Based on "Synthesizing Method Sequences for High-Coverage Testing” by
Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux,
Zhendong Su - OOPSLA'11

Prepared by Kamil Szarek

e High-coverage testing and its difficulties
e Automatic test generation, existing tools
e New, Great Approach Called Seeker

o Problem formulation
o DynAnalyzer algorithm
o StatAnalyzer algorithm
o Examples

e Evaluation
e Future work

High-coverage testing

e Full or at least high code coverage is a
desirable property of unit tests

e There are several types of coverage (e.g.
structural coverage, data flow coverage)

e Here we focus on branch coverage: the
percentage of branches that have been
exercised by a test case suite

Branch coverage example

Client Code:
00: public static void foo (UDFSAlgorithm udfs) {

01:
02:
03:
04:
05:
06:

if (udfs.GetIsComputed()) {
... //B6
1
// BT
}

//UDFS:UndirectedDepthFirstSearch
18:class UDFSAlgorithm {

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:}

Sou

private IVEListGraph graph;
private bool isComputed;
public UDFSAlgorithm (IVEListGraph g){
o}
public void Compute (IVertex s){ ...
if (graph.GetEdges() .Size() > 0){ // B4
isComputed = true;
foreach (Edge e in graph.GetEdges()){
... //BS
}

}
} ...

rce: C# QuickGraph library

00:class AdjacencyGraph

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:}

B6

: IVEListGraph {

private Collection edges;

private Arraylist vertices;

public void AddVertex (IVertex v){
vertices.Add(v); // Bl

}

public Edge AddEdge (IVertex vi, IVertex v2){
if (!vertices.Contains(v1))
throw new VNotFoundException("");
// B2
if (!vertices.Contains(v2))
throw new VNotFoundException("");
// B3
// create edge
Edge e = new Edge(vli, v2);
edges.Add(e) ;

B4 B3 B2 B1

>

High-coverage testing

e Branch coverage can be quite hard to
achieve eoe S

a- f;yg /_E.} @ huep: | jwww.cafeconlech v | () [[G)r e

110 128 élse if (nav.fisElement(first))

111 {

112 100 return nav.getElementQName(first);

113 1

114 28 else if (nav.isAttribute({ first))

115 {

116 0 return nav.getAttributeQName(first):

117)

118 28 else if (nav.isProcessingInstruction(first))

118 {

120 0 return nav.getProcessingInstructionTarget(first);
121 i

122 28 else if (nav.isNamespace({ first })

123 {

124 0 return nav.getNamespacePrefix(first };

125 }

126 28 else if (nav.isDocument{ first))

127 {

128 28 return “°;

129
130
131
132
133
134
135
136
137 }

138 else {

139 0 throw new FunctionCallException(“The argument to the name
140 }

141 }

142

143 B return *"

144 1
ar A |

Done

else if (mav.isComment({ first })
{

}
else if { mav.isText({ First })
{

return "%;

2 8 e o

return ==;

J

Source: ibm.com

High-coverage testing

e Potential problems include tons of nested
conditional statements and lack of
knowledge about their conditions (e.g. no
documentation for method whose return
value is used to determine condition)

e Result: many hours spent on defining test
environment for covering difficult branches

e [s there a better way...?

Yes, there is: automatic construction

e Two approaches: direct construction,
sequence generation
e Program synthesis

Desired object state in
form of conditional branch

l

Program synthesis

l

Method sequence that produces
desired object state

Sequence generation challenges

e Large search space (multiple classes and
methods)

e Primitive method parameters’ values

e Object-oriented features such as
encapsulation does not make it easier

Existing tools

e Pex
o "Pex finds interesting input-output values of your
methods, which you can save as a small test suite with
high code coverage.”
o Dynamic Symbolic Execution

e Randoop
o "Randoop generates unit tests using feedback-directed
random test generation. In a nutshell, this technique
randomly, but smartly, generates sequences of methods
and constructor invocations for the classes under test,
and uses the sequences to create tests.”

New approach: "Seeker”

e Combines dynamic and static code analysis
to reduce search space and generate
appropriate primitive values

e Handles encapsulation properly

e Major challenges solved - awesome, but
how does it work, precisely?

Problem formulation - definitions

o (, M- sets of classes and methods

e PrimTy, PrimVal - sets of primitive types
and their values

e Method signature - M € M :
CxT.x...xT — T, T.€ CUPrimTy,

T € CUPrimTy U { void |

Problem formulation - definitions

e Method sequence (MCS):

Sequence of method calls (m,, ... , m) such that:

o m,=0.M(@,, ...,a), where M. € M

o o=ret(m)forsome1<k<iandforall1<j<n
a, € PrimVal \/ a = null VvV a, = ret(m) for some

1<l<i.
e [n another words: compiler wouldn't

complain (much).

