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Abstract

This thesis is concerned with deformation theory of finite subschemes of smooth varieties.
Of central interest are the smoothable subschemes (i.e., limits of smooth subschemes). We prove
that all Gorenstein subschemes of degree up to 13 are smoothable. This result has immediate
applications to finding equations of secant varieties. We also give a description of nonsmoothable
Gorenstein subschemes of degree 14, together with an explicit condition for smoothability.

We prove that being smoothable is a local property, that it does not depend on the embedding
and it is invariant under a base field extension. The above results are equivalently stated in terms
of the Hilbert scheme of points, which is the moduli space for this deformation problem.

We extensively use the combinatorial framework of Macaulay’s inverse systems. We enrich it
with a pro-algebraic group action and use this to reprove and extend recent classification results
by Elias and Rossi. We provide a relative version of this framework and use it to give a local
description of the universal family over the Hilbert scheme of points.

We shortly discuss history of Hilbert schemes of points and provide a list of open questions.

Keywords: deformation theory, Hilbert scheme, Gorenstein algebra, inverse system, apolar-
ity, smoothability, classification of finite commutative algebras.

AMS MSC 2010 classification: 14C05, 14B07, 13N10, 13H10.
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Chapter 1

Introduction

The Hilbert scheme of points on a smooth variety X is of central interest for several branches of
mathematics:

• in commutative algebra, it is a moduli space of finite algebras (presented as quotients of a
fixed ring),

• in geometry and topology, it is a compact variety containing the space of tuples of points
on X; in many cases this space is dense,

• in algebraic geometry, its construction (1960-61) is one of the advances of the Grothendieck
school [Gro95], it found applications in constructing other moduli spaces and hyperkähler
manifolds, and also in McKay correspondence and theory of higher secant varieties,

• in combinatorics, the Hilbert scheme appears in Haiman’s proofs of n! and Macdonald
positivity conjectures.

Consider the set of finite algebras, presented as quotients of a fixed polynomial ring. There is
a unique and natural topological space structure on this set, together with a sheaf of regular
functions. These structures jointly give a scheme structure, called the Hilbert scheme of points
on affine space, see Chapter 4.1 for precise definition. These structures are unique, but they
are non-explicit and difficult to investigate; many open questions persist, despite continuous
research, see Section 1.5.

In this thesis we analyse the geometry of Hilbert schemes of points on smooth varieties,
concentrating on the following question:

What are the irreducible components of the Hilbert scheme of points? What are their
intersections and singularities?

An informal, intuitive view of geometry of the components is given on Figure 1 below.

Our analysis of the Hilbert scheme as a moduli space of finite algebras requires tools for
working with algebras themselves, which are developed in Part I. We then switch our attention
to families of algebras (subschemes) in Part II and analyse Hilbert schemes for small numbers
of points in Part III. Almost all of our original results presented in this thesis are also found
in [Jel14, CJN15, Jel16, BJ17, Jel17, BJJM17].
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Figure 1.1: Bellis Hilbertis. Components of the Hilbert scheme of r points on a smooth variety
X. Flower, petals and stem correspond to irreducible components of the Hilbert scheme of X.
The analysis of their geometry is the main aim of this work.

1 The smoothable component, see Definition 4.23. It compactifies the space of r-tuples of
points on X, thus has dimension r(dimX). For small r, it is the only component – there
are no “petals” – see Section 5.6, Theorem 6.1 and also Problems 1.16, 1.17.

2 Points of the Hilbert scheme correspond to finite subschemes of X. General points on
the smoothable component (“ladybirds”) correspond to tuples of points on X. Thus all
subschemes corresponding to points on this component are limits of tuples of points; they
are smoothable.

3 Every component intersects the smoothable one, see [Ree95]. Describing the intersection
is subtle, see Problem 1.19 and Theorem 6.3 for an example involving cubic fourfolds. It
is even hard to decide whether a given subscheme of X is smoothable, see Problem 1.18.

4 There is a single example [EV10], where components intersect away from the smoothable
component. No singular points lying on a unique nonsmoothable component are known.

5 There are only few known components of dimension smaller than the smoothable one, see
Section 5.6 and Problems 1.22, 1.23.

6 There are many examples of loci too large to fit inside the smoothable component, see
Section 5.6, however the components containing these loci are not known.

7 Not much is known about the geometry and singularities of components other than the
smoothable one, see Problem 1.13, Problem 1.14.
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1.1 Overview and main results

Part I gathers tools for studying finite local algebras over a field k, especially Gorenstein algebras.
In this part, we speak the language of algebra; only basic background on commutative algebras
and Lie theory is assumed. Part I is mostly prerequisite, although Sections 3.5-3.9 contain many
original results published in [BJMR17, Jel17].

Theory of Macaulay’s inverse systems (also known as apolarity) is a central tool in our
investigation. To an element f of a (divided power) polynomial ring P it assigns a finite local
Gorenstein algebra Apolar (f), see Section 3.3. A pro-algebraic group G acts on P so that
the orbits are isomorphism classes of Apolar (−), see Section 3.3. In Section 3.6 we explicitly
describe the action of G and investigate its Lie group, building an effective tool to investigate
isomorphism classes of algebras. We then give applications; as a sample result, we reprove (with
weaker assumptions on the base field) the following main theorems of [ER12, ER15].

Theorem 1.1 (Example 3.35, Corollary 3.73). Let k be a field of characteristic 6= 2, 3. Let
(A,m,k) be a finite Gorenstein local k-algebra with Hilbert function (1, n, n, 1) or (1, n,

(
n+1

2

)
, n, 1).

Then A isomorphic to its associated graded algebra grA.

Interestingly, Theorem 1.1 fails for small characteristics, see Example 3.74. We also obtain
genuine, down to earth classification results, such as the following.

Proposition 1.2 (Example 3.75). Let k be an algebraically closed field of characteristic 6= 2, 3.
There are exactly eleven isomorphism types of finite local Gorenstein algebras with Hilbert func-
tion (1, 3, 3, 3, 1), see Example 3.75 for their list.

In Part II, our attention shifts towards families of algebras. Accordingly, we change the
language from algebra to algebraic geometry, from finite algebras to finite schemes. The main
object is the Hilbert scheme of points on a scheme X, denoted by Hilbr (X), together with its
degree r finite flat universal family

π : U → Hilbr (X).

Intuitively, points of Hilbr (An) parameterize all finite algebras and the fiber of π over a point
is the corresponding algebra; see Section 4.1 for precise definition and discussion. Inside the
Hilbert scheme of points, we have its Gorenstein locus HilbGorr (An), which is the family of all
finite Gorenstein algebras. We have the restriction π|HilbGorr (An) : UGor → HilbGorr (An), which
we usually denote simply by π.

We make the Apolar (−) construction relative in Section 4.4, following [Jel16], and prove that
every family locally comes from this construction; this gives a very satisfactory local theory of
the Hilbert scheme. In particular, for the Gorenstein locus, we obtain the following result.

Proposition 1.3 (Corollary 4.52). Locally on HilbGorr (An), the universal family has the form
Apolar (f)→ SpecA for an f ∈ A⊗k P .

The Hilbert scheme of points on X has a distinguished open subset Hilb◦r (X), consisting of
smooth subschemes. Its closure is called the smoothable component and denoted Hilbsmr (X), see
Definition 4.23. Tuples of points on smooth X are smooth subschemes and in fact Hilb◦r (X) is
naturally the space of tuples of points on X, see Lemma 4.28. Thus for proper X the component
Hilbsmr (X) is a compactification of the space of (unordered) tuples of points, also called the
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configuration space. We provide examples of points in and outside Hilbsmr (X) in Sections 5.6-
5.7. Schemes R = SpecA corresponding to points of Hilbsmr (X) are called smoothable. For
k = k, i.e., over an algebraically closed field, they correspond precisely to algebras A which are
limits of k×r. In Chapter 5 we investigate those limits, following [BJ17]. They can be taken
abstractly (see Definition 5.2) or embedded into X, i.e., in Hilbr (X). The dependence on X is
a bit artificial, fortunately it is superficial for smooth X, as the following shows.

Theorem 1.4 (Theorem 5.1). Suppose X is a smooth variety over a field k and R ⊂ X is a
finite k-subscheme. The following conditions are equivalent:

1. R is abstractly smoothable,

2. R is embedded smoothable in X,

3. every connected component of R is abstractly smoothable,

4. every connected component of R is embedded smoothable in X.

In general, for non-smooth X, embedded smoothability of R ⊂ X depends purely on the local
geometry of X around the support of R, provided that X is separated, see Proposition 5.19.

Part III applies previously developed machinery to investigate, for fixed n and r, the question
of irreducibility of the Gorenstein locus. It can be reformulated in the following equivalent ways:

1. Consider Gorenstein k-algebras of degree r and embedding dimension at most n. Are they
all limits of k×r?

2. Is the Gorenstein locus HilbGorr (An) contained in Hilbsmr (An)?

In the following theorem, we answer these questions positively for small r. This has immediate
applications for secant varieties, see Section 1.2.

Theorem 1.5 (Theorem 6.1). Let k be a field and char k 6= 2, 3. Let R be a finite Gorenstein
scheme of degree at most 14. Then either R is smoothable or it corresponds to a local algebra
(A,m,k) with HA = (1, 6, 6, 1). In particular, if R has degree at most 13, then R is smoothable.

Although r 6 14 might seem severely restrictive, the result above is thought of as a partial
classification of algebras up to degree 14, which is quite complex. In the proof (see Chapter 6),
we avoid most of the classifying work by carefully dividing algebras into several groups according
to their Hilbert functions and ruling out several distinguished classes (e.g., Corollary 6.12).

The nonsmoothable Gorenstein schemes of degree 14 form a componentH1661 ⊂ HilbGor14 (A6).
Such components are of interest, because few are described and because they arise “naturally”;
for example they are SL6-invariant. The next theorem gives a full description of the component
H1661 and, even more importantly, of the intersection of H1661 with the smoothable component;
see the introduction of Chapter 6 for details. The most striking result is that the intersection
is given by an object tightly connected with the theory of cubic fourfolds: the Iliev-Ranestad
divisor. This is the unique SL6-invariant divisor of degree 10 on P(Sym3 k6), see Section 6.6 for
an explanation.

Theorem 1.6 (Theorem 6.3). Let k be a field of characteristic zero. The component H1661 is
a rank 21 vector bundle over an open subset of the space of cubic fourfolds (' P(Sym3 k6)). In
particular, dimH1661 = 76. The intersection of H1661 with the smoothable component is the
preimage of the Iliev-Ranestad divisor in this space.
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The Gorenstein assumption is very important for the proofs, since Apolar (−) construction
is heavily applied. However, the methods can be applied also for non-Gorenstein schemes. For
example, using the methods similar to the proof of Theorem 1.5, one shows that Hilb11 (A3) =

Hilbsm11 (A3), see [DJUNT17] and the discussion in Section 5.6.
We also consider schemes supported at a point. Fix the origin p ∈ An and denote

HilbPGorr (An, p) =
{

[R] ∈ HilbGorr (An) | Supp(R) = {p}
}

In the literature, this is called the Gorenstein locus of the punctual Hilbert scheme. Inside, the
family of curvilinear schemes, those isomorphic to Speck[x]/xr, forms a component of dimension
(n−1)(r−1). The following result is crucial for applications to constructing r-regular maps, see
Section 1.3. We do not know, whether it holds in all characteristics, but we expect so.

Theorem 1.7 (Theorem 7.2). Let r 6 9 and char k = 0. Then

dimHilbPGorr (An, p) = (r − 1)(n− 1).

Note that we do not claim thatHilbPGorr (An, p) is irreducible, we only compute its dimension.
In the following sections we present two applications of our results, a brief historical survey

and a list of open problems.

1.2 Application to secant varieties

Consider homogeneous forms of degree d in n+1 variables, i.e., elements of Pd := C[x0, . . . , xn]d.
A classical Waring problem for forms (e.g. [Syl86, VW02, Lan12]) asks, for a given form F , what
is the minimal number r, such that

F = `d1 + . . .+ `dr

for some linear forms `i. This is tightly related to finding polynomial functions Pd → C, vanishing
of the subset

σ◦r :=

{
r∑
i=1

`di | `i ∈ 〈x0, . . . , xn〉
}
⊂ Pd.

The Euclidean closure of σ◦ in Pd is an algebraic variety, the cone over the r-th secant variety
σr(νd(Pn)) of the d-th Veronese reembedding. The problem of finding polynomial equations of
σr(νd(Pn)) is long studied and important for applications, see references in [Lan12].

However, this problem is difficult, because σr(νd(Pn)) is parameterized by tuples of r points
of Cn+1 = 〈x0, . . . , xn〉, which are difficult to describe in terms of equations. A remedy for this,
introduced in [BB14], is to replace tuples of r points by finite subschemes of degree r.

First, we have a Veronese reembedding νd : P 〈x0, . . . , xn〉 → P(Pd), which maps a form
[F ] ∈ P 〈x0, . . . , xn〉 to [F d] ∈ P(Pd). For a subscheme X ⊂ P(Pd) by 〈X〉 we denote the
projective subspace spanned by X. In this language, the secant variety σr(νd(Pn)) is the closure
of

{〈νd(`1), . . . , νd(`r)〉 | `i ∈ 〈x0, . . . , xn〉} ⊂ P(Pd).

A tuple {`i} is just a tuple of r points of 〈x0, . . . , xn〉; it is a smooth degree r subscheme of
P 〈x0, . . . , xn〉. In [BB14] Buczyńska and Buczyński introduced the cactus variety, defined as the
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closure of all degree r subschemes of P 〈x0, . . . , xn〉:

{〈νd(R)〉 | R degree r subscheme of P 〈x0, . . . , xn〉} ⊂ P(Pd),

The cactus variety is denoted by κr(νd(Pn)). The idea may be summarized as follows: Since the
Hilbert scheme is defined in a more natural way than the space of tuples of points, the equations
of cactus variety, parameterized by the Hilbert scheme, are easier than the equations of secant
variety, parameterized by tuples of points.

Indeed, for 2r 6 d, the variety κr(νd(Pn)) has an easy to describe set of equations. For a
form F ∈ Pd, consider all its partial derivatives of degree a, i.e. consider the linear space

Diff(F )a :=

〈
∂1 . . . ∂d−a ◦ F | ∂i =

∑
j

aij
∂

∂xj
, aij ∈ C

〉
.

The cactus variety is set-theoretically defined by the condition dimC Diff(F )b d2c 6 r, which cor-
responds to certain determinantal equations called minors of the catalecticant matrix, see [BB14,
Theorem 1.5] and, for special cases, Section 4.5.

To get equations of σr(νd(Pn)), we would like to have an equality σr(νd(Pn)) = κr(νd(Pn)).
If all Gorenstein schemes of degree r are smoothable (see Section 1.1 or Chapter 5), then indeed
equality happens, see [BJ17, Theorem 1.6]. If r 6 13, then all Gorenstein subschemes are
smoothable by Theorem 1.5 and we obtain the following theorem.

Theorem 1.8. Let r, d be integers such that 0 < r < 14 and d > 2r. Then the r-th secant variety
of the d-th Veronese reembedding of Pn is cut out by minors of the middle catalecticant matrix.
More explicitly, the Euclidean closure of the subset{

r∑
i=1

`di | `i ∈ 〈x0, . . . , xn〉
}
⊂ Pd.

consists precisely of the forms F ∈ Pd such that Diff(F )b d2c 6 r.

Theorem 1.8 was proven, in the case r 6 10, in [BB14]. Our contribution to this theorem is
the extension to r 6 13 and to fields of arbitrary characteristic 6= 2, 3, see [BJ17]. Applications
of Theorem 1.8, for example to signal processing, are found in [Lan12].

1.3 Application to constructing r-regular maps

An Euclidean-continuous map f : Rn → RN or f : Cn → CN is called r-regular if the images of
every r points are linearly independent. The existence of r-regular maps to CN for given (r, n) is
highly nontrivial and has attracted the interest of algebraic topologists, including Borsuk [Haa17,
Kol48, Bor57, Chi79, CH78, Han96, HS80, Vas92], and interpolation theorists [Han80, Wul99,
She04, She09]. Their developments improved the lower bounds on N , depending on n and r,
see [BCLZ16], but few examples or sharp upper bounds were known. Instead, many new examples
are provided by [BJJM17]. Below we outline the ideas of this paper.

First, we consider a Veronese map Cn → CN0 , given by all monomials of degree 6 d, for
d fixed. Such a map, when the degree d of the monomials is sufficiently high, is known to
be r-regular. Then, we project from a sufficiently high dimensional linear subspace H. It
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turns out that the dimension of possible H is closely related to the numerical properties of the
smoothable and Gorenstein loci of the punctual Hilbert scheme. We obtain the following results,
see [BJJM17].

Theorem 1.9. There exist r-regular maps Rn → R(n+1)(r−1) and Cn → C(n+1)(r−1).

For small values of r or n, we find r-regular maps into smaller dimensional spaces:

Theorem 1.10. If r 6 9 or n 6 2, then there exist r-regular maps Rn → Rn(r−1)+1 and
Cn → Cn(r−1)+1.

Theorem 1.10 is a consequence of the following Theorem 1.11 together with our estimate of
the dimension of the punctual Hilbert scheme, obtained in Theorem 1.7.

Theorem 1.11 ([BJJM17, Theorem 1.13]). Suppose n and r > 2 are positive integers. Let di
be the dimension of the locus of Gorenstein schemes in the punctual Hilbert scheme of degree
i subschemes of Cn. Then there exist r-regular maps Rn → RN and Cn → CN , where N =

max {di + i | 2 ≤ i ≤ r}.

Sketch of proof of Theorem 1.11. For N0 large enough, an r-regular map Cn → CN0 exists. In
fact for N0 =

(
r+n
r

)
the Veronese map

ν : Cn → CN0 ,

given by all monomials of degree 6 r, is an example. Fix a point p ∈ Cn. Every Euclidean ball
centered at p is homeomorphic to Cn, so it is enough to find a map Cn → CN which is r-regular
near p: there exists a ball B centered at p such that for every r points in B, their images are
linearly independent.

We aim at finding a vector subspace H ⊂ CN0 such that the composition Cn → CN0 →
CN0/H is also r-regular near p. Denote by 〈R〉 the linear span of R ⊂ CN0 and consider the
following subset of CN0 :

br(p) :=
⋃{
〈R〉 | R ∈ HilbPGor6r (Cn, p)

}
. (1.12)

Suppose H is a linear subspace with H ∩ br(p) = {0}. Consider the composition fH : Cn →
CN0/H and suppose it is not r-regular near p. Then, for every ε > 0 there exists a tuple Rε of r
points in B(p, ε) whose images under fH are linearly dependent, so 〈ν(Rε)〉 ∩H 6= {0}. Pick a
subsequence of Rε which converges in the Hilbert scheme (to assure it exists we should replace
Cn with Pn, so that the Hilbert scheme is compact); its limit is a finite subscheme R ⊂ Cn of
degree r supported at p and such that 〈ν(R)〉 ∩H 6= {0}. Here we implicitly use the fact that
〈ν(R)〉 behaves well in families, see [BGL13, Section 2]. By [BB14, Lemma 2.3], the span 〈ν(R)〉
is covered by spans of Gorenstein subschemes of R. For a scheme R′ among those subschemes, we
have 〈ν(R′)〉∩H 6= {0}, soH∩br(p) 6= {0}, a contradiction. It remains to see that dim br(p) 6 N
and it is fixed under the usual C∗-action, so there exists a linear space H not intersecting it and
such that dimCN0/H = N .
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1.4 A brief historical survey

Below we give a brief historical survey of the literature on Hilbert schemes of points and finite al-
gebras. We hope that such a summary might be helpful for the reader primarily as suggestions for
further reading. We should note that there are many great introductions to Hilbert schemes from
different angles, e.g. [FGI+05, Göt94, Har10, MS05, Nak99, Str96, Ame10a], [IK99, Appendix C].
Our viewpoint is very specific; we are interested in an explicit, down-to-earth approach and on
Hilbert schemes of higher dimensional varieties; thus we limit ourselves to connected results. For
example, we omit the beautiful theory of Hilbert schemes of surfaces.

Several distinguished researchers commented on this survey, however their suggestions are
not yet incorporated. All errors and omissions are entirely due to the author’s ignorance.

Below X is smooth projective variety over C.

Hilbert schemes. The Hilbert scheme Hilb(X) was constructed by Grothendieck [Gro95]. It
decomposes into a disjoint union of Hilbp(X), parameterized by the Hilbert polynomials p ∈ Q[t].
Hartshorne [Har66] proved that all Hilbp(Pn) are connected for all n. Soon after, Fogarty [Fog68]
proved that for constant p the Hilbert scheme Hilbp(X) of a smooth irreducible surface X is
smooth and irreducible.

At the same time Mumford [Mum62] showed that the Hilbert schemeHilb(P3) is non-reduced:
it has a component parameterizing certain curves in three dimensional projective space, which is
even generically non-reduced (see [KO15]). Much later Vakil [Vak06] vastly generalized this by
showing that every (up to smooth equivalence) singularity appears on Hilb(PnZ) for some n.

Much work has been done on finding explicit equations of the Hilbert scheme. Grothendieck’s
proof of existence together with Gotzmann’s bound on regularity [Got78] give explicit equations
of Hilbp(Pn) inside a Grassmannian. But the extremely large number of variables involved
makes computational approach ineffective. There is an ongoing progress in simplifying equa-
tions and understanding the geometry, usually using Borel fixed points, see in particular Iar-
robino, Kleiman [IK99, Appendix C], Roggero, Lella [LR11], Bertone, Lella, Roggero [BLR13]
and Bertone, Cioffi, Lella [BCR12]. Staal [Sta17b] showed that over a half of Hilbert schemes
has only one component: the Reeves-Stillman [RS97] component. Roggero and Lella [LR11]
proved that every smooth component of the Hilbert scheme is rational and asked, whether each
component is rational [Ame10b, Problem list].

Haiman and Sturmfels [HS04] introduced the multigraded Hilbert scheme. Independently,
Huibregtse [Hui06] and Peeva [PS02] gave similar constructions. Smoothness and irreducibility
of this more general version of the Hilbert scheme for the plane are proven by Evain [Eva04] and
Maclagan, Smith [MS10].

Below we are exclusively interested in the Hilbert scheme of points, which is the union of
Hilbr (X) where r ∈ Z denotes constant Hilbert polynomials. In other words, this scheme
parameterizes zero-dimensional subschemes of degree r. This scheme has a distinguished com-
ponent, called the smoothable component or principal component. It is the closure of the set
of smooth subschemes (tuples of points). Schemes corresponding to points of this component
are called smoothable. In particular, Hilbr (X) is irreducible if and only if every subscheme is
smoothable.

Gustavsen, Laksov and Skjelnes [GLS07] provided a construction of the Hilbert scheme of
points for every affine scheme. Rydh, Skjelnes [RS10] and Ekedahl, Skjelnes [ES14] gave an
intrinsic construction of the smoothable component of Hilbr (X), without reference to Hilbr (X),
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while Lee [Lee10] proved that the smoothable component is not Cohen-Macaulay for X = C9.
By Fogarty’s result, if dimX 6 2, then Hilbr (X) is irreducible. In fact there is a beautiful

theory of Hilbert schemes of points on surfaces, which we do not discuss here, see e.g. [Göt94,
Hai01, Hai03, KT01, Led14, Nak99]). In his paper, Fogarty [Fog68, p. 520] asked whether all
Hilbert schemes of points on smooth varieties are irreducible. Iarrobino [Iar72] disproved this
entirely and showed that Hilbr (Pn) is reducible for every n > 3 and r � 0. Fogarty also asked
whether Hilbert schemes of points on smooth varieties are always reduced. This question remains
completely open, even though progress is made, see Erman [Erm12].

Schemes concentrated at a point are of special interest. Their locus inside Hilbr (X) is
called the punctual Hilbert scheme. Since X is smooth, the punctual Hilbert scheme is, at
the level of points, equal to Hilbr (C[[x1, . . . , xdimX ]]). It has strong connections with germs of
mappings [DG76] and topological flattenings [Gal83]. Briançon proved [Bri77] that for dimX 6
2 the punctual Hilbert scheme is irreducible: every degree r quotient is a limit of quotients
isomorphic to C[t]/tr, see also [Iar77, Iar87, Yam89]. The state of the art for year 83 is nicely
summarized in Granger [Gra83]. Gaffney [Gaf88] gave a lower bound for the dimensions of
components of punctual Hilbert schemes whose points correspond to smoothable algebras and
conjectured that it bounds the dimensions of all components.

Much is known about schemes Hilbr (Pn) for small r. Mazzola [Maz80] proved that they are
irreducible for r 6 7. Emsalem and Iarrobino [IE78] proved that Hilb8 (Pn) is reducible for n > 4.
Cartwright, Erman, Velasco and Viray [CEVV09] proved that Hilb8 (Pn) is irreducible for n 6 3

and has exactly two components for n > 4; they also gave a full description of the non-smoothable
component and the intersection. These result imply that Hilbr (Pn) is reducible for all n > 4 and
r > 8, which leaves only the case r = 3 open. Borges dos Santos, Henni and Jardim [BdSHJ13]
proved irreducibility of Hilbr (P3) for r 6 10, using the results of Šivic [Šiv12] on commuting
matrices. Douvropoulos, Utstøl Nødland, Teitler and the author [DJUNT17] proved irreducibility
of Hilb11 (P3). The case Hilbr (P3) is interesting, because the Hilbert scheme can be presented
as a singular locus of a hypersurface on a smooth manifold; such presentation restricts possible
singularities, see Dimca, Szendrői [DS09] and Behrend, Bryan, Szendrői [BBS13].

The Gorenstein locus of Hilbr (X) is the open subset HilbGorr (X) consisting of points corre-
sponding to Gorenstein algebras. Casnati, Notari and the author [CN09a, CN11, CN14, CJN15]
proved irreducibility of the Gorenstein locus of up to degree 13 and investigated its singular
locus. The author [Jel16] also described the geometry of the Gorenstein locus for degree 14, the
first reducible case, using results of Ranestad, Iliev and Voisin [IR01, IR07, RV13] on Varieties
of Sums of Powers.

