
Concurrent Programming with
Revisions and Isolation Types

Prepared by Rafał Bereski, MIMUW

Based on the article ”Concurrent Programming with Revisions and Isolation Types”, OOPSLA ’10

Sebastian Burckhardt, Microsoft Research
Alexandro Baldassin, State University of Campinas, Brazil
Daan Leijen, Microsoft Research

Outline

• Introduction

• Main ideas

• Assumptions of the presented programming model

• Revisions and Isolation Types

• Comparison to the classic locking schemes

• Case Study (SpaceWars3D game)

• Performance evaluation

• Implementation details

• Summary

Introduction

• Applications need to be responsive and benefit from
exploiting parallel hardware.

• However, ensuring consistency of the data shared between
concurrent tasks is often challenging.

Main ideas

• Reading and modifying data concurrently without complicated
locking schemes that may introduce bugs.

• Instead of synchronizing access to the data, enable tasks to do
real parallel modifications by creating isolated copy of the
data (replication).

• Making concurrent programs as easy to code as thier
sequential versions.

Programming model

• Article describes programming model that simplifies sharing data
between asynchronous tasks.

• Declarative Data Sharing

• Programmer declares which variables are shared between tasks.

• Isolation Types

• Automatic Isolation

• Task operates on that data in isolation.

• Deterministic conflict resolution

• After joining tasks (revisions) write-conflicts are solved
deterministically.

• Solving conflicts depends on declared isolation types.

Revisions

• Revisions represents the basic unit on concurrency.

• Each revision can fork and join other revisions.

• Applications starts in the main revision.

• Two operations:

• fork – starts(forks) new revision

• rjoin – joins two revisions (called joiner and joinee)

• Program execution can be easily presented on the revision
diagrams.

Revisions (example)

Nested revisions

• Simplifies modular reasoning about program execution.

• Typically revisions fork its own inner revision and then join it.

• Classic nesting of tasks.

• However, it is possible that inner (more nested) revision
„survives” outer revision.

Nested revisions (example)

• Third situation is impossible because main revision doesn’t know handle to the
inner revision. It gets that handle after joining outer revision.

Isolation types

• When joining revisions, we wish to merge the copies of the
shared data back together.

• Merging process is defined by isolation types.

• Programmer must choose the right isolation type for every
single shared object.

• Isolation types fall into two categories:

• versioned <T>

• cumulative <T, f>

versioned <T>

• Changes the current value to the revision that is performing a join to the
current value of the revision that is being joined.

• If there were no modifications in the joinee revision then do nothing.

• It is a good choice for tasks that have relative priorities.

versioned <T>

cumulative <T, f>

• Effect of the merge is determined by a general merge
function.

• Merge function takes three arguments:

• original value

• current value of the joiner revision

• current value of the joinee revision

cumulative <T, f> example

Comparison with locking scheme

• Traditional locking scheme
• Requires programmers to think about placement of critical sections

• Complicates code readability and maintenance

• Reduces concurrency by pausing tasks

• Eg. animating and rendering game objects in separate tasks

• Presented solution
• Isolation of the read-only tasks and single writer task

• so-called double-buffering

• Might be not the most space-efficient solution

Comparison with transactions

Transactions
Two possible ways of execution

Revision
Single (deterministic) execution

Case Study
SpaceWars3D
Game designed to teach DirectX programming in C#
12 000 lines

Parallelizing the game loop

RenderFrameToScreen()
It can execute in parallel with other tasks.

Reads objects position.

UpdateWorld()
Reads and modify objects position.

CollisionCheck(i)

It can be parallelized.
Reads and modify objects position.

Objects position is also read by

SendNetworkUpdates()
HandleQueuePackets()

Parallelizing the game loop (2)

…

Parallelizing the game loop (3)

• Declared isolation types:
• VersionedValue<T> - mainly simple types
• VersionedObject<T> - asteroids, positions, particle effects
• CumulativeValue<T> - message buffer
• CumulativeList<T> - lists of asteroids

• CollisionsCheck could be executed in parallel. Optimizing

• RenderFrameToScreen cannot be parallelized, but it can be
executed in parallel with other tasks

• Updates from the network have higher priority than updates done
by UpdateWorld or CollisionsCheck

• Deterministic Record and Replay
• Used in performance evaluation

Evaluation
Testing environment:

Intel Xeon W3520 (quad-core) 2.66Ghz, 6GB of DDR3,

NVIDIA Quadro FX580 512MB, Windows 7 Enterprise 64-bit

Revisions overhead

• Revision overhead causes slowdown of 5%

• Execution in single thread

• Collision detection task takes about 82% of the frame time.

Revisions overhead (2)

Memory consumption
• If revision writes to a versioned object then revisioning

subsystem needs to clone object to enforce isolation.

Parallel performance

• Average speedup of 2.6x on quad-core processor

• Up to 3.03x speedup for 1500 asteroids

• Render task takes 95.5% of the frame time (collisions check speedup)

Implementation

• C# library

• Revisions

• Stores current segment that points to
the segment created for that revision
after last fork

• Root segment is the segment right
above fork

• Segments

• Tree structure

• Stores versioned data

• Ancestors of the current segment can
be removed after join if there is no
other revisions that uses them.

Revisions and segments (example)

Forks and joins

• Fork

• Creates new current segments for both revisions

• Assigns new revision with the new thread

• Join

• Creates one new segment

• Merges versioned objects from both revisions

• Releases unused ancestors of the current segment of the joined
revision

Summary

• Programming model based on revisions and isolation types.

• Efficient mechanism for executing different tasks within
interactive applications.

• Future work:

• Optimizations

• Executing tasks on GPU

• Applications that run on multi-core processors without full
shared-memory guarantees

• Application that run in the cloud

Thank you.

Questions?

