
Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Safe and Atomic Run-time Code Evolution for Java
and its Application to Dynamic AOP

Rafał Hryciuk

Based on paper “Safe and Atomic Run-time Code Evolution for Java and its Application to
Dynamic AOP” by Thomas Wurthinger, Danilo Ansaloni, Walter Binder, Christian Wimmer,

Hanspeter Mossenbock

March 19, 2012

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Table of Contents
1 Introduction

Run - time code evolution
Code updates use cases
Virtual Machine Layer

2 The Dynamic Code Evolution VM
From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE
VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

3 Atomic Run-time Code Evolution
Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

4 Aspect Oriented Programming
AOP introduction

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Run - time code evolution
Code updates use cases
Virtual Machine Layer

Run - time code evolution

Run - time code evolution
Run-time code evolution allows to change the semantics of a running
program. The program is temporarily suspended, parts are replaced
with new code, and then the execution continues with the new version
of the program.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Run - time code evolution
Code updates use cases
Virtual Machine Layer

Code updates use cases

Code updates use cases

Development and debugging. Eliminates necessity of restarting
application.

Long running servers. Reduces the downtime during migration of
the application to a new version.

AOP tools that perform aspect weaving at run time.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Run - time code evolution
Code updates use cases
Virtual Machine Layer

Virtual Machine Layer

Virtual Machine Layer

Using a virtual machine (VM) to execute programs helps solving the
challenges of code evolution. The VM increases the possibilities for
dynamic code evolution because of the additional abstraction layer
between the executing program and the hardware. The main tasks of
this intermediate layer are automatic memory management, dynamic
class loading, and code verification. The algorithms for code evolution
presented in this presentation make heavy use of the existing VM
infrastructure.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

Java HotSpot TM VM to Dynamic Code Evolution VM (DCE
VM)

Java HotSpotTM VM

Dynamic class redefinition replaces a set of loaded classes with new
versions. The current product version of the Java HotSpotTM VM
allows such changes as long as only the bodies of methods are
affected.

Dynamic Code Evolution VM (DCE VM)

DCE VM allows changes to class member definitions, i.e., adding and
removing methods and fields. Additionally, it allows changes to the
class hierarchy such as changing the super class or the set of
implemented interfaces.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

Sketch of the algorithm

Sketch of the algorithm

The VM searches for subclasses of redefined classes as they can
be affected by the change.

All Java threads pause at safepoints.

Algorithm scans the heap in order to update pointers to the old
class version to become pointers to the new class version.

Modified methods that are active on the stack at the time of
redefinition continue in the old version of their bytecodes. It is
only guaranteed that subsequent calls to methods target the
latest version of a method.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

Limitations and Motivation for Improvement

Development and debugging

The continued execution of an old method can lead to invocations of
old deleted methods or to accesses of old deleted fields. When the
code evolution is used to speed up the development process by
reducing the number of necessary program restarts, this is acceptable.
The worst case scenario is that the programmer has to restart the
application under development, which would anyway be necessary
without the enhanced VM.

Long-running server applications and AOP

The requirements in this case are significantly higher regarding
stability and correctness of class updates. Changes to Java programs
that can impair the correctness of currently loaded bytecodes are
called binary incompatible changes. Such changes may lead to
runtime exceptions or even crash the VM.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

Limitations and Motivation for Improvement

Binary incompatible changes

Deleting Class Members A method or field that is deleted in the
new version of the program may still be accessed from bytecodes
of old methods. In such a case, our VM throws a
NoSuchFieldError or a NoSuchMethodError, respectively.

Type Narrowing When the subtype relationship between two
types A and B is no longer valid in the new version of the
program, type safety may be compromised. It can no longer be
guaranteed that the dynamic type of a field or local variable is a
subtype of its static type. This can lead to a crash of the VM.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
Sketch of the algorithm
Limitations and Motivation for Improvement

Safe update regions

Safe update regions

The extended DCE VM guarantees that the version change is
performed immediately if all threads are in safe update regions. Thus,
old code is never executed after a successful class update.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Switching to the Extended Program

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Class Definition Changes

Class Definition Changes

Allowed:

adding class members

referring to new classes that are not used in the base program

replacing an abstract base method with a concrete
implementation in the extended version

adding an interface to a class

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Class Definition Changes

Class Definition Changes

Prohibited:

changing the signature of a field or method

changing modifiers static, synchronized and native

replacing concrete implementation with an abstract method

overriding a non-abstract base method.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Method Body Changes

Restrictions on control flow modifications
Branch instructions in extended code regions must always
target bytecodes in the same code region. Therefore, an
extended code region cannot be exited with a branch instruction.

Return: The extended code sections may contain a return
instruction. This is the only way how parts of the base program
can be skipped.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Method Body Changes

Restrictions on control flow modifications
Branches: Exception Handlers: An extended code region must
catch any exception that it throws. It is allowed to add exception
table entries that cover a range within an extended code region.
The exception handler block must however be within the same
code region.