Finite algebras. Algebraically, Hilbert schemes of points parameterize zero-dimensional quo-
tients of polynomial rings. Historically those were considered far before Hilbert schemes; perhaps
the first mention of zero-dimensional Gorenstein algebras is Macaulay’s paper [Mac27], which
describes possible Hilbert functions of complete intersections on A2. Macaulay [Mac94] also gave
his famous structure theorem, describing all local zero-dimensional algebras in terms of inverse
systems and duality between functions and constant coefficients differential operators on affine
space. This duality can be also viewed as a case of Matlis duality [Mat58] or in the language of
Hopf algebras [ER93].

A new epoch started with the construction of the Hilbert scheme. Fogarty’s result [Fog68]
implies that, for every r, finite rank r quotients of C[x, y] are smoothable, i.e., are limits of
C×r. Iarrobino’s [Iar72] proves that there are non-smoothable quotients of C[x, y, z] and higher
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dimensional polynomial rings (there examples are not Gorenstein). Interestingly, the result is
non-constructive: Iarrobino produces a family too large to fit inside the smoothable compo-
nent, but no specific point of this family is known to be nonsmoothable; more generally no
explicit example of a non-smoothable quotient of C[x, y, z] is known. Fogarty’s smoothness re-
sult follows also from the Hilbert-Burch theorem, saying that deformations of zero-dimensional
quotients of C[x, y] are controlled by deformations of a certain matrix (the ideal is generated
by its maximal minors). The same result holds for codimension two Cohen-Macaulay algebras,
see Ellingsrud [Ell75] and Laksov [Lak75]. Buchsbaum and Eisenbud [BE77] described resolu-
tions of zero-dimensional Gorenstein quotients of C[x, y, z] and showed that they are controlled
by an anti-symmetric matrix (the ideal is defined by its Pfaffians). This is used [Kle78] to
show that zero-dimensional Gorenstein quotients of C[x, y, z] are smoothable. A classical and
very accessible survey of these results is Artin’s [Art76]. Later Eisenbud-Buchsbaum result was
generalized to arbitrary codimension three Gorenstein (or arithmetically Gorenstein) quotients,
see Kleppe and Mirò-Roig [MR92, Kle98, KMR98]. Codimension four remains in progress, see
Reid’s [Rei15], however one does not except as striking smoothness results as above.

In the following years progress was made in several directions (state of the art for 1987 are
nicely summarized in Iarrobino’s [Iar87]). An influential article of Bass [Bas63] discussed various
appearances of Gorenstein algebras in literature. Schlessinger [Sch73] investigated deformations
and asked for classifications of zero-dimensional rigid algebras (the question remains open).
Emsalem and Iarrobino [IE78] produced a nonsmoothable, degree 8 quotient of C[x, y, z, t] and a
nonsmoothable, degree 14 Gorenstein quotient of C[x1, . . . , x6]. Much later Shafarevich [Sha90]
generalized the degree 8 example and produced several new classes of nonsmoothable algebras
with Hilbert function (1, d, e) where

(
d+1

2

)
� e > 2.

Emsalem [Ems78] announced several milestone results concerning deformations and classifi-
cation of zero-dimensional Gorenstein algebras: he translated those problems into language of
inverse systems, thus enabling a combinatorial approach.

These developments prompted work on the classification. Sally [Sal79] classified Gorenstein
algebras with Hilbert function (1, n, 1, . . . , 1), though she was primarily interested in higher-
dimensional case. Mazzola [Maz79, Maz80] proved that all algebras of degree up to 7 are smooth-
able and provided a table of their deformations up to degree 5, assuming that the base field is
algebraically closed of characteristic different from 2, 3. Poonen [Poo08a] classified algebras of
degree up to 6 without assumptions on the characteristic. He also investigated the moduli space
of algebras with fixed basis [Poo08b], calculating its asymptotic dimension.

Iarrobino [Iar83] considered deformations of complete intersections. His subsequent pa-
per [Iar84] introduced compressed algebras and proved that there are nonsmoothable degree
78 quotients of C[x, y, z]; this bound has not been sharpened since. He also proved that there
are nonsmoothable Gorenstein quotients of C[x1, . . . , xn] for all n > 4.

Stanley [Sta78, Sta96] used Buchsbaum-Eisenbud results and classified possible Hilbert func-
tions of graded Gorenstein quotients of C[x, y, z] (here and below an algebra is graded if it is
isomorphic to a quotient of polynomial ring by a homogeneous ideal with respect to the stan-
dard grading. This is usually named standard graded, [Sta96]). Which Hilbert functions ap-
pear for the graded Gorenstein quotients of C[x1, . . . , xn] remains a hard problem, see Migliore,
Zanello [MZ17]. Diesel [Die96] and Kleppe [Kle98] showed that the locus of graded quotients
of C[x, y, z] with given function is smooth and irreducible. Boij [Boi99b] showed that this is no
longer true in higher number of variables, see also [KMR07]. Boij [Boi99a] investigated also the
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Betti tables of graded Gorenstein algebras, in particular compressed ones, conjectured that these
tables are minimal (in the spirit of Minimal Resolution Conjecture) and proved this conjecture in
several classes. Conca, Rossi and Valla [CRV01] proved that general graded Gorenstein algebras
with Hilbert function (1, n, n, 1) are Koszul.

Iarrobino [Iar94] considered Hilbert functions of Gorenstein, not necessarily graded, algebras.
He developed and investigated the notion of symmetric decomposition of the Hilbert function; all
subsequent classification work relies on this memoir.

Graded Gorenstein algebras are intrinsically connected to secant varieties and Waring prob-
lem for forms, which enjoyed much research activity following the paper of Alexander and
Hirschowitz [AH95]. We discuss this most briefly. A nice introduction is found in Geramita [Ger96].
See also the papers of Bernardi, Gimigliano, Ida [BGI11], Bernardi, Ranestad [BR13], Buczyński,
Ginensky, Landsberg [BGL13], Buczyński, Buczyńska [BB14], Carlini, Catalisano, Geramita
[CCG12], Derksen, Teitler [DT15], Landsberg, Ottaviani [LO13], Landsberg, Teitler [LT10], and
Buczyński, the author [BJ17] for an overview of possible directions and connections. Many of
the aforementioned results on Gorenstein algebras, their loci, and about Waring problems are
discussed in Iarrobino, Kanev book [IK99].

Casnati and Notari analysed smoothability of finite Gorenstein algebras in [CN07]. In a
subsequent series of papers [CN09a, CN11, CN14] they established smoothability of all Gorenstein
algebras for degrees up to 11 and then, jointly with the author [Jel14, CJN15], smoothability
for all Gorenstein algebras of degree up to 14, except those with Hilbert function (1, 6, 6, 1), see
also [Jel16]. Bertone, Cioffi and Roggero [BCR12] proved smoothability of Gorenstein algebras
with Hilbert function (1, 7, 7, 1). Iarrobino’s [Iar84] results show that a general Gorenstein algebra
with Hilbert function (1, n, n, 1), n > 8 is nonsmoothable.

Some of the above results for (1, n, n, 1) depended on Elias’ and Rossi’s [ER12] proof that
all Gorenstein algebras with Hilbert functions (1, n, n, 1) are canonically graded (isomorphic
to their associated graded algebra). Elias and Rossi also proved that algebras with Hilbert
function (1, n,

(
n+1

2

)
, n, 1) are canonically graded, see [ER15]. Fels, Kaup [FK12] and Eastwood,

Isaev [EI14] showed that an algebra is canonically graded if and only if certain hypersurfaces,
associated to this algebra, are affinely equivalent. Jelisiejew [Jel17] considered classification of
algebras, extending the ideas of Emsalem. He proved that the above results of Elias and Rossi
are consequences of a group action. He also conjectured when are “general” Gorenstein algebras
graded and classified Gorenstein algebras with Hilbert function (1, 3, 3, 3, 1), giving examples of
nongraded algebras. Masuti and Rossi [MR17] provided many examples of non-graded algebras
for all Hilbert functions (1, n,m, s, 1) with s 6= n or m 6=

(
n+1

2

)
.

Meanwhile, some more classification results were obtained, primarily using inverse systems.
Casnati [Cas10] gave a complete classification of Gorenstein algebras of degree at most 9. Elias,
Valla [EV11] and Elias, Homs [EH16] classified all Gorenstein quotients of C[[x, y]], which are
almost stretched : their Hilbert function H satisfies H(2) 6 2. Casnati and Notari [CN16] investi-
gated Gorenstein algebras with H(3) = 1 and classified those with Hilbert function (1, 4, 4, 1, 1).
The classification results were also used to prove rationality of the Poincarè series of zero-
dimensional Gorenstein algebras, see [CN09b, CENR13, CJN16].

Outside the Gorenstein world, Erman and Velasco [EV10] gave new obstructions to smootha-
bility of algebras with Hilbert function (1, n, e) and obtained a complete picture for (1, 5, 3).
Huibregtse [Hui14] built a framework for finding nonsmoothable algebras and presented several
of them. Many unsolved problems exist. We gather some of them in the following section.
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1.5 Open problems

Hilbert schemes are rich in natural, but open questions. We list some of them below. Many
come from the American Institute of Mathematics workshop on Hilbert schemes [Ame10b]. I am
indebted to organizers of this workshop, who made their problem list publicly available, however
any errors below or the selection of problems remain my sole responsibility.

Problem 1.13 ([Fog68, p. 520], [CEVV09, p. 794], [Lee10, p. 1349]). Is Hilbr (An) always
reduced? If not, what are the examples?

Problem 1.14 ([Ame10b], [LR11]). Does there exist a nonrational component of Hilbr (An)?

Problem 1.15 ([Ame10b]). Is there a rigid local Artinian k-algebra besides k×n? An algebra
A is rigid if all its nearby deformations are abstractly isomorphic to A, see [Sch73].

Problem 1.16 ([CEVV09, p. 794]). What is the smallest r such that Hilbr (A3) is reducible?
We know that 12 6 r 6 77 at least in characteristic zero.

Problem 1.17 ([BB14, Section 6], [BJ17]). What is the smallest r such that HilbGorr (A4) is
reducible? We know that 15 6 r 6 140 at least in characteristic 6= 2, 3.

Problem 1.18 ([Ame10b]). Is the Gröbner fan a discrete invariant that distinguishes the irre-
ducible components of Hilbr (An)? More generally, what are the components of Hilbr (An)?

Problem 1.19 ([IK99, 9H, p. 258]). Can we produce components of the Hilbert scheme from
special geometric configurations of points or schemes? See [IK99, Chapter 9] for several open
questions.

Problem 1.20 ([Ame10b]). Can we describe the Zariski tangent space to the smoothable com-
ponent of Hilbr (An)?

Problem 1.21 ([Ame10b]). Is there a component of Hilbr (Ank) which exists only for k of char-
acteristic p, for some p > 0?

Problem 1.22 ([Iar87]). Consider the scheme Z ⊂ Hilbr (An) parameterizing subschemes sup-
ported at the origin. Is there a component of Z of dimension less than (n− 1)(r − 1)?

Problem 1.23 ([Jel16]). Can we classify those irreducible components of Hilbr (An) which have
dimension less than rn?

Problem 1.24 ([IK99, 9G, p. 257], [Hui14]). A component of Hilbr (An) is elementary if its
general point corresponds to an irreducible subscheme. Are there infinitely many elementary
components of Hilbr (A3)?
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Part I

Finite algebras

We discuss finite algebras, their numerical properties and embeddings. We restrict
ourselves to linear algebra and Lie theory tools, which are sufficient for our purposes.
We also use the language of commutative algebra rather than algebraic geometry.
This part is essentially a prerequisite of Part II, however Sections 3.6–3.9 contain
some original research results, published in [Jel17] and [CJN15].



Chapter 2

Basic properties of finite algebras

Throughout this thesis k is a field (of arbitrary characteristic, not necessarily algebraically closed)
and A is a finite k-algebra, i.e., a finite dimensional k-vector space equipped with an associative
and commutative multiplication A⊗kA→ A and a unity 1 ∈ A. Every such algebra is isomorphic
to a product of local algebras and in fact we will be mostly interested in local algebras. We denote
local algebra by (A,m,k), where m is the maximal ideal of A. We make a global assumption that
k→ A/m is an isomorphism. This assumption is automatic if k is algebraically closed. It can also
be satisfied by replacing k with the residue field κ = A/m; the fact that there is an embedding
κ ↪→ A is an ingredient of Cohen structure theorem, see [Eis95, Section 7.4]. We should be aware
that while κ and A are k-algebras, it is not clear, whether the embedding κ ↪→ A can be chosen
k-linearly [Eis95, Section 7.4]. The assumption that k → A/m is an isomorphism implies that
all numerical objects defined later: Hilbert functions and their symmetric decompositions, socle
dimensions etc., are invariant under field extension.

We usually consider local algebras presented as quotients of power series rings and we use
the following observation.

Lemma 2.1. A finite local algebra (A,m,k) can be presented as quotient of power series k-algebra
Ŝ = k[[α1, . . . , αn]] if and only if n = dim Ŝ > dimkm/m

2.

The phrase dimension of A is ambiguous: the Krull dimension of A is zero, whereas its
dimension as a linear space is finite and positive. We resolve this as follows: we never refer to
the Krull dimension and we refer to the degree of A when speaking about dimkA.

2.1 Gorenstein algebras

Gorenstein algebras are tightly connected with the notion of duality, in fact they can be thought
of as simplest algebras from the dual point of view, as we explain below. In this presentation we
follow [Eis95, Section 21.2].

Definition 2.2. Let A be a finite k-algebra. Its canonical module ωA is the vector space
Homk(A,k) endowed with an A-module structure via

(a ◦ f)(a′) = f(aa′) for a, a′ ∈ A, and f ∈ ωA. (2.3)

The canonical module does not depend on the choice of k; only on the ring structure of A,
see [Eis95, Proposition 21.1]. Also dimk ωA = dimkA for all A. Note that ωA is torsion-free.
Indeed, a · ωA = 0 implies that 0 = (af)(1) = f(a) for every functional f : A→ k, so a = 0.
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Definition 2.4. A finite k-algebra A is Gorenstein if and only if ωA is isomorphic to A as an
A-module. In this case every f ∈ ωA such that Af = ωA is called a dual generator of A.

We observe that Definition 2.4 is local, as explained in the following lemma.

Lemma 2.5. A finite k-algebra A is Gorenstein if and only if all its localisations at maximal
ideals are Gorenstein.

Proof. For every maximal ideal m ⊂ A, we have ωAm ' (ωA)m. Hence, if A is Gorenstein, then
every its localisation is Gorenstein. Conversely, if all localisations of A at maximal ideals are
Gorenstein, then ωA is locally free of rank one. Since A is finite, this implies that ωA ' A, so A
is Gorenstein.

We stress that dual generators are by no means unique: even in the trivial case A = k every
non-zero functional on A is its dual generator. Before we give examples, we present two equivalent
but even more explicit conditions on Gorenstein algebras. First, one can give a definition not
involving ωA.

Proposition 2.6. Let A be a finite k-algebra and f : A→ k be a functional. Then A is Goren-
stein with dual generator f if and only if the pairing

A×A 3 (a, b)→ f(ab) ∈ k (2.7)

is nondegenerate.

Proof. The pairing (2.7) descents to A⊗A→ k and can be rewritten as A→ Hom(A, k) sending
unity to f and sending a to a ◦ f ; it is an A-module homomorphism A → ωA. Now f is a dual
generator iff this homomorphism is onto iff this homomorphism is into iff there is no non-zero
a ∈ A such that a◦f = 0 iff there is no non-zero a ∈ A such that f(Aa) = {0} iff the pairing (2.7)
is nondegenerate.

Definition 2.8. Let (A,m,k) be a local algebra. The socle of A is the annihilator of its maximal
ideal. It is denoted by socA.

Note that for every a ∈ A and an appropriate exponent r we have a ·mr 6= 0 and a ·mr+1 = 0,
thus a ·mr ⊂ socA. Therefore socA intersects every nonzero ideal in A.

Proposition 2.9 ([Eis95, Proposition 21.5]). Let (A,m,k) be a finite local k-algebra. The fol-
lowing conditions are equivalent:

1. A is Gorenstein,

2. A is injective as an A-module,

3. the socle of A is a one-dimensional k-vector space,

4. the A-module A is principal.

Corollary 2.10. Let (A,m,k) be a finite local k-algebra. Then A is Gorenstein if and only if
there is a unique quotient B = A/I(B) with dimkB = dimkA− 1.
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Proof. We have socA 6= 0. For each B as above its ideal I(B) ⊂ A is given by a single element
of socA. Thus the space of possible B’s is isomorphic to P(socA) and B is unique if and only if
dimk socA = 1. By Proposition 2.9, this is equivalent to A being Gorenstein.

As seen in the Proposition 2.9, Gorenstein property depends only on the socle of A. We now
show that dual generators are distinguished among functionals on A by their nonvanishing on
the socle.

Corollary 2.11. Let (A,m, k) be a local Gorenstein k-algebra. Then f : A→ k is a dual gener-
ator of A if and only if f(socA) 6= {0}.

Proof. We will use the characterization of dual generators from Proposition 2.6. Suppose first
that f(socA) = {0}. Since A socA ⊂ socA, this implies that f(A socA) = {0}, thus the
pairing (2.7) is degenerate.

Suppose f(socA) 6= {0}. Since socA is one-dimensional, the condition f(socA) 6= {0}
implies that f(b) 6= 0 for every non-zero b ∈ socA. Choose any a ∈ A. Then Aa ∩ socA 6= {0}
so f(Aa) 6= {0} and the pairing (2.7) is nondegenerate.

Example 2.12. The smallest degree non-Gorenstein algebra is A = k[[α, β]]/(α2, αβ, β2). In-
deed, socA = (α, β) is two dimensional.

Example 2.13. The algebra A = k[[α, β]]/(αβ, α2 − β2) is Gorenstein, with socle generated
by the class of α2 + β2. More generally, any complete intersection is Gorenstein [Eis95, Corol-
lary 21.19] and its socle is generated by an element which may be interpreted as the Jacobian of
the minimal generating set, see [Eis95, Exercise 21.23c].

The following Proposition 2.14 shows that we may investigate, whether an algebra is Goren-
stein, after arbitrary field extension, for example after a base change to k.

Proposition 2.14. Let A be a finite k-algebra. Then the following conditions are equivalent

1. A is a Gorenstein k-algebra,

2. A⊗k K is a Gorenstein K-algebra for every field extension k ⊂ K,

3. A⊗k K is a Gorenstein K-algebra for some field extension k ⊂ K.

Proof. By Lemma 2.5, we may assume A is local, with maximal ideal m and residue field κ ⊃ k.
Fix a field extension k ⊂ K and A′ := A⊗kK. If A is Gorenstein, then any isomorphism A→ ωA
induces an isomorphism A′ → ωA′ and A′ is Gorenstein. Suppose A′ is Gorenstein, so ωA′ ' A′ as
A′-modules. Therefore, ωA′/mωA′ ' A′/mA′ ' κ⊗kK and dimK ωA′/mωA′ = dimk κ. Moreover,
we have ωA′ ' ωA ⊗k K as A′-modules, so that

dimk ωA/mωA = dimK ωA′/mωA′ = dimk κ.

It follows that ωA/mωA is a one-dimensional κ-vector space, so there exists an epimorphism A→
ωA/mωA and hence, by Nakayama’s lemma, an epimorphism A→ ωA. Since dimkA = dimk ωA,
it follows that ωA is isomorphic to A as an A-module and A is Gorenstein.

Example 2.15. Every finite smooth k-algebra A is Gorenstein. Indeed, A ⊗k k is a smooth
k-algebra, so it is isomorphic to k× degA. This algebra is Gorenstein by Proposition 2.9, so A is
Gorenstein as well by Proposition 2.14.
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For further use, we note below in Lemma 2.16 that two natural notions of the dual module
agree for Gorenstein algebras.

Lemma 2.16. Let (A,m,k) be a local Gorenstein k-algebra. Then for every A-module M we
have HomA (M,A) ' Homk (M,k) naturally.

Proof. In the language of [Eis95, Section 21.1], both HomA (−, A) and Homk (−,k) are dualizing
functors, so they are isomorphic, see Proposition [Eis95, Proposition 21.1, Proposition 21.2].

2.2 Hilbert function of a local algebra

Let (A,m, k) be a finite local k-algebra. Its associated graded algebra is grA =
⊕

i>0 m
i/mi+1.

Of course, grA is also a finite local k-algebra.

Definition 2.17. The Hilbert function of A is defined as

HA(i) = dimkm
i/mi+1.

Note that HA = HgrA. We have HA(i) = 0 for i > dimkA and it is usual to write HA as a
vector of its nonzero values. Lemma 2.1 proves that if A is a quotient of a power series ring Ŝ,
then Ŝ has dimension at least HA(1). Therefore HA(1) is named the embedding dimension of A.

Hilbert functions are usually considered in the setting of standard graded algebras. A k-
algebra A is standard graded if it is graded, A = ⊕i>0Ai, the map k→ A0 is an isomorphism and
A generated by A1 as a k = A0-algebra. These intrinsic conditions are summarized by saying
that A has a presentation A = k[β1, . . . , βr]/I, where I is a homogeneous ideal. We now note
that grA is standard graded.

Lemma 2.18. Let (A,m, k) be a finite algebra. Then grA is a standard graded algebra.

Proof. Clearly grA is graded. The map k → A/m = grA0 is an isomorphism by assumption.
Every homogeneous piece (grA)i = mi/mi+1 is in the k-subalgebra generated by (grA)1 = m/m2,
so that grA is standard graded.

The possible Hilbert functions of standard graded algebras are classified by Macaulay’s growth
theorem. Before stating it, we need to define binomial expansions. We follow the classical
presentations, details are found in [BH93, Section 4.2].

Fix a positive integer i. For a positive integer h there exist uniquely determined integers
ai > ai−1 > . . . > a1 > 0 such that

h =

(
ai
i

)
+

(
ai−1

i− 1

)
+ . . .+

(
a1

1

)
. (2.19)

Here we assume that
(aj
j

)
= 0 for aj < j. We call the numbers aj the i-th binomial expansion of

h. These numbers can be determined by a greedy algorithm, choosing first ai largest possible,
then ai−1 etc. For i, h and aj ’s determined as in Equation (2.19), we define

h〈i〉 =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ . . .+

(
a1 + 1

2

)
. (2.20)
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Theorem 2.21 (Macaulay’s growth theorem, [Mac27], [BH93, p. 4.2.10]). Let A be standard
graded algebra and H be its Hilbert function. Then

H(i+ 1) 6 H(i)〈i〉 for all i. (2.22)

Macaulay also proved that if H : N→ N satisfies H(0) = 1 and H(i+ 1) 6 H(i)〈i〉 for all i,
then there exists a standard graded algebra with this Hilbert function. Therefore, Theorem 2.21
gives a full classification of Hilbert functions of standard graded algebras. By Lemma 2.18 also
the Hilbert function of a local algebra satisfies Inequality (2.22) and every function H : N → N
satisfying (2.22) and H(0) = 1 is a Hilbert function of a local algebra.

Corollary 2.23. Let A be a standard graded k-algebra with Hilbert function H. If i > 0 is such
that H(i) 6 i, then we have H(i) > H(i+ 1) > H(i+ 2) > . . ..

Proof. In the i-th binomial equation of H(i) each aj is either j or j−1, thus H(i)〈i〉 = H(i).

Once the Macaulay bound is attained then it will also be attained for all higher degrees
provided that no new generators of the ideal appear:

Theorem 2.24 (Gotzmann’s Persistence Theorem, [Got78] or [BH93, Theorem 4.3.3]). Let S
by a polynomial ring, I be a homogeneous ideal and A = S/I be a standard graded algebra with
Hilbert function H. If i > 0 is an integer such that H(i + 1) = H(i)〈i〉 and I is generated in
degrees 6 i, then we have H(j + 1) = H(j)〈j〉 for all j > i.

In the following we will mostly use the following consequence of Theorem 2.24, for which
we introduce some (non-standard) notation. Let I ⊆ S = k[α1, . . . , αn] be a graded ideal in
a polynomial ring and m > 0. We say that I is m-saturated if for all l 6 m and σ ∈ Sl the
condition σ · (α1, . . . , αn)m−l ⊆ I implies σ ∈ I.

Lemma 2.25. Let S = k[α1, . . . , αn] be a polynomial ring with maximal ideal n = (α1, . . . , αn).
Let I ⊆ S be a graded ideal and A = S/I. Suppose that I is m-saturated for some m > 2. Then

1. if HA(m) = m+ 1 and HA(m+ 1) = m+ 2, then HA(l) = l+ 1 for all l 6 m, in particular
HA(1) = 2.

2. if HA(m) = m+ 2 and HA(m+ 1) = m+ 3, then HA(l) = l+ 2 for all l 6 m, in particular
HA(1) = 3.

Proof. 1. First, if HA(l) 6 l for some l < m, then by Macaulay’s Growth Theorem HA(m) 6
l < m+ 1, a contradiction. So it suffices to prove that HA(l) 6 l + 1 for all l < m.

Let J be the ideal generated by elements of degree at most m in I. We will prove that the
graded ideal J of S defines a P1 linearly embedded into Pn−1.

Let B = S/J . Then HB(m) = m+1 and HB(m+1) > m+2. Since HB(m) = m+1 =
(
m+1
m

)
,

we have HB(m)〈m〉 =
(
m+2
m+1

)
= m + 2 and by Theorem 2.21 we get HB(m + 1) 6 m + 2, thus

HB(m+1) = m+2. Then by Gotzmann’s Persistence Theorem HB(l) = l+1 for all l > m. This
implies that the Hilbert polynomial of ProjB ⊆ Pn−1 is hB(t) = t + 1, so that ProjB ⊆ Pn−1

is a linearly embedded P1. In particular the Hilbert function and Hilbert polynomial of ProjB

are equal for all arguments. By assumption, we have Jl = Jsatl for all l < m. Then HA(l) =

HS/J(l) = HS/Jsat(l) = l + 1 for all l < m and the claim of the lemma follows.
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2. The proof is similar to the above one; we mention only the points, where it changes.
Let J be the ideal generated by elements of degree at most m in I and B = S/J . Then
HB(m) = m + 2 =

(
m+1
m

)
+
(
m−1
m−1

)
, thus HB(m + 1) 6

(
m+2
m+1

)
+
(
m
m

)
= m + 3 and B defines a

closed subscheme of Pn−1 with Hilbert polynomial hB(t) = t + 2. There are two isomorphism
types of such subschemes: P1 union a point and P1 with an embedded double point. One checks
that for these schemes the Hilbert polynomial is equal to the Hilbert function for all arguments
and then proceeds as in the proof of Point 1.