Problem formulation - definitions

e Sequence skeleton (SKT):
Just like MCS, except that we do not
require values of primitive type arguments.
Useful when we don't know what values
we're going to need.

e Target branch (TB):
Branch of conditional statement to be
covered. Input of the algorithm.

Problem formulation - definitions

e Method sequence synthesis:
Given a method under test M € M and a
target branch tb within M, synthesize a
method sequence (m,, ... , m) that

constructs the receiver object and
arguments of M and drives M to successfully
cover tb.

Seeker algorithm overview

e Two algorithms in feedback loop:
DynAnalyzer and StatAnalyzer - dynamic
and static analysis

e Dynamic analysis attempts to generate
target sequence

e |[f it fails, static analysis starts, utilizing
information from dynamic analysis

e Then dynamic analysis explores static
analysis results and filters them out

DynAnalyzer

e [nput: target branch tb, input sequence
inpseq

1. ldentify method m containing tb

2. Append m to inpseq as sequence skeleton
(no primitive values) producing tmpskt

3. Run DSE subroutine to explore tmpskt for
generating target sequence that covers tb

DynAnalyzer - BSE

e Symbolic Execution allows method to have
non-concrete (symbolic) parameters

e When program executes conditional branch
where condition has symbolic parameter,
symbolic execution considers both branches

e (Constraints on symbols are collected

e (Constraint solver or theorem prover is used
to obtain concrete values

DynAnalyzer - DSE

e Dynamic Symbolic Execution generates
simple inputs instead of symbols

e After an execution, constraint solver is used
to change inputs in order to cover different

Algorithm 2.1. Dynamic symbolic execution
Set J :=10 (intuitively, J is the set of already
loop analyzed program inputs)

Choose program input i ¢ J (stop if no such i can be found)
Output @

Execute P(i); record path condition C' (in particular, C(i) holds)

Set J:=JUC (viewing C as the set {i | C(i)})

end loop

DynAnalyzer - DSE

e DSE outputs targetseq (null when it fails),
CovB (set of covered branches) and
NotCovB (set of not covered branches)

e Depending on DSE results:

4. |f targetseq is not null, we're done
5. |If targetseq is null and tb & NotCovB, we return

StatAnalyzer(tb, inpseq)
6. Otherwise...

DynAnalyzer - ComputeDominants

6. ComputeDominants
a. Prime dominant: branch whose alternative branch

is covered by DSE,
b. All other dominant branches of tb between the

prime dominant and tb.
/. Recursively invoke DynAnalyzer for each

dominant branch and return method
sequence if all dominant branches are
covered along with tb

8. ...Fail otherwise

DynAnalyzer algorithm

Algorithm 1 DynAnalyzer(tb, inpseq)

Require: tb of type TB

Require: inpseq of type MCS

Ensure: targetseq of type MCS covering tb or null

1: Method m = GetMethod(¢b)
2: SKT tmpskt = AppendMethod(inpseq, m)
: DSE(tmpskt, tb, out targetseq, out CovB, out
NotCovB)
: //Scenario 1
. if tb € CouB then
return targetseq
end if

w

: //Scenario 2

10: if tb € NotCov B then

11: return StatAnalyzer(tb, inpseq)
12: end if

14: //Scenario 3
15: if tb ¢ NotCovB then

16: List<TB> tblist = ComputeDominants(tb)
17: for all TB domtb € tblist do

18: inpseq = DynAnalyzer(domtb, inpseq)
19: if inpseq == null then

20: Break

21: end if

22: end for

23: if inpseq # null then

24: return DynAnalyzer(tb, inpseq)

25: end if

26: end if

27: return null

StatAnalyzer

e |nput same as for DynAnalyzer
e Main purpose: to identify other branches

that can help cover tb

1. DetectField
o ldentifies member field tfield that needs to be
modified to produce object state for covering tb
o This is trivial if condition directly refers to field
o Otherwise, we use execution trace from DSE which
includes statements executed in each method

StatAnalyzer - DetectField

e DetectField starts from method call
involved in tb and proceeds backwards

e Denote retvar as variable/value associated
with the return statement in method call

a. If retvar is member field, tfield is retvar
b. If retvar is data-dependent on member
field, that field is tfield

StatAnalyzer - DetectField

C.