Exception Interception: An extended code region may intercept
an exception thrown by a base program bytecode. However, it
must re-throw the same exception again. The try statement itself
does not produce a bytecode, therefore the extended code
section that intercepts the exception is continuous to the base
code section at the bytecode level.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Method Body Changes

Restrictions on stack frame modifications
Operand Stack: The operand stack height upon exit of an
extended code region must be the same as the operand stack
height at the entry of the region. Additionally, all values on the
stack at the entry of an extended code region must remain
unmodified.

Local Variables: The extended code region may introduce new
local variables and also read from and write to all local variables
of the base program.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Cross Verification

Cross Verification Motivation
As the version change can happen at any bytecode position of the
base program, the extended code regions cannot assume that any
other extended code region was executed before them. Therefore, an
extended code region must not rely on the initialization of local
variables in other extended code regions.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Cross Verification

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Transformer Methods

Transformer Methods Motivation
Fields added in the extended version of the program are by default
initialized with 0, false, or null. However, an extended program can
require other initialization values for its fields.

Transformer Methods Types

$transformers

$staticTransformer

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Transformer Methods

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Changing Back to the Base Program

The VM removes fields and methods that are only defined in the
extended program.

The VM guarantees that those deleted members are never
accessed after the change.

The update is delayed until all method activations of all threads
are in base code regions (safe update regions) and not in
extended code regions.

There is no guarantee that a safe update region is reached by all
threads (timeout).

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Safe Changing Back to the Base Program Restrictions

Restrictions
Verification: For a type-safe conversion back to the base
method, another kind of cross verification is necessary. The VM
performs a modified verification of the base program for each
extended code region. It infers the types of local variables at the
end of every extended code region. Then, it starts the verifier at
the base program bytecode following the code region using the
inferred types as the initial types of the local variables. This
makes sure that changing from the extended to the base program
is a valid operation for each base program position.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Safe Changing Back to the Base Program Restrictions

Restrictions
Type Narrowing: When changing from the base to the extended
program, it is allowed to add an interface to a class. When
switching back, this would however result in a type narrowing
change. Therefore, such a change is only valid if there is no local
variable or field violating the subtype relationship between its
static and dynamic type.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Safe Changing Back to the Base Program Restrictions

Restrictions
State: The extended code regions must not write to local
variables and fields known to the base program. The state of the
base program must be read-only for the extended program.

Return: The extended program must not add a return bytecode
to a base program method.

Call: Calling a base program method from an extended code
region is only allowed if the called method does not modify the
state of the base program.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

Switching to the Extended Program
Changing Back to the Base Program
Changing Between Two Arbitrary Programs

Changing Between Two Arbitrary Programs

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

AOP introduction

AOP Introduction

AOP Introduction
Aspect-Oriented Programming (AOP) complements Object-Oriented
Programming (OOP) by providing another way of thinking about
program structure. The key unit of modularity in OOP is the class,
whereas in AOP the unit of modularity is the aspect. Aspects enable
the modularization of concerns such as transaction management that
cut across multiple types and objects.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

AOP introduction

AOP concepts

AOP concepts

Aspect: a modularization of a concern that cuts across multiple
classes. Transaction management is a good example of a
crosscutting concern in J2EE applications.

Join point: a point during the execution of a program, such as
the execution of a method or the handling of an exception.

Advice: action taken by an aspect at a particular join point.
Different types of advice include "around," "before" and "after"
advice.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

AOP introduction

AOP concepts

AOP concepts

Pointcut: a predicate that matches join points. Advice is
associated with a pointcut expression and runs at any join point
matched by the pointcut (for example, the execution of a method
with a certain name).

Weaving: linking aspects with other application types or objects
to create an advised object. This can be done at compile time,
load time, or at runtime.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

Introduction
The Dynamic Code Evolution VM
Atomic Run-time Code Evolution

Aspect Oriented Programming

AOP introduction

The SafeWeave Dynamic AOP System

SafeWeave
Implemented as a Java agent that is attached to the VM.

Relies on the DCE VM to allow arbitrary class changes at run
time.

Uses the standard AspectJ weaver (as a black box) to weave
aspects.

Rafał Hryciuk Safe and Atomic Run-time Code Evolution for Java and its Application to Dynamic AOP

	Introduction
	Run - time code evolution
	Code updates use cases
	Virtual Machine Layer

	The Dynamic Code Evolution VM
	From Java HotSpotTM VM to Dynamic Code Evolution VM (DCE VM)
	Sketch of the algorithm
	Limitations and Motivation for Improvement

	Atomic Run-time Code Evolution
	Switching to the Extended Program
	Changing Back to the Base Program
	Changing Between Two Arbitrary Programs

	Aspect Oriented Programming
	AOP introduction