Remark 2.26. If A = S/I is a finite graded Gorenstein algebra with socle concentrated in
degree d, then A is m-saturated for every m 6 d. Indeed, fix an m 6 d and suppose that
σ ∈ Sl is such that σ(α1, . . . , αn)m−l ⊂ I. Then also σ(α1, . . . , αn)d−l ⊂ I. Let σ̄ ∈ A be the
image of σ, then σ̄(α1, . . . , αn)d−l = 0. Since the socle of A is concentrated in degree d, this
implies σ̄S ∩ socA = 0. But then σ̄ = 0 because socA intersect every nonzero ideal of A, see the
discussion below Definition 2.8.

2.3 Hilbert function of a local Gorenstein algebra

In contrast to the general case, the classification of Hilbert functions of Gorenstein algebras is
not known. However a well-developed theory exists. We first discuss standard graded algebras.
As usually with Gorenstein property, the slogan is duality and hence symmetry. To define the
center of symmetry, we first introduce the notion of socle degree.

Definition 2.27. The socle degree of a finite local Gorenstein algebra A is the largest d such
that HA(d) 6= 0.

We will see that necessarily HA(d) = 1.

Proposition 2.28 (Symmetry of the Hilbert function). Let A be a standard graded Gorenstein
algebra with Hilbert function H. Let d be the socle degree of A. Then H(i) = H(d − i) for all
0 6 i 6 d.

Proof. The subspace Ad is nonzero and annihilated by the maximal ideal of A, so it is the
socle of A. Then the pairing Ai × Ad−i → Ad ' k is non-degenerate by Corollary 2.11 and
Proposition 2.6, hence the claim.

Remark 2.29. Stanley [Sta78] gave the following characterisation of Hilbert functions H of
graded Gorenstein algebras of socle degree d under the assumption H(1) 6 3. He proved that
H is a Hilbert function of such algebra if and only if H(0) = 1 and H(d− i) = H(i) for all i and
the sequence

H(0), H(1)−H(0), . . . ,H(t)−H(t− 1) (2.30)

with t = bd2c consists of nonnegative integers and satisfies Macaulay’s Bound (2.22). He also
showed the necessity of assumption H(1) 6 3 by giving an example of a graded Gorenstein
algebra with Hilbert function (1, 13, 12, 13, 1); then (2.30) becomes (1, 12,−1), which contradicts
the assumption H(2)−H(1) > 0.

Now we investigate the Hilbert function H of a local Gorenstein algebra (A,m,k). This
Hilbert function need not be symmetric (Example 3.28), however it admits a decomposition into
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symmetric factors. The decomposition is canonically obtained from A, but decompositions may
be different for different algebras with equal Hilbert functions.

Let d be the socle degree of A. Let us denote by (0 : I) the annihilator of an ideal I ⊂ A and
assume that mi = A for all i 6 0. It follows from Proposition 2.28 that for graded A we have
(0 : md−i) = mi+1. However this is not true for all local algebras, see Example 3.28. We thus
obtain two canonical filtrations on A. One is a descending filtration

A ⊃ m ⊃ m2 . . . ⊃ md ⊃ {0}

by powers of m and the other is an ascending filtration

{0} ⊂ (0 : m) ⊂ (0 : m2) ⊂ . . . ⊂ (0 : md+1) = A,

called the Lövy filtration. We begin by relating the Lövy filtration to duality.

Lemma 2.31. Let (A,m, k) be a local Gorenstein algebra and I ⊂ A be an ideal. Choose any
dual generator f ∈ ωA and consider the associated pairing A × A 3 (a, b) → f(ab) ∈ k. Then
I⊥ = (0 : I).

Proof. Clearly (0 : I) ⊂ I⊥. On the other hand, if a ∈ A does not annihilate I, then aI is a
nonzero ideal, thus aI ∩ socA 6= 0 by the discussion below Definition 2.8, so f(aI) 6= {0} by
Corollary 2.11 and hence a 6∈ I⊥.

Lemma 2.32. Let (A,m, k) be a local Gorenstein k-algebra. Then

HA(i) = dimk
(0 : mi+1)

(0 : mi)
.

Proof. Fixing any pairing as in Lemma 2.31 we have(
mi

mi+1

)∨
' (0 : mi+1)

(0 : mi)
.

The result of Lemma 2.32 may be interpreted as a duality between subquotients of the two
filtrations. Let d be the socle degree of A. We introduce the summands C(a) =

⊕
iC(a)i ⊂ grA

and Q(a) =
⊕

iQ(a)i by the following formulas

C(a)i :=
mi ∩ (0 : md+1−a−i)

mi+1 ∩ (0 : md+1−a−i)
, (2.33)

Q(a)i :=
C(a)i

C(a+ 1)i
=

mi ∩ (0 : md+1−a−i)

mi+1 ∩ (0 : md+1−a−i) + mi ∩ (0 : md−a−i)
. (2.34)

Since m · (0 : md+1−a−i) ⊂ (0 : md+1−a−(i+1)), each C(a) ⊂ grA is an ideal, so that Q(a) are
grA-modules. If i > d − a then (0 : md−a−i) = (0 : md+1−a−i) = A and so Q(a)i = 0. Also
if i < 0 then Q(a)i = 0. Therefore Q(a) may be interpreted as a vector of length d − a. The
following result proves that this vector is symmetric up to taking duals.

Lemma 2.35. Let (A,m,k) be a local Gorenstein algebra and Q(a) be defined as in (2.34). Then
Q(a)∨i = Q(a)d−a−i naturally. Hence Q(a)∨ ' Q(a) as a grA-module.
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Proof. We note that if M,N,P are A-modules and N ⊂M , then

M + P

N + P
' M

M ∩ (N + P )
=

M

N +M ∩ P .

Fix a dual generator of A and hence a perfect pairing A × A → k. Lemma 2.31 implies that
(0 : md+1−a−i)⊥ = md+1−a−i and

(
mi
)⊥

= (0 : mi) so that

C(a)∨i =

(
mi ∩ (0 : md+1−a−i)

mi+1 ∩ (0 : md+1−a−i)

)∨
=

(0 : mi+1) + md+1−a−i

(0 : mi) + md+1−a−i '
(0 : mi+1)

(0 : mi) + md+1−a−i ∩ (0 : mi+1)
.

Now Q(a)i is the cokernel of C(a+ 1)i → C(a)i, so Q(a)∨i is the kernel of the natural map

(0 : mi+1)

(0 : mi) + md+1−a−i ∩ (0 : mi+1)
→ (0 : mi+1)

(0 : mi) + md−a−i ∩ (0 : mi+1)
.

Therefore

Q(a)∨i '
(0 : mi) + md−a−i ∩ (0 : mi+1)

(0 : mi) + md+1−a−i ∩ (0 : mi+1)
' md−a−i ∩ (0 : mi+1)

md−a−i ∩ (0 : mi) + md+1−a−i ∩ (0 : mi+1)
,

which is exactly Q(a)d−i−a.

Let us note that Q(a)0 = Q(a)d−a = 0 for all a > 0. Indeed, since a > 0 we have d+1−a 6 d.
Therefore (0 : md+1−a) ⊂ m and m0 ∩ (0 : md+1−a) = m1 ∩ (0 : md+1−a). Thus Q(a)0 = 0; then
Q(a)d−a = 0 follows by symmetry. Also Q(0)0 = A/m = k and Q(0)d ' (0 : m) ' k.

Example 2.36 (Nonzero Q(i)j for socle degree d = 3). If d = 3, then Q(0) = (k, Q(0)1, Q(0)∨1 , k)

and Q(1) = (0, Q(0)2, 0).

Definition 2.37. Let (A,m, k) be a local Gorenstein algebra of socle degree d. The symmetric
decomposition of Hilbert function of A is a tuple of d−1 vectors ∆A,a = ∆a, for a = 0, 1, . . . , d−2,
defined by

∆a (i) := dimkQ(a)i. (2.38)

We call ∆a the a-th symmetric summand and identify it with the vector (∆a (0) , . . . ,∆a (d− a)).

By Lemma 2.35 the vector ∆a is symmetric around d − a; we have ∆a (i) = ∆a (d− a− i).
We now briefly justify why ∆• form a decomposition of the Hilbert function of A.

Lemma 2.39. Let (A,m, k) be a local Gorenstein algebra of socle degree d and with Hilbert
function H. Then H(i) =

∑d−i
a=0 ∆a (i).

Proof. The spaces C(a)i form a filtration of mi/mi+1, so that H(i) =
∑∞

a=0 ∆a (i), but Q(a)i 6= 0

only when a+ i 6 d, so it is enough to sum over a 6 d− i.

The following example shows how the mere existence of the symmetric decomposition forces
some constraints on the Hilbert function of a Gorenstein algebra. One obvious constraint is that
H(d) = dimkQ(0)d = dimkQ(0)∨0 = 1.

Example 2.40. Let (A,m, k) be a local algebra of socle degree three. Then by Example 2.36
we have HA = (1,∆0 (1) + ∆1 (1) ,∆0 (1) , 1), so HA(1) > HA(2).
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We may restrict this function even further, by restricting possible ∆a. The key observation
is the following lemma.

Lemma 2.41. Let (A,m,k) be a finite local Gorenstein algebra and let ∆• be the symmetric
decomposition of its Hilbert function. Fix i > 0. The partial sum

∑i
a=0 ∆i is the Hilbert function

of a standard graded algebra grA/C(i + 1) defined in (2.34). In particular
∑i

a=0 ∆i satisfies
Macaulay’s Bound (2.22).

Proof. Immediate, arguing as in Lemma 2.39.

Example 2.42. From Lemma 2.41 it follows that there does not exist a finite local Gorenstein
algebra A with Hilbert function decomposition

∆0 = (1, 1, 1, 1, 1, 1)

∆1 = (0, 0, 1, 0, 0)

∆2 = (0, 0, 0, 0)

∆3 = (0, 1, 0).

Indeed, ∆0 + ∆1 = (1, 1, 2, 1, 1, 1) violates Corollary 2.23. Note that HA = (1, 2, 2, 1, 1, 1)

seems possible to obtain and indeed there exist Gorenstein algebras with such function and
decomposition

∆0 = (1, 1, 1, 1, 1, 1)

∆1 = (0, 0, 0, 0, 0)

∆2 = (0, 1, 1, 0)

∆3 = (0, 0, 0).

Example 2.43. The Hilbert function H = (1, 3, 3, 2, 1, 1) has exactly two possible decomposi-
tions:

∆0 = (1, 1, 1, 1, 1, 1)

∆1 = (0, 1, 1, 1, 0)

∆2 = (0, 1, 1, 0)

∆3 = (0, 0, 0).

∆0 = (1, 1, 1, 1, 1, 1)

∆1 = (0, 1, 2, 1, 0)

∆2 = (0, 0, 0, 0)

∆3 = (0, 1, 0).

We will later see in Examples 3.40, 3.41 see that both decompositions are possible. In Propo-
sition 3.78 we will also see that ∆3 6= (0, 0, 0) in the second decomposition constraints the
corresponding algebra. This example is treated in depth in [Iar94, Section 4B].

2.4 Betti tables, Boij and Söderberg theory

The study of Betti tables is indispensable for analysis of graded algebras. We will use it only
sparsely, mainly in Section 4.5, so we content ourselves with an informal discussion. An excellent
reference is [Eis05].

Let (A,m,k) be a finite k-algebra of socle degree d. Suppose that A = S/I is presented as
a quotient of polynomial ring S of dimension n by a homogeneous ideal. If A is Gorenstein and
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its Hilbert function is symmetric (Proposition 2.28) and, as we now recall, this is a consequence
of the symmetry of its resolution. First, by Hilbert’s theorem, the S-module S/I has a minimal
graded free resolution of length n:

0→
⊕
i

S(−i)⊕βn,i →
⊕
i

S(−i)⊕βn−1,i → . . .→
⊕
i

S(−i)⊕β1,i → S. (2.44)

Here M(i) denotes the module M with grading shifted by i. Since A is finite, it is Cohen-
Macaulay, so Exti(A,S(−n)) = 0 for all i < n. Moreover Extn(A,S(−n)) ' ωA(d), see [Eis95,
Corollary 21.16] for details. Therefore, if we denote complex (2.44) by F , then Hom(F , S(−n−d))

is the minimal free resolution of ωA. In particular,
∑

i βn,i is the minimal number of generators
of ωA; by Proposition 2.9 it is equal to one if and only if A is Gorenstein.

Suppose now and for the remaining part of this section that A is Gorenstein. Then ωA ' A

so that Hom(F , S(−n− d)) ' F by uniqueness. This implies that the Betti table
1 β1,1 β2,2 . . . βn−1,n−1 0

0 β1,2 β2,3 . . . βn−1,n 0

. . .

0 β1,d+1 β2,d+2 . . . βn−1,n+d−1 1


is symmetric around its center.

Example 2.45. Let A = k[α1, . . . , α4]/I with I generated by αiαj , α
3
i − α3

j for i 6= j. We
compute its Betti table 

1 0 0 0 0

0 6 8 3 0

0 3 8 6 0

0 0 0 0 1


and see that in the last column there is a single one, so A is Gorenstein and that indeed the
table is symmetric.

Boij-Söderberg theory gives a beautiful description of the cone of all Betti tables of graded
quotients of fixed S, see [BS08]. In the following we never use this theory explicitly, but below we
give an example showing how it restricts the possible shapes of Betti tables of finite Gorenstein
algebras (for another example, see [EV10, Section 4.1]).

Example 2.46. Let A = k[α1, . . . , α7]/I be a finite graded Gorenstein algebra with HA =

(1, 7, 7, 1). Then there exist a, b, c ∈ Q>0 with a+ b+ c 6 1, such that the Betti table of A is
1 0 0 0 0 0 0 0

0 21 64 + 16a 70 + 70a+ 35b 224
5 (3a+ 2b+ c) 70a+ 35b 16a 0

0 16a 70a+ 35b 224
5 (3a+ 2b+ c) 70 + 70a+ 35b 64 + 16a 21 0

0 0 0 0 0 0 0 1

 .
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Chapter 3

Macaulay’s inverse systems (apolarity)

So far we have analysed finite k-algebras abstractly. Now we switch to embedded setting; we
consider finite quotients of a polynomial ring S over k. In fact we restrict to finite local algebras,
so we consider finite quotients of a power series ring Ŝ, the completion of S. Macaulay’s inverse
systems view this situation through a dual setting. Namely, for each finite quotient Ŝ/I we have
ωŜ/I = Homk(Ŝ/I,k) ⊂ Homk(Ŝ,k). We analyse the generators of ωŜ/I and, more generally, the
action of Ŝ on Homk(Ŝ,k). In our presentation we closely follow [Jel17].

In the first two sections we develop the theory of Ŝ action on Homk(Ŝ,k) and the theory of
inverse systems. In Section 3.3 we explain, how this theory gives examples and even classifies
Gorenstein quotients of Ŝ.

3.1 Definition of contraction action

By N we denote the set of non-negative integers. Let Ŝ be a power series ring over k of dimension
dim Ŝ = n and let mS be its maximal ideal. By ord (σ) we denote the order of a non-zero σ ∈ Ŝ
i.e. the largest i such that σ ∈ mi

S . Then ord (σ) = 0 if and only if σ is invertible. Let
Ŝ∨ = Homk

(
Ŝ,k

)
be the space of functionals on Ŝ. We denote the pairing between Ŝ and Ŝ∨

by
〈−,−〉 : Ŝ × Ŝ∨ → k.

Definition 3.1. The dual space P ⊂ Ŝ∨ is the linear subspace of functionals eventually equal
to zero:

P =
{
f ∈ Ŝ∨ | ∀D�0

〈
mD
S , f

〉
= 0
}
.

On P we have a structure of Ŝ-module via precomposition: for every σ ∈ Ŝ and f ∈ P the
element σ y f ∈ P is defined via the equation

〈τ, σ y f〉 = 〈τσ, f〉 for every τ ∈ Ŝ. (3.2)

This action is called contraction.

We will soon equip P with topology and a structure of a ring (Definition 3.5), but its vector
space structure is sufficient for most purposes.

The existence of contraction action is a special case of the following construction, which is
basic and foundational for our approach. Let L : Ŝ → Ŝ be a k-linear map. Assume that L
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is mS-adically continuous: there is sequence of integers oi such that L(mi
S) ⊂ moi

S for all i and
limi→∞ oi = ∞. Then the dual map L∨ : Ŝ∨ → Ŝ∨ restricts to L∨ : P → P . Explicitly, L∨ is
given by the equation 〈

τ, L∨(f)
〉

= 〈L(τ), f〉 for every τ ∈ Ŝ, f ∈ P. (3.3)

To obtain contraction with respect to σ we use L(τ) = στ , the multiplication by σ. Later in this
thesis we will also consider maps L which are automorphisms or derivations of Ŝ.

To get a down to earth description of P , choose α1, . . . , αn ∈ Ŝ such that Ŝ = k[[α1, . . . , αn]].
Write αa to denote αa11 . . . αann . For every a ∈ Nn there is a unique element x[a] ∈ P dual to αa,
given by 〈

αb,x[a]
〉

=

{
1 if a = b

0 otherwise.

Additionally, we define xi as the functional dual to αi, so that xi = x[(0,...0,1,0,...,0)] with one on
i-th position. Let us make a few remarks:

1. The functionals x[a] form a basis of P . We have a natural isomorphism

P∨ = Ŝ. (3.4)

2. The contraction action is given by the formula

αa yx[b] =

{
x[b−a] if b > a, that is, ∀i bi > ai
0 otherwise.

Therefore our definition agrees with the one from [IK99, Definition 1.1, p. 4].

We say that x[a] has degree
∑
ai. We will speak about constant forms, linear forms, (divided)

polynomials of bounded degree etc. Note that the forms of degree d are just those elements of
S∨ ⊂ Ŝ∨ which are perpendicular to all forms of degree 6= d. Thus this notion is independent
of choice of basis. However it depends on S, so it is not intrinsic to Ŝ. What is intrinsic is the
space P6d; indeed it is the perpendicular of md+1

S .
We endow P with a topology, which is the Zariski topology of an affine space, in particular

P6d inherits the usual Zariski topology of finite dimensional affine space. This topology will be
used when speaking about general polynomials and closed orbits.

Now we will give a ring structure on P . For multi-indices a,b ∈ Nn we define a! =
∏

(ai!),∑
a =

∑
ai and

(
a+b
a

)
=
∏
i

(
ai+bi
ai

)
=
(
a+b
b

)
.

Definition 3.5. We define multiplication on P by

x[a] · x[b] :=

(
a + b

a

)
x[a+b]. (3.6)

In this way P is a divided power ring. We denote it by P = kdp[x1, . . . , xn].

The multiplicative structure on P can be defined in a coordinate-free manned using a natural
comultiplication on S. Since SpecS is an affine space, it has an group scheme structure and in
particular an addition map Add : SpecS × SpecS → SpecS, which induces a comultiplication
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homomorphism Add# : S → S ⊗ S and in turn a dual map Add∨ : (S ⊗ S)∨ → S∨ which can
be restricted to Add∨ : S∨ ⊗ S∨ → S∨. Explicitly, Add∨(x) = 1 ⊗ x + x ⊗ 1 for all x ∈ S1,
so Add∨(md) ⊂ ∑

mi ⊗ md−i. Therefore, if f ∈ P is annihilated by md and g ∈ P by me,
then Add∨(f, g) is annihilated by md+e. Hence Add∨ restrict to a map P ⊗ P → P , which in
coordinates in given by (3.6). We refer to [Eis95, §A2.4] for details in much greater generality.
See Ehrenborg, Rota [ER93] for an interpretation in terms of Hopf algebras. Once more, we
stress that the multiplicative structure on Ŝ depends on S.

Example 3.7. Suppose that k is of characteristic p > 0. Then P is not isomorphic to a
polynomial ring. Indeed, (x1)p = p!x

[p]
1 = 0. Moreover, x[p]

1 is not in the subring generated by
x1, . . . , xn.

For an element σ ∈ Ŝ = k[α1, . . . , αn] denote its i-th partial derivative by σ(i) ∈ Ŝ, for
example (α2

1)(1) = 2α1 and (α2
1)(2) = 0. Note that the linear forms of Ŝ act on P as derivatives.

Therefore we can interpret Ŝ as lying inside the ring of differential operators on P . The following
related fact is very useful in computations.

Lemma 3.8. Let σ ∈ Ŝ. For every f ∈ P we have

σ y (xi · f)− xi · (σ y f) = σ(i) y f. (3.9)

Proof. Since the formula is linear in σ and f we may assume these are monomials. Let σ = αri τ ,
where αi does not appear in τ . Then σ(i) = rαr−1

i τ . Moreover τ y (xi · f) = xi · (τ y f). By
replacing f with τ y f , we reduce to the case τ = 1, σ = αri .

Write f = x
[s]
i g where g is a monomial in variables other than xi. Then xi ·f = (s+1)x

[s+1]
i g

according to (3.6). If s+ 1 < r then both sides of (3.9) are zero. Otherwise

σ y (xi·f) = (s+1)x
[s+1−r]
i g, xi·(σ y f) = xi·x[s−r]

i g = (s−r+1)x
[s−r+1]
i g, σ(i) y f = rx

[s−(r−1)]
i g,

so Equation (3.9) is valid in this case also.

Remark 3.10. Lemma 3.8 applied to σ = αi shows that αi y (xi · f) − xi · (αi y f) = f . This
can be rephrased more abstractly by saying that αi and xi interpreted as linear operators on P
generate a Weyl algebra. Since these operators commute with other αj and xj , we see that 2n

operators αi and xi for i = 1, . . . , n generate the n-th Weyl algebra.

Example 3.7 shows that P with its ring structure has certain properties distinguishing it from
the polynomial ring, for example it contains nilpotent elements. Similar phenomena do not occur
in degrees lower than the characteristic or in characteristic zero, as we show in Proposition 3.11
and Proposition 3.13 below.

Proposition 3.11. Let P>d be the linear span of {x[a] | ∑a > d}. Then P>d is an ideal of
P , for all d. Let k be a field of characteristic p. The ring P/P>p is isomorphic to the truncated
polynomial ring. In fact

Ω : P/P>p → k[x1, . . . , xn]/(x1, . . . , xn)p

defined by

Ω
(
x[a]
)

=
xa11 . . . xann
a1! . . . an!

.
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is an isomorphism.

Proof. Since Ω maps a basis of P/Ip to a basis of k[x1, . . . , xn]/(x1, . . . , xn)p, it is clearly well
defined and bijective. The fact that Ω is a k-algebra homomorphism reduces to the equality(
a+b
a

)
=
∏ (ai+bi)!

ai!bi!
.

Characteristic zero case. In this paragraph we assume that k is of characteristic zero. This
case is technically easier, but there are two competing conventions: contraction and partial
differentiation. These agree up to an isomorphism. The main aim of this section is clarify this
isomorphism and provide a dictionary between divided power rings, used in this thesis, and
polynomial rings in characteristic zero. Contraction was already defined above, now we define
the action of Ŝ via partial differentiation.

Definition 3.12. Let k[x1, . . . , xn] be a polynomial ring. There is a (unique) action of Ŝ on
k[x1, . . . , xn] such that the element αi acts a ∂

∂xi
. For f ∈ k[x1, . . . , xn] and σ ∈ Ŝ we denote

this action as σ ◦ f .

The following Proposition 3.13 shows that in characteristic zero the ring P is isomorphic to
a polynomial ring and the isomorphism identifies the Ŝ-module structure on P with that from
Definition 3.12 above.

Proposition 3.13. Suppose that k is of characteristic zero. Let k[x1, . . . , xn] be a polynomial
ring with Ŝ-module structure as defined in 3.12. Let Ω : P → k[x1, . . . , xn] be defined via

Ω
(
x[a]
)

=
xa11 . . . xann
a1! . . . an!

.

Then Ω is an isomorphism of rings and an isomorphism of Ŝ-modules.

Proof. The map Ω is an isomorphism of k-algebras by the same argument as in Proposition 3.11.
We leave the check that Ω is a Ŝ-module homomorphism to the reader.

Summarizing, we get the following corresponding notions.

Arbitrary characteristic Characteristic zero

divided power series ring P polynomial ring k[x1, . . . , xn]

Ŝ-action by contraction (precomposition) denoted σ y f Ŝ action by derivations denoted σ ◦ f
x[a] xa/a!

xi = x[(0,...0,1,0,...,0)] xi

3.2 Automorphisms and derivations of the power series ring

Let as before Ŝ = k[[α1, . . . , αn]] be a power series ring with maximal ideal mS . This ring has
a huge automorphism group: for every choice of elements σ1, . . . , σn ∈ mS whose images span
mS/m

2
S there is a unique automorphism ϕ : Ŝ → Ŝ such that ϕ(αi) = σi. Note that ϕ preserves

mS and its powers. Therefore the dual map ϕ∨ : Ŝ∨ → Ŝ∨ restricts to ϕ∨ : P → P . The map
ϕ∨ is defined (using the pairing of Definition 3.1) via the condition

〈ϕ(σ), f〉 =
〈
σ, ϕ∨(f)

〉
for all σ ∈ Ŝ, f ∈ P. (3.14)
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Now we will describe this action explicitly.

Proposition 3.15. Let ϕ : Ŝ → Ŝ be an automorphism. Let Di = ϕ(αi)−αi. For a ∈ Nn denote
Da = Da1

1 . . . Dan
n . Let f ∈ P . Then

ϕ∨(f) =
∑
a∈Nn

x[a] · (Da y f) = f +
n∑
i=1

xi · (Di y f) + . . . .

Proof. We need to show that 〈
σ,
∑
a∈Nn

x[a] · (Da y f)

〉
= 〈ϕ(σ), f〉

for all σ ∈ Ŝ. Since f ∈ P , it is enough to check this for all σ ∈ k[α1, . . . , αn]. By lineality, we
may assume that σ = αa. For every g ∈ P let ε(g) = 〈1, g〉 ∈ k. We have

〈ϕ(σ), f〉 = 〈1, ϕ(σ) y f〉 = ε (ϕ(σ) y f)

= ε

∑
b6a

(
a

b

)(
αa−bDb

)
y f

 =
∑
b6a

ε

((
a

b

)
αa−b y (Db y f)

)
.