If retvar is data-dependent on return of
nested method call, DetectField is repeated
with that method call

If retvar is control-dependent on member
field, that field is tfield

If retvar is control-dependent on return of
nested method call, DetectField is repeated

with that method call

StatAnalyzer - DetectField

e There are two more results of DetectField,
apart from tfield

e DetectField identifies the condition of
tfield which is not satisfied - and should be
in order to cover tb

e DetectField captures field hierarchy that
includes objects from the one enclosing tb
to tfield

StatAnalyzer - DetectField - example

00: public class IntStack {

01: private Stack stack;
B8 is tb 02: public IntStack() {
03: this.stack = new Stack; }
. . 04: ublic void Push(int item)
e DetectField for ints. e e e T
HasElements() o7 P i orack o100 5 0y { return true;]
. 08: else { return false; }
e (e): DetectField for stack. os: .
10:
Slze() 11: public class MyCls {
12: private IntStack ints;
. 1 1 1 13: ublic MyCls(IntStack ints)
® (a)' —Slze f]eld n 14: i this.znts = 1i:n‘izs; } v
ArrayList is tfield o it B meants0) |
17: ...// B8
18: }
19: }
e Detected condition: 20:)
stack.size() > 0 MyCls root Stack stack int _size

-

IntStack ints ArrayList list

StatAnalyzer

2. SuggestTargets

o ldentifies pre-ta

rget branches that need to be

covered in order to cover tb

a. Find tobject - o

bject that is nearest to

tfield in field hierarchy and can be

modified direct
b. Identify methoc

ly or by public method
s (and pre-target branches

within) that hel

D produce a desired value

StatAnalyzer - SuggestTargets

e The latter part is non-trivial; there might
be intermediate objects between tobject
and tfield

e Method-call graph

e Root represents tfield, other nodes are
methods and form layers of classes

e Edge from root to first layer if method
modifies tfield

e Edge between layers on method calls

StatAnalyzer - SuggestTargets

e Graph generation based on field hierarchy
e We're looking for statements where tfield
appears on the left side

StatAnalyzer - SuggestTargets

c. Traverse method-call graph to identify
methods that can be invoked on tobject to
achieve desired value for tfield and pre-
target branches within these methods

00: public class IntStack {

o plicmsead (- e ints is tobject
(‘”O’{{ e IntStack.Push is identified
| en { soraen dasay § o e] as method which modifies
191) rte ctan e { tfield

<}>{ e We need to cover branch
P“"ii_i'i;/:/i‘;;’:?;i:;:niso){ in Push method to cover

) tb

StatAnalyzer

3.

Try to cover branches recognized by
SuggestTargets using DynAnalyzer and use

new sequences to cover tb

o Static analysis may suggest branches that not
necessarily help us in our quest, e.g. IntStack.Pop

o If dynamic analysis successfully covers pre-target
branch, we're using generated sequence to try to
cover the original target branch tb using
DynAnalyzer

StatAnalyzer - algorithm

Algorithm 2 Stat Analyzer(tb, inpseq)

Require: A target branch tb
Require: A sequence inpseq
Ensure: A sequence targetseg covering tb

. Field t field = DetectField(tb)
: List<TB> tblist = SuggestTargets(t field)
. for all TB pretb € tblist do
MCS targetseq = DynAnalyzer(pretb, inpseq)
if targetseq # null then
targetseq = DynAnalyzer(tb, targetseq)
if targetseq # null then
return targetseq
end if
end if
/[Try other alternative target branches
end for
return null

N A I o ATy

b
Wy e

Seeker algorithm

e That's all! ...

e DynAnalyzer and StatAnalyzer are mutually
recursive

e We start with DynAnalyzer(tb, null)

e An example follows

Seeker - example

Client Code:
00: public static void foo (UDFSAlgorithm udfs) {
01:

02: if (udfs.GetIsComputed()) {
03: ... //B6

04: }

05: // BT

06: }

//UDFS:UndirectedDepthFirstSearch

18:class UDFSAlgorithm {

19: private IVEListGraph graph;

20: private bool isComputed;

21: public UDFSAlgorithm (IVEListGraph g){

22: saa

23: public void Compute (IVertex s){ ...

24: if (graph.GetEdges() .Size() > 0){ // B4
25: isComputed = true;

26: foreach (Edge e in graph.GetEdges()){
27: ... //BS

28: }

29: }

30: } ...