Consider a term of this sum. Observe that for every g ∈ P

ε

((
a

b

)
αa−b y g

)
= ε

(
αa y

(
x[b] · g

))
. (3.16)

Indeed, it is enough to check the above equality for g = x[c] and both sides are zero unless
c = a − b, thus it is enough to check the case g = x[a−b], which is straightforward. Moreover
note that if b 66 a, then the right hand side is zero for all g, because ε is zero for all x[c] with
non-zero c. We can use (3.16) and remove the restriction b 6 a, obtaining

∑
b

ε
(
αa y

(
x[b] · (Db y f)

))
= ε

(∑
b

αa y
(
x[b] · (Db y f)

))
=

〈
αa,
∑
b

x[b] · (Db y f)

〉
=〈

αa, ϕ∨(f)
〉

=
〈
σ, ϕ∨(f)

〉
.

Consider now a derivation D : Ŝ → Ŝ, i.e., a k-linear map satisfying D(στ) = σD(τ)+D(σ)τ

for all σ, τ ∈ Ŝ. It gives rise to a dual map D∨ : P → P , which we now describe explicitly.

Proposition 3.17. Let D : Ŝ → Ŝ be a derivation and Di := D(αi). Let f ∈ P . Then

D∨(f) =

n∑
i=1

xi · (Di y f).

Proof. The proof is similar to the proof of Proposition 3.15, although it is easier.

Remark 3.18. Suppose D : Ŝ → Ŝ is a derivation such that D(mS) ⊆ m2
S . Then deg(D∨(f)) <

deg(f). We say that D lowers the degree.

A special class of automorphisms of Ŝ are linear automorphisms.
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Definition 3.19. Under the identification of 〈α1, . . . , αn〉 with mS/m
2
S , every linear map ϕ ∈

GL(mS/m
2
S) induces a linear transformation of 〈α1, . . . , αn〉 and consequently an automorphism

ϕ : Ŝ → Ŝ. We call such automorphisms linear.

The group GL(mS/m
2
S) acts also on 〈α1, . . . , αn〉∨ = 〈x1, . . . , xn〉, hence on P = kdp[x1, . . . , xn].

The action of ϕ ∈ GL(mS/m
2
S) is precisely ϕ∨. In particular, in this special case, ϕ∨ is an auto-

morphism of kdp[x1, . . . , xn].

Characteristic zero case. Let k be a field of characteristic zero. By xa we denote the mono-
mial xa11 . . . xann in the polynomial ring k[x1, . . . , xn]. Then, in the notation of Proposition 3.13,
we have

Ω
(
x[a]
)

=
1

a!
xa.

Clearly, an automorphism of Ŝ gives rise to an linear map k[x1, . . . , xn]→ k[x1, . . . , xn]. We may
restate Proposition 3.15 and Proposition 3.17 as

Corollary 3.20. Let ϕ : Ŝ → Ŝ be an automorphism. Let Di = ϕ(αi)− αi. For a ∈ Nn denote
Da = Da1

1 . . . Dan
n . Let f ∈ k[x1, . . . , xn]. Then

ϕ∨(f) =
∑
a∈Nn

xa

a!
(Da ◦ f) = f +

n∑
i=1

xi(Di ◦ f) + . . . .

Let D : Ŝ → Ŝ be a derivation and Di := D(αi). Then

D∨(f) =
n∑
i=1

xi(Di ◦ f).

Example 3.21. Let n = 2, so that Ŝ = k[[α1, α2]] and consider an automorphism ϕ : Ŝ → Ŝ

given by ϕ(α1) = α1 and ϕ(α2) = α1 + α2. Dually, ϕ∨(x1) = x1 + x2 and ϕ∨(x2) = x2. Since
ϕ is linear, ϕ∨ is an automorphism of k[x1, x2]. Therefore ϕ∨(x3

1) = (x1 + x2)3. Let us check
this equality using Proposition 3.20. We have D1 = ϕ(α1)− α1 = 0 and D2 = ϕ(α2)− α2 = α1.
Therefore D(a,b) = 0 whenever a > 0 and D(0,b) = αb1.

We have

ϕ∨
(
x3

1

)
=

∑
(a,b)∈N2

xa1x
b
2

a!b!
(D(a,b)◦x3

1) =
∑
b∈N

xb2
b!

(αb1◦x3
1) = x3

1+
x2

1
·(3x2

1)+
x2

2

2
·(6x1)+

x3
2

6
·(6) = (x1+x2)3,

which indeed agrees with our previous computation.
When ϕ is not linear, ϕ∨ is not an endomorphism of k[x1, x2] and computing it directly from

definition becomes harder. For example, if ϕ(α1) = α1 and ϕ(α2) = α2 + α2
1, then

ϕ∨(x1) = x1, ϕ∨(x4
1) = x4

1 + 12x2
1x2 + 12x2

2.

3.3 Classification of local embedded Gorenstein algebras
via apolarity

In this section fix a power series ring Ŝ and consider finite local algebras A presented as quotients
A = Ŝ/I. Note that every A can be embedded into every Ŝ of dimensions at least dimkA. This

30



section is classical; Macaulay’s theorem first appeared in [Mac94], while the classification using
the group G defined below in (3.31), was first noticed, without proof, by Emsalem [Ems78].

Let P be defined as in Definition 3.1. For every subset X ⊂ P by Ann(X) ⊂ Ŝ we denote
the set of all σ ∈ Ŝ such that σ yx = 0 for all x ∈ X. Note that if X is an ideal of P then
Ann(X) = X⊥ = {σ ∈ S | 〈σ,X〉 = {0}}.

Consider a finite algebra A = Ŝ/I, then A is local with maximal ideal m which is the image
of mS . The surjection Ŝ � A gives an inclusion

ωA = Homk (A,k) ⊂ Homk

(
Ŝ,k

)
= Ŝ∨. (3.22)

We note the following fundamental lemma.
Recall that P6d−1 ⊂ P ⊂ Ŝ∨ is the space of elements annihilated by contraction with md

S .

Lemma 3.23. Let A = Ŝ/I be a finite algebra of degree d. Let ωA ⊂ Ŝ∨ be defined as in (3.22).
The subspace ωA lies in P6d−1 and it is an Ŝ-submodule of P6d−1.

Proof. According to Definition 3.1, we have (σ y f)(τ) = f(στ) for all σ, τ ∈ Ŝ. In particular if
σ ∈ I, then σ y f = 0. Since A is finite of degree d, we have md = 0 and so md

S ⊂ I. Then we have
md
S yωA, so ωA ⊂ P6d−1. Similarly, if σ ∈ Ŝ and f ∈ ωA, then (σ y f)(I) = f(σI) ⊂ f(I) = {0},

so σ y f is an element of ωA. Hence, ωA is an Ŝ-submodule of P6d−1.

Note that there are two actions applicable to element of ωA: one is the contraction action of
Ŝ on Ŝ∨, as defined in Definition 3.1 and the other is the action of A on ωA as in Definition 2.2.
These actions agree, as shown in the proof of Lemma 3.23. Below we consistently use contraction.

Definition 3.24. Let F ⊂ P be a subset. The apolar algebra of F is the quotient

Apolar (F) := Ŝ/Ann(F).

Theorem 3.25 (Macaulay’s theorem [Mac94]). Let (A,m,k) be a finite local k-algebra. Fix
A = Ŝ/I. Then there exist f1, . . . , fr ∈ P such that A = Apolar (f1, . . . , fr).

Proof. Consider the subspace ωA ⊂ Ŝ∨. Since A is local and finite, we have md ⊂ I for d
large enough, so ωA ⊂ P . By discussion after Definition 2.2 no element of A annihilates ωA,
so Ann(ωA) ⊂ Ŝ is equal to I. Choose any set f1, . . . , fr of generators of A-module ωA, then
A = Apolar (f1, . . . , fr).

Theorem 3.26 (Macaulay’s theorem for Gorenstein algebras). Let (A,m, k) be a finite local
Gorenstein k-algebra. Fix A = Ŝ/I. Then there exists f ∈ P such that A = Apolar (f).
Conversely, if f ∈ P , then Apolar (f) is a finite local Gorenstein algebra.

Proof. Let A = Ŝ/I be Gorenstein and f ∈ ωA be its dual generator. Since Af = ωA is torsion-
free, no non-zero element of A annihilates f . If we interpret f ∈ ωA ⊂ P as an element of P ,
then Ann(f) = I, thus Apolar (f) = A. Conversely, take f ∈ P . Then f ∈ P6d−1 for some d, so
that md y f = 0 and A = Apolar (f) = Ŝ/Ann(f) is finite and local. By definition, no element
of A annihilates f , so dimkAf = dimkA = dimk ωA, hence Af = ωA and f is a dual generator
of A.

Before we delve into deeper considerations, let us point out that Theorem 3.26 enables us to
explicitly describe Gorenstein algebras and in particular give examples.

31



Example 3.27. The algebra Apolar
(
x

[2]
1 + x

[2]
2

)
= k[[α1, α2]]/(α2

1−α2
2, α1α2) already appeared

in Example 2.13.

Example 3.28. Let f = x
[2]
1 + . . .+ x

[2]
k + x

[3]
k+1 + . . .+ x

[3]
n . Then

Ŝf =
〈

1, x1, . . . , xn, x
[2]
k+1, . . . , x

[2]
n , f

〉
.

Thus Ann(f) = (αiαj)i 6=j + (α2
i −α2

j )i,j6k + (α3
i −α3

j )k<i,j6n+ (α2
i −α3

j )i6k<j . We compute that
A = Apolar (f) has socle degree three and that HA = (1, n, n − k, 1). The maximal ideal of A
is generated by images of αi. The nonzero images of α1, . . . , αk lie in (0 : m2) but not in m2, in
contrast with the graded case.

Remark 3.29. If A = Ŝ/I is given by homogeneous ideal I, then f1, . . . , fr ∈ P in Theorem 3.25
may be chosen homogeneous. Also, if A is Gorenstein, then f ∈ P in Theorem 3.26 may be chosen
homogeneous; indeed choose any f ′ with leading form f ′d, then If

′
d = 0, since I is homogeneous,

so f ′d ∈ Ŝf ′ \mSf
′ is a dual generator.

Example 3.30. There are few finite monomial Gorenstein k-algebras. Indeed, such an algebra
A = S/I is graded, hence local and A = Apolar (f). Since I is monomial, also ωA ⊂ P is
spanned by monomials, so that f can be chosen to be monomial: f = x

[s1]
1 ·x[s2]

2 · . . . ·x[sn]
n . Then

I = (αs1+1
1 , αs2+1

2 , . . . , αsn+1
n ) and A is a complete intersection.

Every finite algebra of degree d can be presented as a quotient of a fixed power series algebra
Ŝ by Lemma 2.1. We now consider the question “When are two Gorenstein quotients of Ŝ
isomorphic?”. Let Ŝ∗ denote the group of invertible elements of Ŝ and let

G := Aut(Ŝ) n Ŝ∗ (3.31)

be the group generated by Aut(Ŝ) and Ŝ∗ in the space Homk

(
Ŝ, Ŝ

)
. As the notation suggests,

the group G is a semidirect product of those groups: indeed ϕ ◦ µs ◦ ϕ−1 = µϕ(s), where ϕ is an
automorphism, s ∈ Ŝ is invertible and µs denotes the multiplication by s. We have an action of
G on P described by Equation (3.3). Here Ŝ∗ acts by contraction and Aut(Ŝ) acts as described
in Proposition 3.15.

Proposition 3.32. Let A = Ŝ/I and B = Ŝ/J be two finite local Gorenstein k-algebras. Choose
f, g ∈ P so that I = Ann(f) and J = Ann(g). The following conditions are equivalent:

1. A and B are isomorphic,

2. there exists an automorphism ϕ : Ŝ → Ŝ such that ϕ(I) = J ,

3. there exists an automorphism ϕ : Ŝ → Ŝ such that ϕ∨(f) = σ y g, for an invertible element
σ ∈ Ŝ.

4. f and g lie in the same G-orbit of P .

Proof. Taking an isomorphism A ' B, one obtains ϕ′ : Ŝ → B = Ŝ/J , which can be lifted to an
automorphism of Ŝ by choosing lifts of linear forms. This proves 1 ⇐⇒ 2.

2 ⇐⇒ 3. Let ϕ be as in Point 2. Then Ann(ϕ∨(f)) = ϕ(Ann(f)) = ϕ(I) = J . Therefore the
principal Ŝ-submodules of P generated by ϕ∨(f) and g are equal, so that there is an invertible
element σ ∈ Ŝ such that ϕ∨(f) = σ y g. The argument can be reversed.

Finally, Point 4 is just a reformulation of 3.
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Remark 3.33 (Graded algebras). In the setup of Proposition 3.32 one could specialize to ho-
mogeneous ideals I, J and homogeneous polynomials f, g ∈ P . Then Condition 1. is equivalent
to the fact that f and g lie in the same GL(mS/m

2
S)-orbit. The proof of Proposition 3.32 easily

restricts to this case, see [Ger96].

Theorem 3.34. The set of finite local Gorenstein algebras of degree r is naturally in bijection
with the set of orbits of G-action on P = kdp[x1, . . . , xr].

Proof. Every local Gorenstein algebra of degree r can be presented as a quotient of Ŝ =

k[[α1, . . . , αr]], so the claim follows from Proposition 3.32.

Proposition 3.32 shows the central role of G in the classification. Having this starting point,
we may consider at least two directions. First, we may construct elements of G explicitly and,
using the explicit description of their action on P given in Section 3.2, actually classify some
algebras or prove some general statements. Second, we may consider G as a whole and investigate
the Lie theory of this group to gain more knowledge about its orbits. We will illustrate the first
path in Example 3.35 and the second path in Section 3.6. Both paths are combined to obtain
the examples from Sections 3.7-3.9.

Now we give one complete, non-trivial, explicit example to illustrate the core ideas before
they will be enclosed into a more formal apparatus.

Example 3.35 (compressed cubics, [ER12, Theorem 3.3]). Assume that k has characteristic not
equal to two. Let (A,m, k) be a local Gorenstein k-algebra such that HA = (1, n, n, 1) for some n.
By Macaulay’s theorem 3.26 there exists an f ∈ P = kdp[x1, . . . , xn] such that A = Ŝ/Ann(f).
Since m3 6= 0 and m4 = 0 we have deg f = 3. Let f3 be its leading form.

We claim that there is an element ϕ ∈ G such that ϕ∨(f3) = f .
Since dimkm

3 = 1, we have dimkm
2 = n + 1, so dimm2

Sf = n + 1. But m2
Sf ⊂ P61 and

dimk P61 = n + 1, so m2
Sf = P61; every linear form in P is obtained as δ y f for some operator

δ ∈ m2
S . We pick operators D1, . . . , Dn ∈ m2

S so that
∑
xi · (Di y f) = −(f2 + f1). Explicitly, Di

is such that Di y f = −(αi y f2)/2− αi y f1. Here we use the assumption on the characteristic.
Let ϕ : Ŝ → Ŝ be an automorphism defined via ϕ(αi) = αi + Di. Since (DiDj) y f = 0 by

degree reasons, the explicit formula in Proposition 3.15 takes the form

ϕ∨(f) = f +
∑

xi · (Di y f) = f − f2 − f1 = f3 + f0.

The missing term f0 is a constant, so that we may pick an order three operator σ ∈ Ŝ with
σ yϕ∨(f) = −f0. Then (1 + σ) y (ϕ∨(f)) = f3, so by Proposition 3.32 we have Apolar (f) '
Apolar (f3) as claimed. By taking associated graded algebras, we obtain

gr Apolar (f) ' gr Apolar (f3) ' Apolar (f3) ' Apolar (f) ,

so in fact grA ' A, a rather rare property for a local algebra. The assumption char k 6= 2 is
necessary, as we later see in Example 3.74.
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3.4 Hilbert functions of Gorenstein algebras in terms of inverse
systems

In this section we translate the numerical data of A = Apolar (f): its Hilbert function and
symmetric decomposition, into properties of Af = Ŝf . This is straightforward; we just use the
isomorphism A→ Af of A-modules (or Ŝ-modules). We include this section mainly to explicitly
state the results we later use implicitly in examples. We follow [Jel13] and [BJMR17].

Let d be the socle degree of A. It is equal to the degree of f . Recall that Ŝ = k[[α1, . . . , αn]].
Since the linear forms αi act as derivatives on the divided power polynomial ring P , we call
elements of Ŝf the partials of f and we denote

Diff(f) := Ŝf.

The filtrations on A, the Lövy filtration and the usual m-adic filtration, translate respectively to
filtration by degree and filtration by order. For a nonzero element g ∈ Diff(f) the order of g is
the maximal i such that g ∈ mif . We define the following subspaces of P :

Diff(f)i = Diff(f) ∩ P6i, Diff(f)ai = (md−a−i
S f) ∩ P6i. (3.36)

From Lemma 2.32 in follows that HA(i) = dimk Diff(f)i−dimk Diff(f)i−1 is the dimension of the
space of partials of degree exactly i. Moreover Diff(f)ai is the image of md−a−i ∩ (0 : mi+1) ⊂ A
in Diff(f). Therefore, the space Diff(f)ai /(Diff(f)ai−1 + Diff(f)a+1

i ) is the image of

md−a−i ∩ (0 : mi+1)

md−a−i ∩ (0 : mi) + md−a−i+1 ∩ (0 : mi+1)
= Q(a)d−a−i = Q(a)∨i ; (3.37)

the equalities follow from (2.34) and Lemma 2.35. Hence, we have

∆a (i) = dimk
Diff(f)ai

Diff(f)ai−1 + Diff(f)a+1
i

, (3.38)

this may be thought of as the space of partials of f which have degree i and order a. The spaces
corresponding to ∆a (1) are of special importance. We define Lin(f) := Diff(f) ∩ P1, and its
linear subspaces Lin(f)a = {l ∈ P1 | l ∈ md−a−1f} = Diff(f)a1 ∩ P1. We easily see that for each
a ≥ 0, we have an isomorphism Lin(f)a ' Diff(f)a1/Diff(f)0 and Diff(f)0 = k, so

∆a (1) = dimk Lin(f)a − dimk Lin(f)a−1.

We obtain a canonical flag of subspaces of P1:

Lin(f)0 ⊆ Lin(f)1 ⊆ · · · ⊆ Lin(f)d−2 = Lin(f) ⊆ P1. (3.39)

Example 3.40. Let f = x
[5]
1 + x

[4]
2 + x

[3]
3 . Its space of partials is generated by the elements in

the following table, where the generators of each Q(a)∨ are arranged by degree; next to it, we
have the symmetric decomposition of its Hilbert function:
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Generators of the space of partials Hilbert function decomposition

degree 0 1 2 3 4 5

Q(0)∨ 1 x1 x
[2]
1 x

[3]
1 x

[4]
1 f

Q(1)∨ x2 x
[2]
2 x

[3]
2

Q(2)∨ x3 x
[2]
3

Q(3)∨

degree 0 1 2 3 4 5

∆0 = 1 1 1 1 1 1

∆1 = 0 1 1 1 0

∆2 = 0 1 1 0

∆3 = 0 0 0

HA = 1 3 3 2 1 1

We have Lin(f)0 = 〈x1〉 ⊂ Lin(f)1 = 〈x1, x2〉 ⊂ Lin(f)2 = Lin(f)3 = 〈x1, x2, x3〉.

Example 3.41. Let f = x
[5]
1 + x1x

[3]
2 + x

[2]
3 . Its space of partials is generated by the elements

in the following table, where the generators of each Q(a)∨ are arranged by degree; next to it, we
have the symmetric decomposition of its Hilbert function:

Generators of the space of partials Hilbert function decomposition

degree 0 1 2 3 4 5

Q(0)∨ 1 x1 x
[2]
1 x

[3]
1 x

[4]
1 + x

[3]
2 f

Q(1)∨ x2 x1x2, x
[2]
2 x1x

[2]
2

Q(2)∨

Q(3)∨ x3

degree 0 1 2 3 4 5

∆0 = 1 1 1 1 1 1

∆1 = 0 1 2 1 0

∆2 = 0 0 0 0

∆3 = 0 1 0

HA = 1 3 3 2 1 1

We have Lin(f)0 = 〈x1〉 ⊂ Lin(f)1 = Lin(f)2 = 〈x1, x2〉 ⊂ Lin(f)3 = 〈x1, x2, x3〉.

Example 3.42. Let f = x
[3]
1 x2 + x

[3]
3 + x

[2]
4 . Its space of partials is generated by the elements

in the following table, where the generators of each Q(a)∨ are arranged by degree; next to it, we
have the symmetric decomposition of its Hilbert function:

Generators of the space of partials Hilbert function decomposition

degree 0 1 2 3 4

Q(0)∨ 1 x1, x2 x
[2]
1 , x1x2 x

[3]
1 , x[2]

1 x2 f

Q(1)∨ x3 x
[2]
3

Q(2)∨ x4

degree 0 1 2 3 4

∆0 = 1 2 2 2 1

∆1 = 0 1 1 0

∆2 = 0 1 0

HA = 1 4 3 2 1

For instance x[2]
3 is a partial of order 1, since it is obtained as α3 y f = x

[2]
3 and cannot be attained

by a higher order element of T , so it is a generator of Q(1)∨2 . Here we have Lin(f)0 = 〈x1, x2〉,
Lin(f)1 = 〈x1, x2, x3〉, and Lin(f)2 = 〈x1, x2, x3, x4〉.

From the above examples, we might notice the natural fact that the lower degree terms of f
do not appear in Q(a) for small a. The following Proposition 3.43 makes this observation precise.
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Proposition 3.43. Suppose that polynomials f, g ∈ P of degree d are such that deg(f−g) 6 d−δ.
Then ∆Apolar(f),a = ∆Apolar(g),a for all a < δ.

Proof. By (3.37) the spaces Q(a)Apolar(f) and Q(a)Apolar(g) are spanned by partials of degree i
and order d− a− i of f and g, respectively. But deg σ(f − g) 6 a+ i− δ < i for all σ ∈ md−a−i

S ,
so that leading forms of elements of degree i are equal for f and g, see [Iar94, Lemma 1.10] or
[Jel13, Lemma 4.34] for details.

Corollary 3.44. Let f ∈ P and A = Apolar (f). The vector ∆0 is equal to the Hilbert function
of Apolar (fd). If the Hilbert function HA satisfies HA(d− i) = HA(i) for all i, then HA = ∆0.

Proof. Since deg(f − fd) < d, we have ∆0 = ∆Apolar(fd),0 by Proposition 3.43. We also have
HA =

∑d
a=0 ∆a by Lemma 2.39. Each ∆a is symmetric around d − a, so if any ∆a with a 6= 0

is non-zero, then the center of gravity of HA is smaller than d/2, so HA cannot be symmetric
around d/2 as assumed.

Example 3.45. Proposition 3.43 might give an impression that if f with d = deg f has no
homogeneous parts of degrees less that d − i, then ∆a = 0 for all a > i. This is false for
f = x

[4]
1 +x

[2]
1 x2. Indeed, Diff(f) =

〈
f, x

[3]
1 + x1x2, x

[2]
1 , x

[2]
1 + x2, x1, 1

〉
, so that HApolar(f) =

(1, 2, 1, 1, 1) with the unique symmetric decomposition ∆0 = (1, 1, 1, 1, 1) and ∆2 = (0, 1, 0).

Conclusion of Corollary 3.44 may be lifted from the level of Hilbert functions to algebras, as
we present below in Corollary 3.46. Recall the ideal C(1) ⊂ grA defined in (2.33).

Corollary 3.46. Let A = Apolar (f) for f ∈ P of degree d. Then grA/C(1) ' Apolar (fd). If
HA(d− i) = HA(i) for all i, then grA ' Apolar (fd) is also a Gorenstein algebra.

Proof. Let I = Ann(f). The algebra grA is a quotient of Ŝ by the ideal generated by all lowest
degree forms of elements of I. If i ∈ I and i′ is its lower degree form, then the top degree form of
i y f is i′ y fd. Since i y f = 0 also i′ y fd = 0. This proves that Apolar (fd) is a graded quotient
of grA and that it makes sense to speak about the action of an element of grA on fd. Consider
any nonzero element a ∈ C(1)i. Then a y fd is of degree d − i. By definition a ∈ (0 : md−i), so
deg(a y f) < d− i and so deg(a y fd) < d− i. This implies that a y fd = 0. Thus Apolar (fd) is a
quotient of grA/C(1). The Hilbert functions of these algebras are equal to ∆0 by Corollary 3.44
and Equation (2.34), so grA/C(1) ' Apolar (fd). If additionally HA(d − i) = HA(i) for all i,
then HA = ∆0 by Corollary 3.44 again, so C(1) = 0 and grA ' Apolar (fd).

3.5 Standard forms of dual generators

Let (A,m,k) be a finite local Gorenstein algebra. We have seen that A may be presented as a
quotient of Ŝ if and only if HA(1) 6 dim Ŝ, see Lemma 2.1. This can be rephrased as saying that
if A ' Apolar (f) then necessarily f ∈ P depends on at least HA(1) variables. In this section
we refine this statement by considering each homogeneous piece of such f separately and finding
minimal number of variables it must depend on. The existence of standard forms was proven by
Iarrobino in [Iar94, Theorem 5.3AB].

Recall from (3.39) the filtration of P1 by Lin(f)a = P1 ∩ md−a−1
S f . Let na =

∑a
i=0 ∆i (1) =

dim Lin(f)a and fix a basis of linear forms x1, . . . , xn in P1 that agrees with the filtration by
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Lin(f)i:

Lin(f)0 = 〈x1, . . . , xn0〉 ⊆ Lin(f)1 = 〈x1, . . . , xn1〉 ⊆ · · ·
· · · ⊆ Lin(f)d−2 = 〈x1, . . . , xnd−2

〉 ⊆ P1 = 〈x1, . . . , xn〉. (3.47)

None of the considerations below depend on this choice; it is done only to improve presentation.
The foundational property of standard forms is the following proposition.

Proposition 3.48. Fix f ∈ P and i > 0 and let f>d−i = fd−i + . . .+ fd−1 + fd. Then the linear
forms from Lin(f)i are partials of f>d−i.

Proof. Pick ` ∈ Lin(f)i. By construction, ` = σ y f for an operator σ ∈ md−i−1
S . For such σ we

have deg(σ y (f − f>d−i)) 6 0, so that ` = σ y f = σ y f>d−i mod P0; the form ` is a partial of
f>d−i modulo a constant form. But constant forms are also partials of f>d−i, so ` ∈ Ŝ y f>d−i.

Definition 3.49. Let f ∈ P be a polynomial with homogeneous decomposition f = fd + · · ·+ f0.
Let ∆ be the symmetric decomposition of the Hilbert function of Ŝ/Ann(f). We say that f ∈ S
is in standard form if

fd−i ∈ kdp
[
Lin(f)i

]
for all i,

This is equivalent to fd−i ∈ kdp [x1, . . . , xni ], where x1, . . . , xn is any choice of basis for
P1 as in (3.47). The standard form is a way to write f using as few variables as possible,
as we explain now. For i and f>d−i = fd−i + fd−i+1 + . . . + fd we have Lin(f)i ⊂ Ŝf>d−i,
by Proposition 3.48. The polynomial f is in standard form, if and only if for each i we have
conversely f>d−i ∈ kdp

[
Lin(f)i

]
, no additional variables appear.

Now we prove that in the orbit Aut(Ŝ)f ⊂ Gf of every f ∈ P there is an element in the
standard form.

Theorem 3.50 (Existence of standard forms). Let f ∈ P . Then there is an automorphism
ϕ : Ŝ → Ŝ such that ϕ∨(f) is in a standard form.

Proof. Choose a basis of P1 as in (3.47) and the dual basis α1, . . . , αn. Consider A = Apolar (f)

and the sequence of ideals as defined in (2.34):

m

m2
= C(0)1 =

m ∩ (0 : md) + m2

m2
⊇ C(1)1 =

m ∩ (0 : md−1) + m2

m2
⊇ · · · ⊇ C(d)1 ⊇ 0. (3.51)

We choose lifts of k-vector spaces C(a) to S. This gives a flag of subspaces

〈z1, . . . , zn〉 ⊃ 〈zn−n0+1, . . . , zn〉 ⊃ 〈zn−n1+1, . . . , zn〉 ⊃ . . . ⊃ {0} (3.52)

spanned by elements zi of order one. Take an automorphism ϕ : Ŝ → Ŝ sending αi to zi. We
claim that ϕ∨(f) is in the standard form. Indeed, for every i and a such that i > n−na we have
zi in the lift of C(a) so〈

md−aαi, ϕ
∨(f)

〉
=
〈
md−azi, f

〉
=
〈

1,md−azi y f
〉

= 0.

This implies that deg(αi yϕ∨(f)) < d−a. Let ϕ∨(f) = g and g = gd+ . . .+g0 be decomposition
into homogeneous summands. By induction we conclude that gd−i ∈ kdp[x1, . . . , xni ] for all
i = 0, 1 . . . , d.
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Standard form of a given polynomial is by no means unique: if f ∈ P is a polynomial in
a standard form and ϕ is linear (see Definition 3.19), then ϕ∨(f) is also in the standard form.
Note also that zi in the proof of Theorem 3.50 may be chosen such that zi ≡ αi mod m2

S , so
that ϕ(α)− α ∈ m2

S for all α ∈ mS .
The following example illustrates how to obtain the standard form of a given polynomial.

Example 3.53. Take f = x
[4]
1 + x

[2]
1 x2 from Example 3.45. The nonzero summands of the

symmetric decomposition of HApolar(f) are ∆0 = (1, 1, 1, 1, 1) and ∆2 = (0, 1, 0), so we have
Lin(f)0 = Lin(f)1 = 〈x1〉 and Lin(f)2 = 〈x1, x2〉. Since f3 = x

[2]
1 x2 6∈ kdp[x1] = kdp[Lin(f)1],

the polynomial f is not in a standard form. The flag from (3.52) for f is equal to

C(0) = 〈α1, α2〉 ⊃ C(1) = C(2) =
〈
α2 − α2

1

〉
⊃ C(3) = C(4) = {0}.

Take an automorphism ϕ : Ŝ → Ŝ defined by ϕ(α1) = α1 and ϕ(α2) = α2 − α2
1. By Proposi-

tion 3.15, we have

ϕ∨(f) = f + x2 · (−α2
1 y f) + x

[2]
2 · (α4

1 y f) = f −
(
x

[2]
1 x2 + 2x

[2]
2

)
+ x

[2]
2 = x

[4]
1 − x

[2]
2 ,

which is in a standard form.

3.6 Simplifying dual generators

While the standard form of f ∈ P is highly useful, it is not unique. In this section we investigate
refinements of the standard form, using the Lie theory of G. Our aim is to remove or simplify
the lower degree homogeneous components of f by replacing it with another element of G ·f ;
ideally, we would like to show that f ∈ Gfd, as in Example 3.35; of course this is not always
true. All results of this subsection first appeared in [Jel17].

Let aut denote the space of derivations of Ŝ preserving mS , i.e. derivations such that D(mS) ⊆
mS . Let Ŝ ⊂ Homk

(
Ŝ, Ŝ

)
be given by sending σ ∈ Ŝ to multiplication by σ. Let

g := aut + Ŝ,

where the sum is taken in the space of linear maps from Ŝ to Ŝ. Then g acts on P as de-
fined in Equation (3.3). The space g is actually the tangent space to the group scheme G, see
Serre [Ser06b, Theorem 5, p. 4 and discussion below]. Similarly, gf is naturally contained in the
tangent space of the orbit G·f for every f ∈ P . There is a subtlety here, though. The space gf

is the image of the tangent space g under G→ G·f . If k is of characteristic zero then this map,
being a map of homogeneous spaces, is smooth, so gf is the tangent space to G ·f . However
the map need not be smooth in positive characteristic, so in principle it may happen that gf is
strictly contained in the tangent space of G ·f . Presently we do not have an example of such
behavior.

Sometimes it is more convenient to work with equations in Ŝ than with subspaces of P .
Recall from (3.4) that P∨ = Ŝ. For each subspace W ⊂ P we may consider the orthogonal space

W⊥ = {σ ∈ Ŝ | ∀f∈W f(σ) = 0} ⊂ Ŝ.

Below we describe the linear space (gf)⊥. For σ ∈ Ŝ by σ(i) we denote the i-th partial derivative
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of σ. We use the convention that deg(0) < 0.

Proposition 3.54 (tangent space description). Let f ∈ P . Then

aut · f = 〈xi · (δ y f) | δ ∈ mS , i = 1, . . . , n〉 , gf = Ŝf +
n∑
i=1

mS(xi · f).

Moreover
(gf)⊥ =

{
σ ∈ Ŝ | σ y f = 0, ∀i deg(σ(i) y f) 6 0

}
.

Suppose further that f ∈ P is homogeneous of degree d. Then (gf)⊥ is spanned by homogeneous
operators and

(gf)⊥6d =
{
σ ∈ Ŝ | σ y f = 0, ∀i σ(i) y f = 0

}
.

Proof. Let D ∈ aut and Di := D(αi). By Proposition 3.17 we have D∨(f) =
∑n

i=1 xi · (Di y f).
For any δ ∈ mS we may choose D so that Di = δ and all other Dj are zero. This proves the
description of aut · f . Now gf = Ŝf + 〈xi · (δ y f) | δ ∈ mS , i = 1, . . . , n〉. By Lemma 3.8 we
have xi(δ y f) ≡ δ y (xif) mod Ŝf . Thus

gf = Ŝf + 〈δ y (xi · f) | δ ∈ mS , i = 1, . . . , n〉 = Ŝf +
∑

mS(xif).

Now let σ ∈ Ŝ be an operator such that 〈σ, gf〉 = 0. This is equivalent to σ y (gf) = 0, which
simplifies to σ y f = 0 and (σmS) y (xif) = 0 for all i. By Lemma 3.8, we have σ y (xif) =

xi(σ y f) + σ(i) y f = σ(i) y f , thus we get equivalent conditions:

σ y f = 0 and mS y (σ(i) y f) = 0,

and the claim follows. Finally, if f is homogeneous of degree d and σ ∈ Ŝ is homogeneous
of degree at most d then σ(i) y f has no constant term and so deg(σ(i) y f) 6 0 implies that
σ(i) y f = 0.

Remark 3.55. Let f ∈ P be homogeneous of degree d. Let j 6 d and Kj := (gf)⊥j . Propo-
sition 3.54 gives a connection of Kj with the conormal sequence. Namely, let I = Ann(f) and
A = Apolar (f) = Ŝ/I. We have (I2)j ⊆ Kj and the quotient space fits into the conormal
sequence of Ŝ → A, making that sequence exact:

0→
(
K/I2

)
j
→
(
I/I2

)
j
→
(

ΩŜ/k ⊗A
)
j
→
(
ΩA/k

)
j
→ 0. (3.56)

This is expected from the point of view of deformation theory. Recall that by [Har10, Theo-
rem 5.1] the deformations of A over k[ε]/ε2 are in one-to-one correspondence with elements of a
k-linear space T 1(A/k, A). On the other hand, this space fits [Har10, Proposition 3.10] into the
sequence

0→ HomA

(
ΩA/k, A

)
→ HomA

(
ΩS/k ⊗A,A

)
→ HomA

(
I/I2, A

)
→ T 1(A/k, A)→ 0.

Since A is Gorenstein, HomA (−, A) is exact and we have T 1(A/k, A)j ' Hom(K/I2, A)j for all
j > 0. The restriction j > 0 appears because Hom(K/I2, A) is the tangent space to deformations
of A inside Ŝ, whereas T 1(A/k, A) parameterizes all deformations.
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Below we use terminology concerning Lie groups. From the onset we note that G is not a Lie
group, because it is not even a finitely dimensional algebraic group when we take it as a subgroup
of linear transformations of Ŝ. However, G is a projective limit of algebraic groups. Namely, for
every r we have a map Aut(Ŝ)→ Aut(Ŝ/mr

S) and the image of G under this map is an algebraic
group Gr. Moreover G = proj limr Gr. In all considerations involving orbits of f ∈ P such that
deg Apolar (f) 6 r we see that deg f < r, the ideal mr

S acts trivially on f . Therefore we can
replace G by Gr.

Now we introduce a subgroup G+ of G, which is an analogue of the unipotent radical of an
algebraic group. In particular:

1. G/G+ is a finitely dimensional reductive algebraic group,

2. the image G+
r ⊂ Gr of G+ is a unipotent subgroup and G+ = proj limr G+

r .

By Kostant-Rosenlicht theorem [Ros61, Theorem 2, p. 221], over an algebraically closed field k
every G+-orbit is Zariski closed in P . The subgroup G+ is also useful in applications, because it
preserves the top degree form, which allows induction on the degree.

Each automorphism of Ŝ induces a linear map on the cotangent space: we have a restriction
Aut(Ŝ) → GL(mS/m

2
S). Let us denote by Aut+(Ŝ) the group of automorphisms which act as

identity on the tangent space: Aut+(Ŝ) =
{
ϕ ∈ Ŝ | ∀i ϕ(αi)− αi ∈ m2

S

}
. We have the following

sequence of groups:
1→ Aut+(Ŝ)→ Aut(Ŝ)→ GL(mS/m

2
S)→ 1. (3.57)

We define
G+ = Aut+(Ŝ) n (1 + mS) ⊆ G.

Note that we have the following exact sequence:

1→ G+ → G→ GL(mS/m
2
S)× k∗ → 1. (3.58)

Correspondingly, let aut denote the space of derivations preserving mS , i.e. derivations such
that D(mS) ⊆ mS . Let aut+ denote the space of derivations such that D(mS) ⊆ m2

S . Denoting
by gl

(
mS/m

2
S

)
the space of linear endomorphisms of mS/m

2
S , we have we following sequence of

linear spaces:
0→ aut+ → aut→ gl

(
mS/m

2
S

)
→ 0. (3.59)

We define
g+ = aut+ + mS .

Following the proof of Proposition 3.54 we get the following proposition.

Proposition 3.60. Let f ∈ P . Then g+f = mSf +
∑

m2
S(xif) so that(

g+f
)⊥

=
{
σ ∈ Ŝ | deg(σ y f) 6 0, ∀i deg(σ(i) y f) 6 1

}
.

If f is homogeneous of degree d then g+f is spanned by homogeneous polynomials and(
g+f

)⊥
<d

=
{
σ ∈ Ŝ | σ y f = 0, ∀i σ(i) y f = 0

}
= (gf)⊥<d .

We end this section by illustrating above theory with an example. In Example 3.35 we
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presented a proof of [ER12, Theorem 3.3]. Below we give a different, more conceptual proof
under additional restrictions on k.

Example 3.61 (compressed cubics, using Lie theoretic ideas). Assume that k be algebraically
closed of characteristic different than 2. Let (A,m,k) be a local Gorenstein k-algebra such
that HA = (1, n, n, 1) for some n. By Macaulay’s theorem 3.26 there exists a degree three
polynomial f ∈ P = kdp[x1, . . . , xn] such that A = Ŝ/Ann(f). Let f3 be its leading form, then
Apolar (f3) ' grA by Corollary 3.46 and so HApolar(f3) = (1, n, n, 1).

We claim that there is an element ϕ of G such that ϕ∨(f3) = f . This proves that Apolar (f) '
Apolar (f3) = gr Apolar (f). We say that the apolar algebra of f is canonically graded.

In fact, we claim that already G+ ·f3 is the whole space:

G+ ·f3 = f3 + P62. (3.62)

From the explicit formula in Proposition 3.15 we see that G+ ·f3 ⊆ f3 + P62. It is a Zariski
closed subset by the Kostant-Rosenlicht theorem. To prove equality (3.62) it enough to check
that g+f3 = P62. Let σ ∈ (g+f3)

⊥
62 be non-zero. Since (g+f3)

⊥ is spanned by homogeneous
elements, we take σ homogeneous. By Proposition 3.60 we get that σ y f3 = 0 and σ(i) y f3 = 0

for all i. Since char k 6= 2, there exists i such that σ(i) 6= 0. Either σ has degree one or σ(i) has
degree one, so there is a nonzero degree one operator annihilating f3. But this contradicts the
fact that HApolar(f3)(1) = n = HŜ(1). Therefore (g+f3)

⊥
62 = 0 and the claim follows.

The assumption char k 6= 2 is necessary, as Example 3.74 shows.

3.7 Examples I — compressed algebras

In this section we gather some corollaries of the machinery from Section 3.6 and present the
theory of compressed algebras as in [Jel17]. In particular, we prove that certain local algebras
are isomorphic to their associated graded algebras.

Assumption 3.63. Throughout Section 3.7 we assume that k = k is algebraically closed and, if
char k is positive, then it is greater that the degrees of all considered polynomials.

We begin we a closer comparison between the orbits of G+ and g+. For every f ∈ P let
tdf (f) denote the top degree form of f , so that tdf

(
x

[3]
1 + x

[2]
2 x3 + x

[2]
4

)
= x

[3]
1 + x

[2]
2 x3.

Proposition 3.64. Let f ∈ P . Suppose that char k > d = deg(f). Then the top degree form of
every element of G+ ·f is equal to the top degree form of f . Moreover,{

tdf (g − f) | g ∈ G+ ·f
}

=
{

tdf (h) | h ∈ g+f
}
. (3.65)

If f is homogeneous, then both sides of (3.65) are equal to the set of homogeneous elements of
g+f .

Proof. Consider the Ŝ-action on P6d. This action descents to an Ŝ/md+1
S action. Further in

the proof we implicitly replace Ŝ by Ŝ/md+1
S , thus also replacing Aut(Ŝ) and G by appropriate

truncations. Let ϕ ∈ G+. Since (id−ϕ)
(
mi
S

)
⊆ mi+1

S for all i, we have (id−ϕ)d+1 = 0. By our
assumption on the characteristic of k, the element D := log(ϕ) is well-defined and ϕ = exp(D).
We get an injective map exp : g+ → G+ with left inverse log. Since exp is algebraic we see
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by dimension count that its image is open in G+. Since log is Zariski-continuous, we get that
log(G+) ⊆ g+, then exp : g+ → G+ is an isomorphism.

Therefore

ϕ∨(f) = f +
d∑
i=1

(D∨)i (f)

i!
= f +D∨(f) +

(
d−1∑
i=1

(D∨)i

(i+ 1)!

)
D∨(f).

By Remark 3.18 the derivation D ∈ g+ lowers the degree, we see that tdf (ϕ∨f) = tdf (f) and
tdf (ϕ∨f − f) = tdf (D∨(f)). This proves (3.65). Finally, if f is homogeneous then g+f is equal
to the 〈tdf (h) | h ∈ g+f〉 by Proposition 3.60, and the last claim follows.

For an elementary proof, at least for the subgroup Aut+(Ŝ), see [Mat87, Proposition 1.2].

The following almost tautological Corollary 3.66 enables one to prove that a given apolar
algebra is canonically graded inductively, by lowering the degree of the remainder.

Corollary 3.66. Let F and f be polynomials. Suppose that the leading form of F − f lies in
g+F . Then there is an element ϕ ∈ G+ such that deg(ϕ∨f − F ) < deg(f − F ).

Proof. Let G be the leading form of f −F and e be its degree. By Proposition 3.64 we may find
ϕ ∈ Aut+(Ŝ) such that tdf (ϕ∨(F )− F ) = −G, so that ϕ∨(F ) ≡ F − G mod P6e−1. By the
same proposition we have deg(ϕ∨(f−F )−(f−F )) < deg(f−F ) = e, so that ϕ∨(f−F ) ≡ f−F
mod P6e−1. Therefore ϕ∨(f)− F = ϕ∨(F ) + ϕ∨(f − F )− F ≡ f −G− F ≡ 0 mod P6e−1, as
claimed.

Example 3.35 is concerned with a degree three polynomial f such that the Hilbert function
of Apolar (f) is maximal i.e. equal to (1, n, n, 1) for n = HŜ(1). Below we generalize the results
obtained in this example to polynomials of arbitrary degree.

Recall that a finite local Gorenstein algebra A of socle degree d is called compressed if

HA(i) = min
(
HŜ(i), HŜ(d− i)

)
= min

((
i+ n− 1

i

)
,

(
d− i+ n− 1

d− i

))
for all i = 0, 1, . . . , d.

Here we introduce a slightly more general notation.

Definition 3.67 (t-compressed). Let A = S/I be a finite local Gorenstein algebra of socle degree
d. Let t > 1. Then A is called t-compressed if the following conditions are satisfied:

1. HA(i) = HŜ(i) =
(
i+n−1

i

)
for all 0 6 i 6 t,

2. HA(d− 1) = HŜ(1).

Example 3.68. Let n = 2. Then HA = (1, 2, 2, 1, 1) is not t-compressed, for any t. The
function HA = (1, 2, 3, 2, 2, 2, 1) is 2-compressed. For any sequence ∗ the function (1, 2, ∗, 2, 1) is
1-compressed.

Note that it is always true that HA(d − 1) 6 HA(1) 6 HŜ(1), thus both conditions above
assert that the Hilbert function is maximal possible. Therefore they are open in P6d.

Remark 3.69. The maximal value of t, for which t-compressed algebras exists, is t = bd/2c.
Every compressed algebra is t-compressed for t = bd/2c but not vice versa. If A is graded, then
HA(1) = HA(d− 1), so the condition HA(d− 1) = HŜ(1) is satisfied automatically.
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The following technical Remark 3.70 will be useful later. Up to some extent, it explains the
importance of the second condition in the definition of t-compressed algebras.

Remark 3.70. Let A = Apolar (f) be a t-compressed algebra with maximal ideal mA. We have
dimP61 = HA(d− 1) +HA(d) = dimmd−1

A /md
A + dimmd

A = dimmd−1
A . Moreover md−1

A ' md−1
S f

as linear spaces and md−1
S f ⊆ P61. Thus

md−1
S f = P61.

The definition of t-compressed algebras explains itself in the following Proposition 3.71.

Proposition 3.71. Let f ∈ P be a polynomial of degree d > 3 and A be its apolar algebra.
Suppose that A is t-compressed. Then the G+-orbit of f contains f + P6t+1. In particular
f>t+2 ∈ G+ ·f , so that Apolar (f) ' Apolar (f>t+2).

Proof. First we show that P6t+1 ⊆ g+f , i.e. that no non-zero operator of order at most t+ 1 lies
in (g+f)

⊥. Pick such an operator. By Proposition 3.60 it is not constant. Let σ′ be any of its
non-zero partial derivatives. Proposition 3.60 asserts that deg(σ′ y f) 6 1. Let ` := σ′ y f . By
Remark 3.70 every linear polynomial is contained in md−1

S f . Thus we may choose a δ ∈ md−1
S

such that δ y f = `. Then (σ′− δ) y f = 0. Since d > 3, we have d− 1 > bd/2c > t, so that σ− δ
is an operator of order at most t annihilating f . This contradicts the fact that HA(i) = HŜ(i)

for all i 6 t. Therefore P6t+1 ⊆ g+f .
Second, pick a polynomial g ∈ f + P6t+1. We prove that g ∈ G+ · f by induction on

deg(g− f). The top degree form of g− f lies in g+f . Using Corollary 3.66 we find ϕ ∈ G+ such
that deg(ϕ∨(g)− f) < deg(g − f).

For completeness, we state the following consequence of the previous result.

Corollary 3.72. Let f ∈ P be a polynomial of degree d > 3 and A be its apolar algebra. Suppose
that A is compressed. Then A ' Apolar

(
f>bd/2c+2

)
.

Proof. The algebra A is bd/2c-compressed and the claim follows from Proposition 3.71.

As a corollary we reobtain the result of Elias and Rossi, see [ER15, Theorem 3.1].

Corollary 3.73. Suppose that A is a finite compressed Gorenstein local k-algebra of socle degree
d 6 4. Then A is canonically graded i.e. isomorphic to its associated graded algebra grA.

Proof. The case d 6 2 is easy and left to the reader. We assume d > 3, so that 3 6 d 6 4.
Fix n = HA(1) and choose f ∈ P = kdp[x1, . . . , xn] such that A ' Apolar (f). Let fd be the

top degree part of f . Since bd/2c+ 2 = d, Corollary 3.72 implies that fd ∈ G+·f . Therefore the
apolar algebras of f and fd are isomorphic. The algebra Apolar (fd) is a quotient of gr Apolar (f).
Since dimk gr Apolar (f) = dimk Apolar (f) = dimk Apolar (fd) it follows that

Apolar (f) ' Apolar (fd) ' gr Apolar (f) .

The above Corollary 3.73 holds under the assumptions that k is algebraically closed and of
characteristic not equal to 2 or 3. The assumption that k is algebraically closed is unnecessary
as proven for cubics in Example 3.35, the cases of quartics is similar.

The assumption on the characteristic is necessary.
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Example 3.74 (compressed cubics in characteristic two). Let k be a field of characteristic two.
Let f3 ∈ P3 be a cubic form such that HApolar(f3) = (1, n, n, 1) and α2

1 y f3 = 0. Then there is
a degree three polynomial f with leading form f3, whose apolar algebra is compressed but not
canonically graded.

Indeed, take σ = α2
1. Then all derivatives of σ are zero because the characteristic is two. By

Proposition 3.54 the element σ lies in (gf3)⊥. Thus gf3 does not contain P62 and so G·f3 does
not contain f3 + P62. Taking any f ∈ f3 + P62 outside the orbit yields the desired polynomial.
For example, the polynomial f = f3 + x

[2]
i lies outside the orbit.

A similar example shows that over a field of characteristic three there are compressed quartics
which are not canonically graded.

3.8 Examples II — (1, 3, 3, 3, 1)

In this section we present an example ([Jel17]), where we actually explicitly classify up to iso-
morphism finite Gorenstein algebras with Hilbert function (1, 3, 3, 3, 1).

Example 3.75 (Hilbert function (1, 3, 3, 3, 1)). Assume char k 6= 2, 3 and k = k. Consider a
polynomial f ∈ P = kdp[x, y, z] whose Hilbert function is (1, 3, 3, 3, 1). Let F denote the leading
form of f . By [LO13] or [CJN15, Proposition 4.9] the form F is linearly equivalent to one of the
following:

F1 = x[4] + y[4] + z[4], F2 = x[3]y + z[4], F3 = x[3]y + x[2]z[2].

Since Apolar (f) is 1-compressed, we have Apolar (f) ' Apolar (f>3); we may assume that the
quadratic part is zero. In fact by the explicit description of top degree form in Proposition 3.64
we see that

G+ ·f = f + g+F + P62.

Recall that G/G+ is the product of the group of linear transformations and k∗ acting by multi-
plication.

The case F1. Since Ann(F )63 = (αβ, αγ, βγ), we see that (g+F )
⊥
63 is spanned by αβγ. There-

fore we may assume f = F1+c·xyz for some c ∈ k. By multiplying variables by suitable constants
and then multiplying whole f by a constant, we may assume c = 0 or c = 1. As before, we get
two non-isomorphic algebras. Summarizing, we got two isomorphism types:

f1,0 = x[4] + y[4] + z[4], f1,1 = x[4] + y[4] + z[4] + xyz.

Note that f1,0 is canonically graded, whereas f1,1 is a complete intersection.

The case F2. We have Ann(F2)2 = (αγ, β2, βγ), so that (g+F2)
⊥
63 =

〈
β3, β2γ

〉
. Thus we may

assume f = F2 + c1y
[3] + c2y

[2]z. As before, multiplying x, y and z by suitable constants we may
assume c1, c2 ∈ {0, 1}. We get four isomorphism types:

f2,00 = x[3]y+z[4], f2,10 = x[3]y+z[4]+y[3], f2,01 = x[3]y+z[4]+y[2]z, f2,11 = x[3]y+z[4]+y[3]+y[2]z.

To prove that the apolar algebras are pairwise non-isomorphic one shows that the only linear
maps preserving F2 are diagonal and argues as described in the case of F3 below.
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The case F3. We have Ann(F3)2 = (β2, βγ, αβ − γ2) and(
g+F3

)⊥
63

=
〈
β2γ, β3, αβ2 − 2βγ2

〉
.