31:}

Source: C# QuickGraph library

00:class AdjacencyGraph

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
156:
16:
17:}

: IVEListGraph {

private Collection edges;

private Arraylist vertices;

public void AddVertez (IVertex v){
vertices.Add(v); //Bl1

}

public Edge AddEdge (IVertex vi, IVertex v2){
if (!vertices.Contains(v1))
throw new VNotFoundException("");
// B2
if (!vertices.Contains(v2))
throw new VNotFoundException("");
// B3
// create edge
Edge e = new Edge(vi, v2);
edges.Add(e);

Seeker - example

DynAnalyzer(B6, null)
o B6 & NotCovB after DSE
StatAnalyzer(B6, null)
o isComputed is tfield, B4 is pre-target branch
DynAnalyzer(B4, null)
o B4 & NotCovB after DSE

StatAnalyzer(B4, null)

Seeker - example

e DynAnalyzer(B1, null)

01: Vertex sl = new Vertex(0);
02: AdjacencyGraph ag = new AdjacencyGraph();
03: ag.AddVertex(sl);

e DynAnalyzer(B2, 52)

01: Vertex sl = new Vertex(0);

02: AdjacencyGraph ag = new AdjacencyGraph();
03: ag.AddVertex(sl);

04: ag.AddEdge(si, null);

e ...And so on

01: Vertex s1 = new Vertex(0);

02: AdjacencyGraph ag = new AdjacencyGraph();
03: ag.AddVertex(s1);

04: ag.AddEdge((IVertex)sl, (IVertex)sl);

05: UDFSAlgorithm ud = new UDFSAlgorithm(ag) ;
06: ud.Compute((IVertex)null);

Implementation

e Heavily based on Pex API (not that
surprising)

e Pex is launched multiple times to synthesize
target sequences

e Results are cached and shared between
subsequent launches

e Open-source prototype is available to
download

Evaluation

e Authors compared Seeker with Pex, Randoop and
manually written tests (total of 28K lines of code)

Subject Namespace |# Branches| Randoop Pex Seeker Manual
Tests| Cov | Timel|# Tests|Cov |Timel|# Tests|Cov|Timel# Tests/Cov

QuickGraph|OVERALL 1119 |10140|51.2/ 0.2 | 334 |31.6/ 4.4 | 1923 |68.2/ 32 | 21 |26
Algorithms 572 - |38.1) - - |24.8] - - |52 - - 248
Collections 269 - |87 - - |17.8] - - |940| - - |11.2
... (5 more)

Dsa OVERALL 665 10493/149| 1.0 | 552 [83.8/ 3.7 | 961 |90 | 0.9 | 298 |93.2
Algorithms 198 - |419| - - |100| - - |100| - - 883
DataStructures| 433 - 0| - - [76.7] - - [864| - - 1908
... (2 more)

xUnit OVERALL 2379 |10148|24.9/ 6.1 | 1265 |38.6| 4.5 | 1360 |41.1| 2.0 | 282 |62.7
Gui 432 - |343| - - |40.8] - - |46.1] - - |17.8
Sdk 706 - |25 - - |35.6] - - |402| - - |86.3
... (6 more)

INUnit |Util | 1810 [10129]16.1] 1.7 | 816 [35.3| 7.5 | 1804 |43.5/ 3.7 | 319 |63.9|

ITOTAL | | 5973 [40910) 26 | 9.0 | 2967 (41.3(20.1| 6048 |52.3| 9.8 | 920 |59.2|

Table 2. Branch coverage achieved by Randoop, Pex, Seeker, and manually written tests.

Evaluation

e Defects detection

Subject Randoop Pex Seeker
AT |FT|D| AT [FT|D| AT [FT|D

QuickGraph|6956[456(10] 334 [14[11]1923[117[34
Dsa 687 | 17 |3 [552 [34]15[961 | 61 [20
xUnit 112 0 [0[1265[12(5[1360[12 |5
NUnit 528 |76 |3 | 816 [10|7 [1804| 16 |13
Total 8283|549(11(2967|70 |38/6048(206|72|

AT: All Tests, FT: Failing Tests, D: Defects

Table 6. Defects detected by all approaches.

e Defects detected include OverflowException,
IndexOutOfRangeException, or even infinite loop in

QuickGraph

Future work

e |Loop-based sequences

00: public static void fool(IntStack ints) {

01: if(ints.size() > 3) {
02: ... // B9

03: }

04: }

e Abstract classes, interfaces and callback
methods

A few links

Seeker: http://research.csc.ncsu.edu/ase/projects/seeker/

Seeker prototype: http://pexase.codeplex.com/releases/view/50822
Pex: http://research.microsoft.com/en-us/projects/pex/

Randoop: http://code.google.com/p/randoop/

DSE: http://people.cs.umass.edu/~yannis/dysy-icse08.pdf

Program Synthesis: http://research.microsoft.com/en-
us/um/people/sumitg/pubs/synthesis.html

Thank you