We choose
〈
y[3], y[2]z, yz[2]

〉
as the complement of g+F3 in P3. Therefore the apolar algebra of

each f with top degree form F3 is isomorphic to the apolar algebra of

f3,∗ = x[3]y + x[2]z[2] + c1y
[3] + c2y

[2]z + c3yz
[2]

and two distinct such polynomials f3,∗1 and f3,∗2 lie in different G+-orbits. We identify the set of
G+-orbits with P3/g

+F3 '
〈
y[3], y[2]z, yz[2]

〉
. We wish to determine isomorphism classes, that

is, check which such f3,∗ lie in the same G-orbit. A little care should be taken here, since G-orbits
will be bigger than in the previous cases.

Recall that G/G+ ' GL(mS/m
2
S)× k∗ preserves the degree. Therefore, it is enough to look

at the operators stabilizing F3. These are c · g, where c ∈ k∗ is a constant and g ∈ GL(mS/m
2
S)

stabilizes 〈F3〉, i.e. g∨(〈F3〉) = 〈F3〉. Consider such a g. It is a linear automorphism of P and
maps Ann(F ) into itself. Since β(λ1β+λ2γ) for λi ∈ k are the only reducible quadrics in Ann(F3)

we see that g stabilizes 〈β, γ〉, so that g∨(x) = λx for a non-zero λ. Now it is straightforward
to check directly that the group of linear maps stabilizing 〈F3〉 is generated by the following
elements

1. homotheties: for a fixed λ ∈ k and for all linear forms ` ∈ P we have g∨(`) = λ`.

2. for every a, b ∈ k with b 6= 0, the map ta,b given by

ta,b(x) = x, ta,b(y) = −3

2
a2x+ b2y − 3abz, ta,b(z) = ax+ bz.

which maps F3 to b2F3.

The action of ta,b on P3/g
+F3 in the basis (y[3], y[2]z, yz[2]) is given by the matrix (its entries

slightly differ from [Jel17, p. 23] due to a different choice of basis): b6 0 0

−3ab5 b5 0
39
4 a

2b4 −13ab4 b4


Suppose that f3,∗ = x[3]y+x[2]z[2] + c1y

[3] + c2y
[2]z+ c3yz

[2] has c1 6= 0. The above matrix shows
that we may choose a and b and a homothety h so that

(h ◦ ta,b)(f3,∗) = c(x[3]y + x[2]z[2] + y[3] + c3yz
[2]), where c 6= 0, c3 ∈ {0, 1}.

Suppose c1 = 0. If c2 6= 0 then we may choose a, b and λ so that (h◦ ta,b)(f3,∗) = x[3]y+x[2]z[2] +

y[2]z. Finally, if c1 = c2 = 0, then we may choose a = 0 and b, λ so that c3 = 0 or c3 = 1. We
get at most five isomorphism types:

f3,100 = x[3]y + x[2]z[2] + y[3], f3,101 = x[3]y + x[2]z[2] + y[3] + yz[2],

f3,010 = x[3]y + x[2]z[2] + y[2]z, f3,001 = x[3]y + x[2]z[2] + yz[2],

f3,000 = x[3]y + x[2]z[2].
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By using the explicit description of the G action on P3/g
+F3 one checks that the apolar algebras

of the above polynomials are pairwise non-isomorphic.

Conclusion: There are 11 isomorphism types of algebras with Hilbert function (1, 3, 3, 3, 1).
We computed the tangent spaces to the corresponding orbits in characteristic zero, using a
computer implementation of the description in Proposition 3.54. The dimensions of the orbits
are as follows:

orbit dimension

G·(x[4] + y[4] + z[4] + xyz) 29

G·(x[4] + y[4] + z[4]) 28

G·
(
x[3]y + z[4] + y[3] + y[2]z

)
28

G·
(
x[3]y + z[4] + y[3]

)
27

G·
(
x[3]y + z[4] + y[2]z

)
27

G·
(
x[3]y + z[4]

)
26

orbit dimension

G·
(
x[3]y + x[2]z[2] + y[3] + yz[2]

)
27

G·
(
x[3]y + x[2]z[2] + y[3]

)
26

G·
(
x[3]y + x[2]z[2] + y[2]z

)
26

G·
(
x[3]y + x[2]z[2] + yz[2]

)
25

G·
(
x[3]y + x[2]z[2]

)
24

The closure of the orbit of f1,1 = x[4] +y[4] +z[4] +xyz is contained in GL3(x[4] +y[4] +z[4])+P63,
which is irreducible of dimension 29. Since the orbit itself has dimension 29 it follows that it
is dense inside. Hence the orbit closure contains GL3(x[4] + y[4] + z[4]) + P63. Moreover, the
set GL3(x[4] + y[4] + z[4]) is dense inside the set σ3 of forms F whose apolar algebra has Hilbert
function (1, 3, 3, 3, 1). Thus the orbit of f1,1 is dense inside the set of polynomials with Hilbert
function (1, 3, 3, 3, 1). Therefore, the latter set is irreducible and of dimension 29.

It would be interesting to see which specializations between different isomorphism types are
possible. There are some obstructions. For example, the GL3-orbit of x[3]y+ x[2]z[2] has smaller
dimension than the GL3-orbit of x[3]y+ z[4]. Thus x[3]y+x[2]z[2] + y[3] + yz[2] does not specialize
to x[3]y + z[4] even though its G-orbit has higher dimension.

3.9 Examples III — preliminaries for Chapter 6

In this subsection we gather several technical results which we later use when discussing ray fami-
lies in Section 6.1. They imply that a given dual generator f can be transformed, using nonlinear
change of coordinates, to an “easier” form, e.g., which some monomials absent. Geometrically,
we change the embedding of Spec Apolar (f) inside Spec Ŝ. These results first appeared, in a
somewhat partial form, in [CJN15] and here are recast using the presentation of [Jel17], given in
Section 3.2.

Lemma 3.76. Fix d and assume char k = 0 or char k > d. Let f ∈ P be a polynomial of degree
d and α1 ∈ mS be such that αd1 y f 6= 0. Then in G·f there is a polynomial g, such that

1. αd1 y g = 1,

2. polynomial g contains no monomials of the form x
[i]
1 with i < d.

3. polynomial g contains no monomials of the form x
[i]
1 xj for j 6= 1 and i arbitrary,

Proof. Acting with GL(mS/m
2
S) on f we may assume αd1 y f = 1 and αd−1

1 αj y f = 0 for all j 6= 1.
We will modify f , so that it satisfies Condition 3. Suppose i is the largest exponent such that
a monomial x[i]

1 xj with j 6= 1 appears in f . We argue by downward induction on i. Considers
all terms of f having form λjx

[i]
1 xj with λj ∈ k. Let ` =

∑
λjxj . Then x

[i]
1 ` = αd−i1 y (`x

[d]
1 )
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is the sum of all terms of αd−i1 y (`f) which have the form x
[i]
1 xj . Also αd−i1 (xjf) ∈ g+f by

Proposition 3.60. Let D ∈ g+ be any element such that αd−i1 (xjf) = Df , then exp(−D)f =

f −Df + . . . ∈ G+·f contains no terms of the form x
[i]
1 xj with j 6= 1. We replace f by exp(−D)f

and continue by induction. Hence, we obtain f satisfying Conditions 1. and 3. An appropriate
partial of f satisfies all three conditions.

Example 3.77. Suppose that a finite local Gorenstein algebra A of socle degree d has Hilbert
function equal to (1, H1, H2, . . . ,Hc, 1, . . . , 1). The standard form of the dual generator of A is

f = x
[d]
1 + κd−1x

[d−1]
1 + · · ·+ κc+2x

[c+2]
1 + g,

where deg g 6 c + 1 and κ• ∈ k. By adding a suitable derivative we may furthermore make all
κi = 0 and assume that αc+1

1 y g = 0. Using Lemma 3.76 we may also assume that g contains
no monomials of the form x

[c]
1 xj with j 6= 1. By adding a suitable derivative of f again, we

may assume that g does not contain the monomial x[c]
1 , so in fact αc1 y g = 0. This gives a dual

generator
f = x

[d]
1 + g,

where deg g 6 c+ 1 and g does not contain monomials divisible by x[c]
1 .

The following is a seemingly easy yet subtle enhancement of the symmetric decomposition.
It was proven in a slightly weaker form in [CN16] and in [CJN15].

Proposition 3.78. Let k = k be a field of char k 6= 2. Let A be finite local Gorenstein algebra
of socle degree d > 2 whose Hilbert function decomposition has ∆d−2 = (0, q, 0). Then A is
isomorphic to the apolar algebra of a polynomial f such that f is in the standard form and the
quadric part f2 of f is a sum of q squares of variables not appearing in f>3.

Proof. Take a dual generator f ∈ P := kdp[x1, . . . , xn] of algebra A in the standard form. We
will twist f to obtain the required form of f2. We may assume that HApolar(f)(1) = n.

If d = 2, then the theorem follows from the fact that the quadric f may be diagonalized.
Assume d > 3. Let e := nd−3 =

∑d−3
a=0 ∆a (1). We have n = nd−2 = e + q, so that f>3 ∈

kdp[x1, . . . , xe] and f2 ∈ kdp[x1, . . . , xn]. Note that f>3 is also in the standard form, so that every
linear form in x1, . . . , xe is a derivative of f>3.

If αn y f ∈ kdp[x1, . . . , xe] then there exists an operator ∂ ∈ m2
S such that (αn − ∂) y f = 0.

This contradicts the fact that f was in the standard form. So we get that αn y f contains
some xr for r > e, i.e. f contains a monomial xrxn. A linear change of variables involving
only xr and xn preserves the standard form and gives α2

n y f 6= 0. Another change asserts that
α2
n y f = 1 and αnαj y f = 0 for j 6= n. Repeating, we obtain f2 = f2,0 + x

[2]
e+1 + . . . + x

[2]
n with

f2,0 ∈ kdp[x1, . . . , xe].
It remains to prove that f − f2,0 ∈ G ·f . By Proposition 3.64 it is enough to prove that

xixj ∈ g+f for all i, j 6 e. Suppose that this is not the case and pick σ ∈ (g+f)
⊥ containing a

monomial αiαj . By Proposition 3.60 we have deg(σ(i) y f) 6 1 and clearly σ(i) is of order one.
Let τ ∈ A be the image of σ(i), then τ ∈ m ∩ (0 : m).

Since f is in the standard form, the images of operators αe+1, . . . , αn in A span m∩(0:m)
m2∩(0:m)

=

Q(d − 2)1. Therefore the image of τ ∈ Q(d − 2)1 is zero, so τ ∈ m2 ∩ (0 : m). This means that
there is an operator τ2 ∈ m2

S such that σ(i) − τ2 annihilates f . But σ(i) − τ2 is of order one; this
is a contradiction with HApolar(f) = n. Hence we conclude that no τ exists, so that xixj ∈ g+f

for all i, j 6 e and hence f − f2,0 = f>3 + x
[2]
e+1 + . . .+ x

[2]
n ∈ G+ ·f .
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Part II

Hilbert schemes

In this part we shift our attention from single algebras to families, specifically to
families of quotients of a polynomial ring (and others rings). We change the language
from algebras to schemes, so we speak about families of finite subschemes of affine
space (and other varieties) over k. We investigate the geometry of the “largest” such
family, which is called the Hilbert scheme of points of an affine space.

Its geometry is given naturally and uniquely, but remains to a large extent un-
known, see the Open Problems in Section 1.5. After the introduction, we review
an abstract framework of smoothings. We compare abstract smoothings, embedded
smoothings and the geometry of the smoothable component of the Hilbert scheme.
We give examples of smoothings (Section 5.5, Section 5.7) and of nonsmoothable
schemes (Section 5.6). We follow [BJ17] and include some folklore or unpublished
results and examples.

The language of schemes, although necessary, is notably technical. A good intro-
duction is, for instance, [EH00]. Much more details are provided in [Har77], [GW10],
[Vak15] or [sta17a]. Most of the notions needed for our purposes are briefly summa-
rized in [BJ17]. Our main interest lies in the local theory; an algebraically minded
reader is free to, for example, replace the central notion of finite flat family (Defini-
tion 4.1) with a flat and finite homomorphism of k-algebras.



Chapter 4

Preliminaries

4.1 Moduli spaces of finite algebras, Hilbert schemes

A finite k-scheme is an affine scheme SpecA for a finite k-algebra A. We do not impose any
conditions on the residue fields of A. We transfer properties of A to SpecA, for example we say
that SpecA is Gorenstein if and only if A is Gorenstein (Definition 2.4).

A morphism π : Z → T is affine if for every affine open subset U = SpecB of T the preimage
π−1(U) is affine: π−1(U) = SpecB′. An affine morphism π : Z → T is finite (resp. flat) if B′

above is a finite B-module (resp. a flat B-module). Note that if π : Z → T is both finite and
flat, then B′ is a locally free B-module (see [Eis95, Exercise 6.2]).

Definition 4.1. A family of finite k-schemes over T is a finite flat morphism Z → T .

Flatness and finiteness of a family Z → T together imply that the sheaf π∗OZ is a vector
bundle on T . If T is connected, this bundle has constant rank r, so that each fiber of π is an
algebra of degree r, we then say that π has degree r. See Example 4.3 for some pathologies
without flatness or finiteness assumptions.

Since a finite algebra is a vector space with multiplication, a family, intuitively, should be a
vector space with continuously varying multiplication. We explain why it is (locally) so under
our definition. Locally on T , the bundle π∗OZ is free, so it is isomorphic to OT ⊗k V for
an r-dimensional k-vector space V . The multiplication on OZ gives rise to a OT -linear map
µ : (OT ⊗k V )⊗OT (OT ⊗k V )→ OT ⊗k V , which is equivalent to a k-linear map

µ : V ⊗k V → OT ⊗k V.

Fixing a basis e1, . . . , er of V gives µ a form µ(ei⊗ej) =
∑

k aijkek for aijk ∈ OT , which precisely
reflects the intuition of a continuously varying multiplication. Conversely, given a map µ, we
obtain a family SpecTA → T , where A is the algebra OT ⊗k V with multiplication µ.

Example 4.2. An example of a finite flat family above is π : Z → T , where

Z = V (x2 − tx) ⊂ A2 = Spec k[t, x] and T = A1 = Spec k[t].

The fiber π−1(λ) over every λ ∈ k∗ is

Spec
k[x, t]

(x2 − tx, t− λ)
' Spec

k[x]

(x(x− λ))
' Spec(k×2)
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and the fiber over zero is
Spec

k[x, t]

(x2 − tx, t) ' Spec
k[x]

(x2)
,

see Figure 4.2. The bundle π∗OZ is free, π∗OZ = OT ⊗k V for V = 〈1, x〉. The corresponding
µ : V ⊗k V → OT ⊗k V is given by µ(x⊗ x) = tx and µ(1⊗ x) = µ(x⊗ 1) = x, µ(1⊗ 1) = 1.

−→

π
t

x

Figure 4.1: Ramified double cover as a family of degree two schemes, see Example 4.2.

Example 4.3. The morphism Speck[x, t]/(xt − 1) → Speck[t] is flat but not finite. All fibers
over k-points are isomorphic to Speck expect for the fiber over t = 0, which is empty.

The morphism Speck[x, t]/(x, t) → Speck[t] is finite but not flat. All fibers are zero except
for the fiber over t = 0, which is Speck.

Taking the union of these morphisms we obtain Speck[x, t]/(x2t − x, xt2 − t) → Speck[t]

which is neither finite nor flat and such that each fiber is isomorphic to Speck.

Even with the notion of (finite flat) family we still lack some geometry. For example, we
would like to compare families and think about the largest family, containing all possible finite
schemes. We do this using the notion of representable functors. We do not really use the strength
of this theory and the language of functors is notably technical, so below we slightly change the
presentation: while everything which we say is precise, it differs from the usual presentation of
representable functors. For a nice presentation of those, we refer to [EH00, Chapter VI] and,
specifically for the Hilbert functor, to [Str96].

Let us aggregate families as follows. For each k-scheme T we define the set

FinSch(T ) = {Z → T finite flat} .

For every morphism ϕ : T ′ → T we have a pullback map FinSch(ϕ) : FinSch(T )→ FinSch(T ′)

pulling back each family Z → T to an element Z ×T T ′ → T ′ of FinSch(T ′). Formally,
FinSch : Schk

op → Set defined in this way is a functor.
The intuition about a largest family is encoded into the notion of functor represented by a

scheme (a representable functor).

Definition 4.4. Let Fun : Schk
op → Set be a functor. We say that Fun is represented by

a k-scheme M if there exists a universal family U ∈ Fun(M), such that for every T and
Z ∈ Fun(T ) there is a unique morphism ϕ : T →M such that Z = Fun(ϕ)(U), i.e., the family
Z is a pullback via ϕ of U .

The intuition behind Fun being represented by M is that U is a largest family, containing
every family. A crucial additional part is that every family comes from a unique pullback of
universal family. For example, an element of Fun(k) corresponds to a unique k-point of M
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and more generally, Fun(T ) ' Hom (T,M) naturally. This natural isomorphism is usually
taken as a definition of representability. Under this isomorphism, the element U corresponds to
idM ∈ Hom (M,M).

If there exists a scheme M representing Fun, it is uniquely determined up to a unique
isomorphism: if M1 and M2 are two representing schemes, then they induce unique maps
M1 → M2 and M2 → M1. By uniqueness, the compositions M1 → M2 → M1 and M2 →
M1 →M2 are identities, soM1 'M2.

If FinSch were represented byM, then the k-points ofM would correspond bijectively to
elements of FinSch(k), i.e., to finite k-schemes. We will now show in Example 4.5 that in fact
suchM does not exist; FinSch is not represented by any scheme. This example does not render
the above discussion irrelevant, it just motivates the advantage of changing FinSch by adding
more information.

Example 4.5. The scheme representing FinSch does not exist. More precisely, there is no
schemeM over k such that:

1. the k-points ofM correspond to finite k-schemes and only finitely many points correspond
to a given scheme.

2. every finite flat family Z → C over k induces a morphism ϕ : C →M sending each k-point
c ∈ C to a k-point ϕ(c) corresponding to scheme Zc; no uniqueness assumed.

Indeed, in Example 4.2 we have seen a family Z → A1 such that the fibers over A1 \ {0} are all
isomorphic and not isomorphic to the fiber Z0. If M existed, the induced morphism A1 →M
would map A1 \ {0} to a closed k-point and 0 ∈ A1 to another k-point; this is impossible.

The presented problem persists across deformation theory and is known as jump phenomenon,
see [Har10, Section 23, in particular Remark 23.0.4].

In view of Example 4.5 we refine FinSch to a functor Schk
op → Set parameterizing families

embedded as closed subschemes of the product of base and a fixed ambient variety X:

Hilbpts (X)(T ) = {Z ⊂ T ×X, Z → T finite flat} . (4.6)

This functor parameterizes families of finite schemes which are subschemes of a given ambient
scheme X. For every flat family π : Z → T over connected T the degree of fibers is constant (as
π∗OZ is a vector bundle), so we subdivide Hilbpts (X) into a family of functors parameterized
by r > 1:

Hilbr (X)(T ) = {Z ⊂ T ×X, Z → T finite flat of degree r} .

Theorem 4.7. If X is either quasi-projective or affine, then Hilbpts (X) is represented by a
scheme Hilbpts (X). Also, for all r > 1, the functor Hilbr (X) is represented by a scheme
Hilbr (X) and

Hilbpts (X) =
∐
r>1

Hilbr (X). (4.8)

If X is projective then each Hilbr (X) is also projective.

The scheme Hilbpts (X) is called the Hilbert scheme of points of X, while Hilbr (X) is called
the Hilbert scheme of r points of X. By representability, there is a unique up to isomorphism
U ⊂ X ×Hilbr (X), such that π : U → Hilbr (X) is (finite flat) a family. Every finite subscheme
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R ⊂ X gives a family R → Speck, hence a unique k-point of Hilbpts (aX), which we denote by
[R]. Conversely, any k-point of Hilbpts (X) gives a finite k-scheme π−1([R]) ⊂ X. Thus k-points
of Hilbpts (X) bijectively correspond to finite subschemes of X.

Proof of Theorem 4.7. Once we prove the existence of Hilbr (X), the existence of Hilbpts (X)

and (4.8) follow formally. The existence of Hilbr (X) for quasi-projective X was proven by
Grothendieck, see [FGI+05, Theorem 5.14]. We also showed that ifX is projective, thenHilbr (X)

is also projective. The existence for affine X was proven by Gustavsen-Laksov-Skjelnes [GLS07].
Grothendieck’s and Gustavsen-Laksov-Skjelnes’ proofs are quite technical, so we do not reproduce
them here, but we discuss the intuition in a very special case of X = An.

For a monomial ideal λ or degree r let Bλ denote the set of monomials not in λ. Consider
the subfunctor

Hilbr (AN , λ)(T ) =
{
Z ⊂ T × AN , π : Z → T finite flat, OT ·Bλ spans π∗OZ

}
.

For every family Z → T we find, at least locally on T , a λ such that [Z → T ] ∈ Hilbr (An, λ).
Therefore it is enough to prove that Hilbr (AN , λ) is representable. Since OT · Bλ spans π∗OZ ,
every monomial m ∈ λ can be presented as m −∑b∈Bλ ab,mb ∈ IZ , where ab,m ∈ OT . These
structure constants give a map T → Aℵ0 to a countably dimensional affine space.

Conversely given a scheme T and a morphism T → Aℵ0 we obtain a set of coefficients
ab,m ∈ OT such that 〈m−∑ ab,mb〉 is an ideal and we recover a family Z → T which is
automatically flat, even free with basis Bλ. Thus Hilbr (AN , λ) is represented by a subscheme
of Aℵ0 . This concludes the proof, however the embedding into Aℵ0 is far from minimal, as we
explain now. Note that for every variable xi its powers 1, xi, . . . , x

r
i are dependent over OT

modulo IZ , thus there are elements xr0i −
∑

j<r0
cjx

j
i ∈ IZ with cj ∈ OT and r0 6 r. Using these

equations, we may reduce modulo IZ all monomials of degree > Nr to monomials of smaller
degree. Therefore we actually need only finitely many coefficients [ab,m] to recover IZ and the
embedding into Aℵ0 refines to an embedding into a finitely dimensional affine space.

The above construction, while explicit and constructive, embeds the Hilbert scheme into
a very large affine space, thus preventing any direct computation. There is much work done
in lowering the embedding dimension and working with the Hilbert schemes explicitly, see for
example [BLR13, LR11].

There are only a few cases when the Hilbert scheme of points can be described explicitly. We
present them below.

Example 4.9. Let X be quasi-projective or affine, so that Hilbr (X) exists. A family Z ⊂
T ×X → T of degree r = 1 is isomorphic to T , so it induces a section T ' Z → X. It follows
that Hilb1 (X) ' X. The universal family is the diagonal ∆ ⊂ X×X together with a projection
onto a factor.

Example 4.10. If X is a curve, then Hilbr (X) parameterizes hypersurfaces of degree r in X.
For example, Hilbr (P1) ' Pr by [FGI+05, (4), p. 111]. More invariantly, if X = PV for a
two-dimensional vector space V , then Hilbr (X) ' P (Symr V ∨).

One information about the Hilbert scheme, which is easily obtained, is the tangent space.
For a k-point [R] ∈ Hilbr (X), corresponding to a subscheme R ⊂ X, we denote the tangent
space by THilbr (X),[R].
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Proposition 4.11 (tangent space description). Let X be a scheme such that Hilbr (X) exists and
R ⊂ X be a finite k-subscheme of degree r given by ideal sheaf IR ⊂ OX . Then THilbr (X),[R] =

H0(X,HomOX (IR,OX/IR)).

Proof. The proof goes by classifying families over Speck[ε]/ε2, see [Har10, Section 1.2] for an
accessible and expanded presentation.

Example 4.12 (tangent space locally). In the setting of Proposition 4.11, suppose additionally
that R = SpecA ⊂ U = SpecB. Then R ⊂ U is given by an ideal I ⊂ B and THilbr (X),[R] =

HomB (I,B) = HomA

(
I/I2, A

)
. If furthermore the scheme R is supported on a single k-point

and Gorenstein, then we have HomA

(
I/I2, A

)
' Homk

(
I/I2,k

)
by Lemma 2.16, so

dimk THilbr (X),[R] = dimk HomA

(
I/I2, A

)
= dimk Homk

(
I/I2, k

)
= dimk I/I

2.

Example 4.13 (tangent space for k-points). Suppose r = 1 and x ∈ X is a k-point. Then
Hilbr (X) = X, see Example 4.9, and THilbr (X),x = TX,x. Similarly for general r, if x1, . . . , xr ∈
X are pairwise different k-points and R = {x1, . . . , xr}, then THilbr (X),[R] '

⊕
TX,xi .

When considering the Hilbert scheme from the perspective of classifying finite subschemes
(or, equivalently, finite algebras), it is of prime importance to understand, which properties
are independent of the choice of embedding. Fortunately, the rough answer is: all properties
are independent provided that the ambient space X is smooth. We will justify this later (see
Theorem 5.1, Proposition 5.19). Now we show that the tangent space dimension is independent
of the embedding. Consider the baby case of a tuple R of smooth k-points on a variety X.
By Example 4.13, the dimension of THilbr (X),[R] is (degR)(dimX). Thus 0 = dimk T[R] −
(degR)(dimX) is independent of X. We show that this independence generalizes to arbitrary
R. This result is known and appeared, for example, in the arXiv version of [CEVV09] and, for
Gorenstein subschemes, in [CN09a, Lemma 2.3].

Proposition 4.14 (invariance of tangent space). Let X be an affine or quasi-projective scheme.
Let R ⊂ X a finite k-scheme of degree r. Then the number

dimk THilbr (X),[R] − r(dimX) (4.15)

does not depend on the embedding of R into a quasi-projective variety X, provided that R does
not intersect the singular locus of X.

Proof. Irreducibility ofX is used only to assert that the dimension near each point is independent
of the point chosen. We give a slightly involved proof, which, however, can be easily augmented
to prove other independence properties. The proof goes by series of reductions. We consider
each reducible component of R separately, hence we reduce to the case R irreducible, supported
at smooth x ∈ X.

First, we check that (4.15) is invariant under a change from X to X×Am. Fix an embedding
i : R ↪→ X and m > 0. Consider i′ = (i, 0) : R ↪→ X × Am. We claim that

THilbr (X×Am),[i′(R)] = THilbr (X),[i(R)] +m · (degR). (4.16)

Indeed, pick an neighbourhood U = SpecB of x ∈ X and coordinates αi on Am. Let I =

I(i(R)) ⊂ B and
J = I(i′(R)) = (I) + (α1, . . . , αm) ⊂ B[α1, . . . , αm].
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Let A = B[α1, . . . , αm]/J . By Proposition 4.11, an element of THilbr (X×Am),[i′(R)] corresponds
to a homomorphism HomB[α1,...,αm] (J,A). Let 〈α1, . . . , αm〉 denote the k-linear span. We have
a restriction map

HomB[α1,...,αm] (J,A) ↪→ HomB (I, A)⊕Homk (〈α1, . . . , αm〉 , A) . (4.17)

The only relations between the generators of J involving elements αi have the form
∑

i αiJ ∈ (I),
so the map (4.17) is in fact onto. Counting dimensions of both sides of (4.17), we obtain

dimk HomB[α1,...,αm] (J,A) = dimk HomB (I, A) + (dimk 〈α1, . . . , αm〉)(dimkA),

which is precisely (4.16).
Second, we compare embeddings into two varieties of the same dimension. Consider two

embeddings i : R ↪→ X and i′ ↪→ X ′, with R, R′ supported at x, x′ respectively. By assumption,
x ∈ X and x′ ∈ X ′ are smooth points. Therefore, the completions ÔX,x and ÔX′,x′ of local rings
are isomorphic, in fact isomorphic to power series rings in dimn variables. As in Proposition 3.32,
we fix an isomorphism ϕ : Spec ÔX,x → Spec ÔX′,x′ , such that i′ = ϕ ◦ i. Let I ⊂ ÔX,x,
I ′ ⊂ ÔX′,x′ be the ideals of i(R), i′(R) respectively, then I ′ = (ϕ#)−1(I). Then

THilbr (X),x ' HomOi(R)

(
I,Oi(R)

)
' Hom(ϕ#)−1(Oi(R))

(
(ϕ#)−1(I), (ϕ#)−1(Oi(R))

)
' (4.18)

' HomOi′(R)

(
I ′,Oi′(R)

)
= THilbr (X′),x′ .

Third and final, we conclude. Choose two embeddings of R. By (4.16) we may assume that
the ambient varieties have the same dimension, then (4.18) proves that (4.15) is equal for both
spaces.

Now we briefly discuss one more natural candidate for a parameter space of finite algebras, to
conclude that it gives a topology equivalent to the Hilbert scheme. If we recall the definition of a
finite algebra A as a “vector space with multiplication”, then a natural solution to the problems
with FinSch is to fix a basis. Let

FinSchBased(T ) =
{

(π, φ) | π : Z → T finite flat of degree r, φ : O⊕rT → π∗OZ isomorphism
}
.

For every element of FinSchBased(T ) the multiplication on OZ is translates by φ to a map
O⊕rT ⊗O⊕rT → O⊕rT which gives r3 structure constants. The unity of OZ translates into a vector
of r constants, so we obtain a map T → Ar3+r. Commutativity, associativity and properties of the
unity translate into algebraic equations inside Ar3+r, so that FinSchBased is represented by an
affine subscheme of Ar3+r, see [Poo08b, Proposition 1.1] for details. The functors FinSchBased
and Hilb can be compared by means of a common refinement parameterizing finite subschemes
with a fixed basis and thus their topology is essentially the same, see [Poo08b, Chapter 4] for
details.

4.2 Base change of Hilbert schemes

The Hilbert scheme behaves well with respect to field extensions. This property is very important,
as it enables us, for example, to reduce to an algebraically closed base field k.
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Let X be a k-scheme such that the Hilbert scheme of points on X exists. Recall, that the
functor (4.6) is defined for k-schemes, hence the obtained scheme Hilbpts (X) depends on k. In
this section we stress this by writing Hilbpts (X/k) instead of Hilbpts (X). For a field extension
k ⊂ K we also write k and K instead of Speck and SpecK, respectively.

Proposition 4.19. Suppose X is a scheme such that Hilbpts (X/k) exists. Let k ⊂ K be a field
extension and XK := X ×k K. Then Hilbpts (XK/K) exists and

Hilbpts (XK/K) ' Hilbpts (X/k)×k K. (4.20)

Let U → Hilbpts (X/k) ⊂ Hilbpts (X/k)×k X be the universal family for Hilbpts (X/k), then the
universal family for Hilbpts (XK/K) is

UK = U ×k K ⊂ Hilbpts (XK/K)×K XK.

Moreover, all the relevant maps are commutative:

UK U

Hilbpts (XK/K)×K XK Hilbpts (X/k)×k X

Hilbpts (XK/K) Hilbpts (X/k)

cl cl

(4.21)

The same applies with Hilbpts replaced by Hilbr.

Proof. See [FGI+05, (5) pg. 112].

Let us briefly discuss, how the maps of Diagram 4.21 behave at the level of points. Let
X be as in Proposition 4.19 and R ⊂ X be a finite k-scheme. It corresponds to a k-point
[R] ∈ Hilbpts (X). The scheme RK := R ×k K is a closed subscheme of XK corresponding to a
K-point [RK] ∈ Hilbpts (XK) ' Hilbpts (X) ×k K. The projection of [RK] to Hilbpts (X) is equal
to [R].

4.3 Loci of Hilbert schemes of points

Fix r and let X be a k-scheme such that Hilbr (X) exists. In this section we define various loci of
the Hilbert scheme of points, in particular the Gorenstein locus. Recall that the Hilbert scheme
of r points comes with a universal finite flat family

π : U → Hilbr (X)

such that the fiber over a k-point [R] ∈ Hilbr (X) is exactly R ⊂ X.
Perhaps the easiest example of a finite subscheme R ⊂ X of degree r is a tuple of k-points

of X; such subscheme is smooth. If X is defined over an algebraically closed field k = k then all
finite smooth subschemes are such tuples (if not, we also have κ-points, for k ⊂ κ separable).

Lemma 4.22. Let X be a scheme over k = k. Then a finite subscheme R ⊂ X is smooth over
k if and only if R is a disjoint union of k-points.
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Proof. Smoothness is a local property, so we may assume R is irreducible, corresponding to finite
local k-algebra (A,m,k). Then R is smooth over k if and only if the cotangent module ΩA/k
vanishes. This happens if and only if m/m2 = 0 if and only if m = 0 if and only if A = k.

We now gather all smooth subschemes into a locus. Let Hilb◦r (X) ⊂ Hilbr (X) denote the
subset of points [R] ∈ Hilbr (X) corresponding to smooth subschemes R ⊂ X. This is precisely
the image of all smooth fibers of π, so that Hilb◦r (X) is an open subset of Hilbr (X) by [Gro66,
Theorem 12.1.1] and we can endow it with an open scheme structure.

Definition 4.23. The smoothable component ofHilbr (X) is the closure ofHilb◦r (X) inHilbr (X).
It is denoted by Hilbsmr (X).

Example 4.24. If r = 1, then Hilbr (X) = X and π is an isomorphism (see Example 4.9), so
that Hilb◦r (X) = Hilbsmr (X) = Hilbr (X) = X. This shows that Hilbsmr (X) may be arbitrary
pathological (provided that X is): it may be nonreduced, not irreducible etc.

Proposition 4.25. Let k ⊂ K be a field extension. Then

Hilb◦r (XK) ' Hilb◦r (X)×k K, (4.26)

Hilbsmr (XK) ' Hilbsmr (X)×k K. (4.27)

Proof. Let k ⊂ K be a field extension. A schemeR is smooth if and only ifRK = R×kK is smooth,
so Isomorphism 4.20 restricts to Isomorphism 4.26. The ideal sheaf I of Hilbsmr (X) ⊆ Hilbr (X)

consists of functions vanishing on Hilb◦r (X). The ideal sheaf J likewise consists of functions
vanishing on Hilb◦r (XK) ' Hilb◦r (X) ×k K. Therefore, J ' I ⊗k K ⊂ OX ⊗k K ' OXK , which
proves Isomorphism (4.27).

The scheme Hilb◦r (X) has an explicit description, at least for quasi-projective X. Let Xr =

X ×X × . . . ×X be the r-fold product of X over k and let ∆ij ⊂ Xr be the subscheme where
the i-th and j-th coordinates are equal. Let ∆ =

⋃
i 6=j ∆ij and Xr,◦ = Xr \∆. On Xr we have

an action of the symmetric group Σr by permuting coordinates. This action preserves ∆ and
restricts to a free action on Xr,◦.

Lemma 4.28. Let X be quasi-projective. We have a natural isomorphism Xr,◦/Σr → Hilb◦r (X).

Proof. Over Xr we have a natural degree r family given as follows: let ∆i ⊂ Xr × X be the
locus where i-th and the last coordinates agree. Each projection ∆i → Xr is an isomorphism.
Let U =

⋃
∆i and let U◦ ⊂ Xr,◦ ×X be its restriction to Xr,◦. Over Xr,◦ all ∆i are disjoint,

so U◦ is flat of degree r over Xr,◦ and induces a unique map Xr,◦ → Hilb◦r (X). This map is,
by uniqueness, Σr-invariant and so factors as Xr,◦ → Xr,◦/Σr → Hilb◦r (X). Now, there is a
Hilbert-Chow morphism Hilbr (X) → Xr/Σr, which sends a scheme R to its support counted
with multiplicities, see [FGI+05, Section 7.1] and [MFK94, Corollary 5.10]. It restricts to a map
Hilb◦r (X)→ Xr,◦/Σr, which is the inverse of Xr,◦/Σr → Hilb◦r (X).

We now describe Hilbsmr (X) for a nicely behaved scheme. We say that X is geometrically
irreducible if X ′ = X ×Spec k Speck is irreducible. Similarly we define geometrically reduced
schemes. A geometrically irreducible scheme X is automatically irreducible as an image of
irreducible X ′. For k = k a scheme is geometrically irreducible if and only if it is irreducible. The
R-scheme SpecC is irreducible, but it is not geometrically irreducible: SpecC ×SpecR SpecC '
SpecC t SpecC.
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Proposition 4.29. Let X be a geometrically irreducible, smooth scheme over k. ThenHilbsmr (X)

is geometrically reduced and geometrically irreducible for all r. If X is additionally a quasi-
projective variety, then Hilbsmr (X) is a quasi-projective variety of dimension r dimX.

Proof. By assumption X ′ = X ×Spec k Speck is irreducible and smooth over k. By Propo-
sition 4.25 we have Hilbsmr (X ′) = Hilbsmr (X) × Speck and the claim is that Hilbsmr (X ′) is
reduced and irreducible. First, since X ′ is smooth over k, each its k-point is smooth, so that
Hilb◦r (X ′) is smooth by Example 4.13. Moreover, the variety (X ′)×r is irreducible as a product
of irreducible varieties over k, so also Hilb◦r (X ′) is irreducible by the proof of Lemma 4.28. If X
is quasi-projective, then dimHilb◦r (X ′) = r dimX again by Lemma 4.28. Then Hilbsmr (X ′) is re-
duced and irreducible as the closure of Hilb◦r (X ′). If X is quasi-projective, then it is dense inside
a projective X̄. In this case Hilbsmr (X) is an open subset of the projective scheme Hilbsmr (X̄),
so it is quasi-projective.

Example 4.30. In the setting of Example 4.13, let X be a smooth, geometrically irreducible
scheme over k. Then for each tuple x1, . . . , xr of k-points of X and R = {x1, . . . , xr} ⊂ X, we
have

dimk THilbr (X),[R] =
∑

dimk TX,xi = r · (dimX) = dimHilbsmr (X),

so [R] ∈ Hilbsmr (X) is a smooth point.

As before, we are especially interested in Gorenstein subschemes and their families. To define
them naturally, we introduce a relative version of canonical modules (Definition 2.2).

Definition 4.31. The relative canonical sheaf of a (finite flat) family π : Z → T is the OZ -
module

π!OT := HomOT (π∗OZ ,OT ),

where the multiplication is by precomposition.

The relative canonical sheaf is also known as the relative dualizing sheaf, see [Har77, Exer-
cise 6.10] or [sta17a, Tag 0BZI]. Since π is flat and finite, the OT -module π∗OZ is locally free,
so for every section of OZ there is a nonzero functional in HomOT (π∗OZ ,OT ) nonvanishing on
this section. Consequently, π!OT is torsion-free. For every point t ∈ T with residue field κ(t) we
have

(π!OT )|t = (π!OT )⊗OT κ(t) = Homκ(t)(π∗OZ ⊗OT κ(t), κ(t)) = Homκ(t)(π∗OZ|t, κ(t)),

which is precisely the canonical sheaf of the fiber Z|t, see Definition 2.2.

Definition 4.32. A (finite flat) family π : Z → T is Gorenstein if π!OT is a line bundle.

Fibers of a Gorenstein family are Gorenstein. Conversely, a family with Gorenstein fibers is
Gorenstein because a generator of (π!OT )|t may be lifted to a neighborhood of t. Similarly, if
π : Z → T is any family, then the set {t ∈ T | (π!OT )|t invertible} is open in T . Applying the
above considerations to U → Hilbr (X) we make the following definition.

Definition 4.33. The Gorenstein locus of Hilbr (X) is the open subset consisting of points [R]

corresponding to Gorenstein subschemes R ⊂ X. We endow it with open subscheme structure
and denote by HilbGorr (X).
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Similarly, we define HilbGor,smr (X) = HilbGorr (X) ∩Hilbsmr (X). A smooth scheme is Goren-
stein by Example 2.15, so HilbGor,smr (X) ⊃ Hilb◦r (X). The Gorenstein locus and HilbGor,smr (X)

behave well with respect to base change, thanks to Proposition 2.14. We investigate the local
structure of HilbGorr (X) for X = An much more closely in Section 4.4 and in Chapter 6.

We conclude this section with two fundamental results on Hilbr (X) for low-dimensional X.
These results may be thought of as global versions of Hilbert-Burch and Eisenbud-Buchsbaum
structure theorems for ideals, see [Har10, Chapters 8 and 9], together with connectedness argu-
ments. We do not prove those deep results here, but we encourage the reader to consult Fogarty’s
paper, which is, in our opinion, highly enlightening.

Theorem 4.34 ([Fog68]). The Hilbert scheme of r points on a smooth, geometrically irreducible
quasi-projective surface is smooth and irreducible for all r.

Theorem 4.35 ([Kle78, MR92, KMR98]). The Gorenstein locus of the Hilbert scheme of r
points on a smooth, geometrically irreducible quasi-projective threefold is smooth and irreducible
for all r.

The above results generalize to arbitrary codimension for local complete intersections.

Theorem 4.36 ([HU88, Theorem 3.10]). Let R ⊂ An be a local complete intersection. Then R
is smoothable and [R] ∈ Hilbsmr (An) is a smooth point.

Beyond those theorems there are almost no results of comparable generality; see Section 5.6
for some counterexamples on irreducibility. What is true though, is that Hilbr (X) is connected
for every connected projective scheme X over k = k. We reproduce Fogarty’s proof [Fog68] of
this result. It uses unipotent group actions. See [MS05, Proposition 18.12] for a combinatorial
approach or [Ser06a, Section 4.6.5] for an induction using Quot-schemes.

The affine line A1 is an algebraic group with addition. We denote it by Ga to stress the group
structure.

Lemma 4.37. Let C be a projective curve over k = k with a non-trivial Ga action. Then there
is exactly one fixed Ga point on C.

Proof. Every nontrivial subgroup of Ga is infinite, thus dense in the Zariski topology. Therefore
the stabilizer of x ∈ C is either Ga or 0. Suppose that there are no fixed points. Then the orbit
of each point is isomorphic to Ga, thus Zariski-dense; hence it contains an open subset of C.
Therefore there is only one orbit and C ' Ga. This is a contradiction since C is projective and
Ga has non-constant global functions. The uniqueness of the fixed point is a bit more subtle.
Consider the normalization C̃ → C. By its universal property, the action of Ga lifts to an action
on C̃. Now, C̃ is smooth and rational over k, so it is isomorphic to a P1. Take a fixed point
c ∈ C̃. Then Ga acts on C̃ \ {c} = A1 with a dense orbit which is also isomorphic to A1. Hence
C̃ \ {c} coincides with this orbit and there are no other fixed points.

Proposition 4.38. Let X be a connected projective scheme over k = k and assume that the
group Ga acts on X. Then the fixed point set XGa is also projective and connected.

Proof. Since Ga acts Zariski-continuously on X, XGa is Zariski-closed in X, thus projective.
Choose two Ga-invariant points x0, x1 ∈ X. We will find a chain of curves in XGa linking those
points, which will prove connectedness.

58



By taking successive hyperplane sections through x0, x1 we find a dimension one subscheme
C0 ⊂ X containing these points. Consider the point [C0] on the Hilbert scheme of curves (which
exists and is projective, see [FGI+05]) and the projective curve C ′ = Ga[C0]. By Lemma 4.37,
this curve has a fixed point [C1], corresponding to a one-dimensional C1 ⊂ X. Each point xi
is Ga-fixed, thus it lies on each element of Ga[C0], hence also on C1. Summarizing, we have a
one-dimensional C1 which is preserved under the action of Ga and links x0, x1.

We replace C1 by its reduction. The group Ga is connected, hence it acts on each irreducible
component of C1 and preserves the intersections of components. Let Ci1 be the components and
assume that C1

1 . . . , C
m
1 give the shortest (in terms of number of irreducible curves) path from

x0 to x1. On each Ci1 we see at least two points from the set {Ci1 ∩ Cj1}j 6=i ∪ {x0, x1}. Then Ga

has two invariant points on Ci1 and thence by Lemma 4.37 it acts trivially. The chain of curves
C1

1 ∪ . . . Cm1 is contained in XGa and gives the required link.

Proposition 4.39. Assume k = k and consider a finite local k-algebra (A,m,k) of degree e.
The scheme Hilbr (SpecA) is a connected closed subscheme of the Grassmannian Gr(e− r,A).

Here, Gr(e− r,A) parameterizes e− r-dimensional k-subspaces of A.

Proof. A subscheme of A is just an ideal I ⊂ A and an ideal is just a vector space preserved by
multiplication by m. The map i : Hilbr (SpecA)→ Gr(e− r,A) maps this ideal to the associated
vector space and it is an embedding. Since SpecA is finite over k, it is projective over k, so
the scheme Hilbr (SpecA) is also projective by Theorem 4.7. Hence the image of i is closed. It
remains to prove connectedness. We will use Proposition 4.38 for Gr(e−r,A), which is projective
and connected. A vector space V ⊂ A is an ideal iff it is preserved by the action of the group
1 + m, so that

Hilbr (SpecA) = Gr(e− r,A)1+m.

The group 1 + m has a composition series

1 + m ⊃ 1 + m2 ⊃ 1 + m3 ⊃ . . . ⊃ 1 + me = {1}

with quotients isomorphic to direct sums of Ga and connectedness of the fixed locus follows from
Proposition 4.38.

A mentioned before, for a projective scheme X there exists ([FGI+05, Section 7.1] and
[MFK94, Corollary 5.10]) the Hilbert-Chow morphism

ρ : Hilbr (X)→ X×r/Σr (4.40)

which maps a scheme R to its support counted with multiplicities. Note that ρ is proper as a
morphism between projective schemes. Recall that X is geometrically connected if and only if
X ×Spec k Speck is connected. We need a small topological lemma.

Lemma 4.41. Let f : X → Y be a closed map of topological spaces with Y connected and fibers
of f connected. Then X is connected.

Proof. Suppose X is disconnected, X = Z1 t Z2 for nonempty Zi open and closed. The images
ϕ(Z1), ϕ(Z2) are closed and ϕ(Z1) ∪ ϕ(Z2) = Y . Since Y is connected, there is a point y ∈ Y
belonging to both ϕ(Zi). Then the fiber F = f−1(y) is covered by nonempty disjoint closed
subsets Zi ∩ F , hence is not connected; a contradiction.
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Theorem 4.42. Let X be a geometrically connected projective scheme. Then Hilbr (X) is also
connected.

Proof. By assumption, X ′ = X ×Spec k Speck is connected. By Proposition 4.25 it is enough to
show that Hilbr (X ′) is connected. Hence we may assume k = k, X = X ′.

Clearly, Xr and Xr/Σr are connected and ρ is proper, so ρ is closed. By Lemma 4.41, it is
enough to show that the fibers of ρ are connected. Pick a point P ∈ Xr/Σr and its preimage in
Xr; suppose that points x1, . . . , xk appear in this preimage with multiplicities n1, . . . , nk. The
fiber of ρ−1(P ) is the set of schemes whose components are supported of xi with multiplicity ni.
Thus is equal, at the level of topological spaces, to

∏
iHilbni (SpecOX/mr

xi), which is connected
by Proposition 4.39.

4.4 Relative Macaulay’s inverse systems

In this section we generalize Macaulay’s inverse systems to cover reducible subschemes of An =

SpecS and their families. We prove in Proposition 4.50 that every finite flat family is locally
equal to Apolar (F1, . . . , Fr), where Fi are power series with varying coefficients. In case the
family has Gorenstein fibers it is locally equal to Apolar (F ), see Corollary 4.52. This is the
relative version of Macaulay’s Theorem 3.26 and this gives an alternative description of the local
structure of Hilbr (An).

When all the fibers are supported at the origin, the considered power series are in fact
polynomials. This special case first appeared in [Ems78, Proposition 18], unfortunately without
a proof. We follow [Jel16].

Let T be a k-scheme. We define quasi-coherent sheaves

ST := OT ⊗k S and P̂T := HomOT (ST ,OT ).

They play the roles of Ŝ and P from Section 3.3 respectively, but there is a slight change: in
Section 3.3 the ring Ŝ is a power series ring and here it is a sheaf of polynomial rings, see
Example 4.44. Also, in Section 3.3 the space P is some subspace of functional on Ŝ and here P̂T
is the space of all functionals on ST .

We have an action of ST on P̂T by precomposition; for a section f ∈ H0(U, P̂T ) and s, t ∈
H0(U, ST ) we have (s y f)(t) = f(st). Let mS ⊂ S denote the ideal of the origin. We define
PT ⊂ P̂T as the subsheaf of functionals which are locally polynomials. More precisely, for open
U ⊂ T , a point t ∈ U , and f ∈ H0(U, P̂T ) let ft denote the image of f in HomOT,t(ST,t,OT,t).
We define the subsheaf PT on sections by

H0(U,PT ) =
{
f ∈ H0(U, P̂T ) | ∀t∈T∀D�0

〈
mD
S , ft

〉
= 0
}
. (4.43)

Example 4.44. If T = SpecA is affine, then we have, after choosing coordinates,

H0(T, ST ) = A[α1, . . . , αn], H0(T, P̂T ) = A[[x1, . . . , xn]] and H0(T, PT ) = A[x1, . . . , xn].

For a subsheaf F ⊂ P̂T by Ann(F) ⊂ ST we denote its annihilator. We now introduce the
relative version of apolar algebras (Definition 3.24).

Definition 4.45. Let T be scheme and let F ⊂ P̂T be a quasi-coherent subsheaf. The apolar
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family of F is a subscheme

Apolar (F) := SpecT (ST /Ann(F)) ⊂ T × SpecS

with a canonical projection πF : Apolar (F)→ T .

The morphism πF is affine by construction, but it need not be finite or flat. The following
notion guarantees these properties.

Definition 4.46. Suppose that T is locally Noetherian. The sheaf F ⊂ P̂T is finitely flatly
embedded if ST F is a finitely generated OT -module and the sequence

0→ ST F → P̂T → P̂T /(ST F)→ 0

is a locally split sequence of OT -modules.

Definition 4.46 is similar to the definition of a subbundle of a vector bundle, where we require
that the cokernel is locally free. Example 4.64 provides a family which is finite flat but not
finitely flatly embedded.

Lemma 4.47. If T is locally Noetherian and F ⊂ P̂T is finitely flatly embedded, then ST F and
ST /Ann(F) are flat over T . The morphism πF is finite and flat.

Proof. Since T is locally Noetherian, the OT -module P̂T is flat by [Lam99, 4.47, p. 139]; then
also its (locally) direct summand F is flat over T . Since ST F is finite over OT , it is even
locally free, see [Eis95, Exercise 6.2]. Then the composition map s : ST → HomOT (P̂T ,OT ) →
HomOT (ST F ,OT ) is surjective. By local freeness, for each section of ST F there is a nonzero
functional in HomOT (ST F ,OT ) nonvanishing on this section. Then Ann(HomOT (ST F ,OT )) =

Ann(ST F) ⊂ ST F , so that ker s = Ann(F) and

ST /Ann(F) ' HomOT (ST F ,OT ), (4.48)

as OT -modules. The OT -module HomOT (ST F ,OT ) is locally free (of finite rank) as well, hence
flat. Finally, π = πF is affine and π∗OApolar(F) = ST /Ann(F) is flat over T , hence π is flat.
Also, π is finite by (4.48). Summarizing, we obtain the following diagram of ST -sheaves

0 IApolar(F) ST OApolar(F) 0

0 HomOT (P̂T /(ST F),OT ) HomOT (P̂T ,OT ) HomOT (ST F ,OT ) 0

'

(4.49)

We now prove that each (finite flat) family π : Z → T is actually an apolar family of a finitely
flatly embedded subsheaf F ⊂ P̂T . We need an equivalent of a canonical module (Definition 2.2)
for families. We have already defined it in Definition 4.31; it is π!OT = HomOT (π∗OZ ,OT ) with
multiplication by precomposition.

Proposition 4.50 (Description of families). Let T be locally Noetherian. Let i : Z ↪→ T ×SpecS

be such that π : Z → T is finite flat. Then Z = Apolar (F) for a finitely flatly embedded F ⊂ P̂T ,
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in fact for F = i∗π
!OT . If for every t ∈ T the subscheme Zt is supported at the origin, then

F ⊂ PT .

Proof. Denote by pr : T × SpecS → T the projection and by ω the OZ -module π!OT , it is
torsion free by discussion below Definition 4.31. Now if i : Z ↪→ T × SpecS is the embedding,
then i∗ω ⊂ HomOT (ST ,OT ) = P̂T . Let F = i∗ω. Since ω is torsion-free, we have Ann(F) = IZ
and Z = Apolar (F). In particular, π∗OZ = ST /Ann(F) is flat and finite, so the sequence
0 → pr∗ IZ → ST → π∗OZ → 0 is locally split. Applying HomOT (−,OT ) to this sequence we
obtain

0→ HomOT (π∗OZ ,OT )→ P̂T → HomOT (pr∗ IZ ,OT )→ 0,

which is also locally split. It remains to note that HomOT (π∗OZ ,OT ) → P̂T is equal to the
embedding F → P̂T . This proves that F is flatly embedded. Suppose now that all fibers are
supported at the origin. This means that mS is nilpotent in each fiber. Choose a covering of T by
affine Noetherian schemes Ui. Each Ui is quasi-compact, so there exist di such that mdi

S vanishes
on each fiber over Ui. Then mdi

S consists of nilpotent functions on Ui. Each Ui is Noetherian, so
there exist ei such that mdiei

S |Ui = 0. The integers Di = diei satisfy (4.43) for all f ∈ H0(Ui,F)

and assess that F ⊂ PT .

Corollary 4.51 (Local description of families). Let T be locally Noetherian. Let i : Z ↪→ T ×
SpecS be such that π : Z → T is finite flat. For every affine cover Ui = SpecBi of T we have

π−1(Ui) = Apolar (Fi1, . . . , Fisi)

for some Fij ∈ P̂SpecBi ' Bi[[x1, . . . , xn]]. If all fibers of π are supported at the origin, we
necessarily have Fij ∈ Bi[x1, . . . , xn].

Proof. By Proposition 4.50 we have Z = Apolar (F). The sheaf F|Ui is globally generated and
finitely generated; we take Fi1, . . . , Fisi as its generators.

Corollary 4.52 (Local description, Gorenstein case). Let T be locally Noetherian and i : Z ↪→
T × SpecS be such that π : Z → T is finite flat with Gorenstein fibers. Every affine cover of T
can be refined to a cover Ui = SpecBi such that

π−1(Ui) = Apolar (Fi)

for some Fi ∈ P̂SpecBi ' Bi[[x1, . . . , xn]]. If all fibers of π are supported at the origin, we
necessarily have Fi ∈ Bi[x1, . . . , xn].

Proof. By Proposition 4.50 we have Z = Apolar (F) where F = i∗π
!OT = i∗HomOT (OZ ,OT ).

In particular for t ∈ T we have F(t) ' Homκ(t)(OZ|t, κ(t)). The morphism π has Gorenstein
fibers, so each F(t) is a principal ST -module. We pick a lift Fi of its generator to a neighborhood
Ui of t and obtain π−1(Ui) = Apolar (Fi).

Example 4.53. Let SpecS = A1 = Spec k[x]. As in Example 4.2 consider a branched double
cover

Z = Spec
k[α, t]

(α2 − αt) → T = Speck[t].
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Then Z = Apolar (F ) for F =
∑

n>0 x
[n+1]tn ∈ k[t][[x]]. Similarly, consider another branched

double cover
Z = Spec

k[α, t]

(α2 − t) → T = Spec k[t].

Then Z = Apolar (F ) for F =
∑

n>0 x
[2n+1]tn ∈ k[t][[x]].

Remark 4.54. In the setting of Corollary 4.51 or Corollary 4.52, if the base T is reduced and
all the fibers are defined by homogeneous polynomials, then Fi1, . . . , Fisi or Fi may be chosen
homogeneous. Indeed, by these assumptions the sheaf F is invariant under the dilation action.

Description 4.50 above reduces the study of finite flat families to the study of Apolar (F).
Now we reduce this study to the study of F itself. For this, we need to check that Apolar (−) is
compatible with base change. Every morphism ϕ : T ′ → T induces an isomorphism ϕ∗ST = ST ′

and consequently a natural map ϕ∗HomOT (ST ,OT )→ Homϕ∗OT (ϕ∗ST , ϕ
∗OT ), denoted

P̂ϕ : ϕ∗P̂T → P̂T ′ . (4.55)

We abbreviate P̂ϕ(F) to ϕ(F). For T ′ = {t} we denote F(t) := P̂ϕ(F).

Proposition 4.56 (base change for apolar). Let ϕ : T ′ → T be a morphism of locally Noetherian
schemes and F ⊂ P̂T be finitely flatly embedded. Then Apolar (F)×T T ′ = Apolar (ϕ(F)).

If F is not finitely flatly embedded, then the claim is false, see Example 4.64.

Proof. Let Z = Apolar (F) with π : Z → T and Z ′ = Z ×T T ′. By Lemma 4.47 the OT -modules
π∗OZ and ST F are locally free. Moreover by (4.49) we have OZ ' HomOT (ST F ,OT ), so
HomOT (OZ ,OT ) = ST F as ST -submodules of P̂T . The diagram

ϕ∗ST F = ϕ∗HomOT (OZ ,OT ) HomOT ′ (ϕ∗OZ ,OT ′) = HomOT ′ (OZ′ ,OT ′)

ϕ∗P̂T = ϕ∗HomOT (ST ,OT ) HomOT ′ (ST ′ ,OT ′) = P̂T ′

'

P̂ϕ

implies that ϕ(ST F) = HomOT ′ (OZ′ ,OT ′). The OT ′-module π′∗OZ′ is free as a base change
of the free module π∗OZ , hence the OZ′-module HomOT ′ (OZ′ ,OT ′) is torsion-free, so that
Ann(ϕ(ST F)) = IZ′ and Z ′ = Apolar (ϕ(ST F)) = Apolar (ϕ(F)).

Corollary 4.57. Let F ⊂ P̂T be finitely flatly embedded. Then the fiber of Apolar (F) over a
point t ∈ T is equal to Apolar (F(t)).

Proof. Follows from Proposition 4.56 for T ′ = t.

In general, it is difficult to construct finitely flatly embedded subsheaves. In view of Corol-
lary 4.57 one necessary condition, at least over connected T , is that

dimκ(t) ST F(t) is independent of the choice of t ∈ T. (4.58)

Over reduced T this condition is sufficient.

Proposition 4.59. Let T be reduced and F ⊂ P̂T be such that ST F is a finitely generated
OT -module. Suppose that (4.58) holds. Then F is finitely flatly embedded.
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Proof. By assumption, ST F is finitely generated, it remains to prove that

0→ ST F → P̂T → P̂T /ST F → 0 (4.60)

is locally split. For this we may assume T is a spectrum of a local ring with closed point t. Pick
a basis of ST F(t) and D large enough, so that this basis is linearly independent in P̂t/(P̂t)>D.
Then the map ST F → P̂T /(P̂T )>D is injective. Consider the following diagram

0 0

0 (P̂T )>D (P̂T )>D

0 ST F P̂T P̂T /ST F 0

0 ST F P̂T /(P̂T )>D C 0

0 0 0

'

'

The OT -module P̂T /(P̂T )>D is free of finite rank, so that for each point s ∈ T we have
dimκ(s)C(s) = rank P̂T /(P̂T )>D − dimκ(s) ST F(s) locally constant. Since T is reduced, C is
a locally free OT -module. Then P̂T /ST F ' (P̂T )>D ⊕ C. Also P̂T ' (P̂T )>D ⊕ P̂T /(P̂T )>D.
Any choice of splitting of P̂T /(P̂T )>D � C yields the desired splitting of (4.60).

Example 4.61. Let w ∈ SpecS be a k-point. It corresponds to a linear map S1 → k, hence
gives a point in P1. Denote expdp(w) :=

∑
i>0 w

i ∈ P̂ .
Pick a polynomial f ∈ P . It defines a subscheme R = Spec Apolar (f) supported at zero. We

now construct a family which moves the support of R along the line 〈w〉 ⊂ SpecS. The line is
chosen for clarity only, the same procedure works for arbitrary subvariety.

For every linear form α ∈ S we have

α y (f expdp(w)) = (α y f) expdp(w) + c · f expdp(w) = ((α+ c) y f) · expdp(w),

where c = α yw ∈ k. Hence for every polynomial σ(x) ∈ S we have σ(x) y (f expdp(w)) = 0

if and only if σ(x + w) y f = 0. It follows that Spec Apolar
(
f expdp(w)

)
is the scheme R

translated by the vector w; in particular it is supported on w and abstractly isomorphic to R.
By Proposition 4.59, the family Spec Apolar

(
f expdp(tw)

)
→ Speck[t] is finitely flatly embedded

and geometrically corresponds to deformation by moving the support of R along the line spanned
by w. Its restriction to k[ε] = k[t]/t2 gives Spec Apolar (f + εwf) corresponding to the tangent
vector pointing towards this deformation.

For the next proposition recall, that a subset V of an affine space is called constructible
(in Zariski topology) if it is a finite union of locally closed subsets. Each constructible subset
possesses a (reduced) scheme structure.

Proposition 4.62 (Families from constructible subsets). Suppose V ⊂ P6d is a constructible
subset such that V 3 f → dimk Apolar (f) is constant. Then there exists a (finite flat) Gorenstein
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family with irreducible fibers
π : Z → V,

such that Z ⊂ V × SpecS and for every f ∈ V we have π−1(f) = Spec Apolar (f) ⊂ V .

Intuitively, the family π is the incidence scheme {(f, Spec Apolar (f)) | f ∈ V } → V .

Proof. Let k[V ] be the coordinate ring of V and consider an universal element V ∈ k[V ] ⊗ P6d
such that V(f) = f ∈ P6d for all f ∈ V . By Proposition 4.59 the sheaf F on V generated by V is
finitely flatly embedded, hence gives a finite flat family π : Apolar (F) → V . By Corollary 4.57
for every f ∈ V we have π−1(f) = Spec Apolar (f), which proves that the family is Gorenstein
(Definition 4.32) and has irreducible fibers.

Remark 4.63. For a fixed vector H of length d+ 1, denote by PH the subset of forms f ∈ P6d
such that H is the Hilbert function of Apolar (f). Then PH is a constructible subset. Indeed,
we have HApolar(f)(i) = dim(mi

S y f)/(mi+1
S y f). By picking a basis of mi

S we can rewrite the
equality HApolar(f)(i) = H(i) as a rank condition on a matrix whose entries are coefficients of f .
Hence, we obtain algebraic (both open and closed) conditions on PH .

Example 4.64 (Proposition 4.56 fails for F not finitely flatly embedded). Take B = k[t] and
F = tx ∈ B[x]. Then Ann(F ) = (α2), so that the fibers of the associated apolar family are
all equal to k[α]/α2. For t = λ non-zero we have k[α]/α2 = Apolar (Fλ), but for t = 0 we
have F0 = 0, so the fiber is not the apolar algebra of F0. It follows that F is not finitely flatly
embedded even though Apolar (F ) is finite flat.

Example 4.65 (Proposition 4.59 fails for nonreduced base). Let use restrict the B from Ex-
ample 4.64 to B = k[t]/t2 and take once more F = tx ∈ B[x]. Then Ann(F ) = (t, α2), so
Apolar (F ) is not flat over B, even though SpecB has only one point, so (4.58) holds trivially.

Finitely flatly embedded subsheaves can be put into a functor. We discuss only the Gorenstein
case. Recall that finitely flatly embedded F induces a finite flat family πF : Apolar (F) → T .
We define

DualGensr(T ) =
{
F ∈ P̂T finitely flatly embedded, deg(πF ) = r

}
.

Let H = Hilbr (An) and U ⊂ H× An → H be the universal family, let π : U → H.

Proposition 4.66. The functor DualGensr is representable by an open subset of the vector
bundle SpecH Symπ∗OU .

Proof. Points of the bundle SpecH Symπ∗OU correspond to sections of the dual bundle ω :=

HomOH (π∗OU ,OH) = π∗π
!OH. Let R ⊂ SpecH Symπ∗OU be the open subset parameterizing

sections of ω which generate it as a (OH ⊗ S)-module.
For each T and F ∈ DualGensr(T ) we obtain a finite flat family

πF : Apolar (F)→ T

of degree r, hence a unique map ϕ : T → H. Then F is a generator of the ST -module

HomOT
(
(πF )∗OApolar(F),OT

)
= ϕ∗ω
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and we get a natural map T → R. Conversely, a morphism T → R gives a morphism ϕ : T → H
and a generator F of ϕ∗ω, hence a finitely flatly embedded F .

As an example, we provide the following irreducibility result, useful later in Chapter 6.

Proposition 4.67. Let k = k and H = (1, 2, 2, . . . , 1) be a vector of length d + 1. The set of
polynomials f ∈ kdp[x1, x2] such that HApolar(f) = H constitutes an irreducible, locally closed
subscheme of the affine space kdp[x1, x2]6d. A general member of this set has, up to the action
of the group G defined in Section 3.3, the form x

[d]
1 +x

[d2]
2 for some d2 6 d depending only on H.

Proof. Let V ⊆ P = kdp[x1, x2] denote the set of f such that HApolar(f) = H. The subset V is
constructible by Remark 4.63. Proposition 4.62 yields a finite flat family {(f,Apolar (f))} → V

and a map ϕ : V → Hilbr (A2). By Proposition 4.66, the map ϕ(V ) induces an embedding of V
as an open subset of a bundle over ϕ(V ). The set ϕ(V ) is irreducible by [Iar77, Theorem 3.13].
Therefore, also V is irreducible.

Let us take a general polynomial f such that HApolar(f) = H. Then Ann f = (q1, q2) is
a complete intersection by [Eis95, Corollary 21.20]. Since H(2) = 2, we assume that q1 ∈ S

has order 2, i.e. q1 ∈ m2
S \ m3

S . Since f is general, we may assume that the quadric part of
q1 has maximal rank, i.e. rank two, see also [Iar77, Theorem 3.14]. Then after a change of
variables q1 ≡ α1α2 mod m3

S . Since the leading form α1α2 of q1 is reducible, q1 = δ1δ2 for some
δ1, δ2 ∈ Ŝ such that δi ≡ αi mod m2

S for i = 1, 2, see e.g. [Kun05, Theorem 16.6]. After an
automorphism of Ŝ we may assume δi = αi, then α1α2 = q1 annihilates f , so that f is a sum
of (divided) powers of x1 and x2. Let d2 be largest number such that x[d2]

2 appears in f , then
f = x

[d]
1 + x

[d2]
2 + ∂ y

(
x

[d]
1 + x

[d2]
2

)
for some ∂ ∈ mS , so that f ∈ G

(
x

[d]
1 + x

[d2]
2

)
.

4.5 Homogeneous forms and secant varieties

In this section we give an easy application of relative Macaulay’s inverse defined in Section 4.4.
In Chapter 3 the main emphasis is on nonhomogeneous polynomials, since the classification

of graded ones (of socle degree d) is just the classification of orbits of general linear group acting
on Pd, see Remark 3.29. In this section we discuss classifications of homogeneous polynomials
corresponding to algebras with Hilbert functions (1, 3, 3, . . . , 3, 1) and (1, 4, 4, . . . , 4, 1). These
results are used in Chapter 6 and are also of independent interest. In the end of the section
we discuss connections with secant varieties of Veronese reembeddings, precisely with σ3(νd(P2))

and σ4(νd(P3)) for d > 4, see [Ger96, IK99, BB14].
Most of this material is algebraic in nature and refers to Part I. An exception is the corre-

spondence between families of forms and families of finite graded Gorenstein subschemes, which
is a special case of relative Macaulay’s inverse systems from Section 4.4.

Proposition 4.68 ((1, 3, 3, 3, . . . , 3, 1)). Suppose that F ∈ kdp[x1, x2, x3] is a homogeneous
polynomial of degree d > 4. The following conditions are equivalent

1. the algebra Apolar (F ) has Hilbert function H beginning with H(1) = H(2) = H(3) = 3,
i.e. H = (1, 3, 3, 3, . . . 3, 1),

2. after a linear change of variables, F is equal to one of the forms

x
[d]
1 + x

[d]
2 + x

[d]
3 , x

[d−1]
1 x2 + x

[d]
3 , x

[d−1]
1 x3 + x

[d−2]
1 x

[2]
2 .
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Furthermore, the set of forms in kdp[x1, x2, x3]d satisfying the above conditions is irreducible.

For the characteristic zero case see [LO13] or [BGI11, Theorem 4] and references therein. See
also [BB14] for a generalization of this method.

Proof. Let S = k[α1, α2, α3]. Let I := Ann(F ) and I2 := 〈θ1, θ2, θ3〉 ⊆ S2 be the linear space
of operators of degree 2 annihilating F . Let A := S/I, J := (I2) ⊆ S and B := S/J . Since A
has degree greater than 3 · 3 > 23, the ideal J is not a complete intersection. Let us analyse the
Hilbert function of A. By Proposition 2.28 we have HA(d− 1) = HA(1) = 3. By Corollary 2.23
we have 3 = HA(3) > HA(4) > . . . > HA(d− 1) = 3, thus

HA(i) = 3 for all i = 1, 2, . . . , d− 1.

We will prove that the graded ideal J is saturated and defines a finite scheme of degree 3 in
ProjS = P2. First, 3 = HA(3) 6 HB(3) 6 4 by Macaulay’s Growth Theorem. By Remark 2.26,
the algebra A is 2-saturated. Since Ai = Bi for i 6 2, also B is 2-saturated. If HB(3) = 4, then
applying Lemma 2.25.1 to B, we obtain HB(1) = 2 = HA(1), a contradiction. We have proved
that HB(3) = 3.

Now we want to prove that HB(4) = 3. By Macaulay’s Growth Theorem applied to HB(3) =

3 we have HB(4) 6 3. If d > 4 then HA(4) = 3, so HB(4) > 3. Suppose d = 4. By Buchsbaum-
Eisenbud result [BE77, p. 448] we know that the minimal number of generators of I is odd.
Moreover, we know that HA(i) = HB(i) for i < 4, thus the generators of I have degree two or
four. Since I2 is not a complete intersection, there are at least two generators of degree 4, so
HB(4) > HA(4) + 2 = 3.

From HB(3) = HB(4) = 3 by Gotzmann’s Persistence Theorem we see that HB(i) = 3 for all
i > 1. Thus the scheme Γ := V (J) ⊆ Proj k[α1, α2, α3] is finite of degree 3. Let Jsat ⊃ J denote
its saturated ideal. Then HS/Jsat(i) = HS/J(i) = 3 for i � 0. By Macaulay’s Theorem 2.21 we
have HS/Jsat(i) = 3 for all i > 2, hence Jsati = Ji for these i. Moreover Jsat1 = J1, since B = S/J

is 2-saturated. Therefore, J is saturated. In particular, the ideal J = I(Γ) is contained in I.
We will use Γ to compute the possible forms of F , in the spirit of Apolarity Lemma, see

[IK99, Lemma 1.15]. There are four possibilities for Γ:

1. Γ is a union of three distinct, non-collinear points. After a change of basis Γ = {[1 : 0 : 0]}∪
{[0 : 1 : 0]} ∪ {[0 : 0 : 1]}, then I2 = (α1α2, α2α3, α3α1) and F = x

[d]
1 + x

[d]
2 + x

[d]
3 .

2. Γ is a union of a point and scheme of degree two, such that 〈Γ〉 = P2. After a change of
basis IΓ = (α2

1, α1α2, α2α3), so that F = x
[d−1]
3 x1 + x

[d]
2 .

3. Γ is irreducible with support [1 : 0 : 0] and it is not a 2-fat point. Then Γ is Gorenstein
and so Γ may be taken as the curvilinear scheme defined by (α2

3, α2α3, α1α3 − α2
2). Then,

after a linear change of variables, F = x
[d−1]
1 x3 + x

[2]
2 x

[d−2]
1 .

4. Γ is a 2-fat point supported at [1 : 0 : 0]. Then IΓ = (α2
2, α2α3, α

2
3), so F = x

[d−1]
1 (λ2x2 +

λ3x3) for some λ2, λ3 ∈ k. But then there is a degree one operator in S annihilating F , a
contradiction.

The set of forms F which are sums of three powers of linear forms is irreducible. To see that
the forms satisfying the assumptions of the Proposition constitute an irreducible subset of Pd
we observe that every Γ as above is smoothable, by [CEVV09]. By Local Description 4.52 and
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Remark 4.54, the flat family proving the smoothability of Γ induces a family Ft → F , such that
Fλ is a sum of three powers of linear forms for λ 6= 0.

The claim of Proposition 4.68 is false for d = 3, i.e., for cubics F ∈ kdp[x1, x2, x3] with
Hilbert functions (1, 3, 3, 1). Indeed, a general cubic has such Hilbert function, while a general
cubic is not a sum of three cubes (or a limit of such); the third secant variety of third Veronese
reembedding is a hypersurface given by the Aronhold invariant, see [LO13].

Proposition 4.69. Let d > 4. Consider the set S of all forms F ∈ kdp[x1, x2, x3, x4] of degree d
such that the apolar algebra of F has Hilbert function (1, 4, 4, 4, . . . , 4, 1). This set is irreducible
and its general member has the form `

[d]
1 + `

[d]
2 + `

[d]
3 + `

[d]
4 , where `1, `2, `3, `4 are linearly

independent linear forms.

Proof. First, the set S0 of forms equal to `[d]
1 + `

[d]
2 + `

[d]
3 + `

[d]
4 , where `1, `2, `3, `4 are linearly

independent linear forms, is irreducible and contained in S. Then, it is enough to prove that S
lies in the closure of S0.

We follow the proof of Proposition 4.68, omitting some details which can be found there.
Let S = k[α1, α2, α3, α4], I := AnnF and J := (I2). Set A = S/I and B = S/J . Then
HB(2) = 4 and HB(3) is either 4 or 5. If HB(3) = 5, then by Lemma 2.25 we have HB(1) = 3,
a contradiction. Thus HB(3) = 4.

Now we would like to prove HB(4) = 4. By Macaulay’s Growth Theorem we have HB(4) 6 5.
By Lemma 2.25 we have HB(4) 6= 5, thus HB(4) 6 4. If d > 4 then HB(4) > HA(4) > 4, so we
concentrate on the case d = 4. Let us write the minimal free resolution of A, which is symmetric,
as mentioned in Section 2.4.

0→ S(−8)→ S(−4)⊕a⊕S(−6)⊕6 → S(−3)⊕b⊕S(−4)⊕c⊕S(−5)⊕b → S(−2)⊕6⊕S(−4)⊕a → S.

Calculating HA(3) = 4 from the resolution, we get b = 8. Calculating HA(4) = 1 we obtain
6− 2a+ c = 0. Since 1 + a = HB(4) 6 4 we have a 6 3, so a = 3, c = 0 and HB(4) = 4.

Now we calculate HB(5). If d > 5 then HB(5) = 4 as before. If d = 4 then extracting
syzygies of I2 from the above resolution we see that HB(5) = 4 + γ, where 0 6 γ 6 8, thus
HB(5) = 4 and γ = 0. If d = 5, then the resolution of A is

0→ S(−9)→ S(−4)⊕3 ⊕ S(−7)⊕6 → S(−3)⊕8 ⊕ S(−6)⊕8 → S(−5)⊕3 ⊕ S(−2)⊕6 → S.

So HB(5) = 56 − 20 · 6 + 8 = 4. Thus, as in the previous case we see that J is the saturated
ideal of a scheme Γ of degree 4. Then Γ is smoothable by [CEVV09] and its smoothing induces
a family Ft → F , where Fλ ∈ S0 for λ 6= 0.

The following Corollary 4.70 is a consequence of Proposition 4.69. This corollary strengthens
the connection with secant varieties. For simplicity and to refer to some results from [LO13], we
assume that k = C, but the claim holds for all fields of characteristic either zero or large enough.

To formulate the claim we introduce catalecticant matrices. Let Cata,d−a : Sa×Pd → Pd−a be
the contraction mapping applied to homogeneous polynomials of degree d. For F ∈ Pd we obtain
Cata,d−a(F ) : Sa → Pd−a, whose matrix is called the a-catalecticant matrix. It is straightforward
to see that rank Cata,d−a(F ) = HApolar(F )(a).
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Corollary 4.70. Let d > 4 and k = C. The fourth secant variety to the d-th Veronese
reembedding of Pn is a subset σ4(νd(Pn)) ⊆ P(Pd) set-theoretically defined by the condition
rank Cata,d−a 6 4, where a = bd/2c.

We assume k = C only to refer to [LO13, Theorem 3.2.1 (2)], we believe that this assumption
can be removed.

Proof. Since HApolar(F )(a) 6 4 for F which is a sum of four powers of linear forms, by semicon-
tinuity every F ∈ σ4(νd(Pn)) satisfies the above condition.

Let F ∈ Pd be a form satisfying rank Cata,d−a(F ) 6 4. Let A = Apolar (F ) and H = HA be
the Hilbert function of A. We will reduce to the case where H(i) = 4 for all 0 < i < d.

First we prove that H(i) > 4 for all 0 < i < d. If H(1) 6 3, then the claim follows
from [LO13, Theorem 3.2.1 (2)], so we assume H(1) > 4. Suppose that for some i satisfying
4 6 i < d we have H(i) < 4. Then by Corollary 2.23 we have H(j) 6 H(i) for all j > i, so that
H(1) = H(d − 1) < 4, a contradiction. Thus H(i) > 4 for all i > 4. Moreover, H(3) > 4 by
Macaulay’s Growth Theorem. Suppose now that H(2) < 4. By Theorem 2.21 the only possible
case is H(2) = 3 and H(3) = 4. But then H(1) = 2 < 4 by Lemma 2.25, a contradiction. Thus
we have proved that

H(i) > 4 for all 0 < i < d. (4.71)

We now prove that H(i) = 4 for all 0 < i < d. By assumption, H(a) = 4. If d > 8, then a > 4,
so by Corollary 2.23 we have H(i) 6 4 for all i > a. Then by the symmetry H(i) = H(d− i) we
have H(i) 6 4 for all i. Together with H(i) > 4 for 0 < i < d, we have H(i) = 4 for 0 < i < d.
Then F ∈ σ4(νd(Pn)) by Proposition 4.69. If a = 3 (i.e. d = 6 or d = 7), then H(4) 6 5 by
Macaulay s Theorem 2.21 and H(4) = 5 would contradict Lemma 2.25, hence H(4) 6 4 and
we finish the proof as in the case d > 8. If d = 5, then a = 2 and the Hilbert function of A
is (1, e, 4, 4, e, 1). Again arguing using Lemma 2.25, we have e 6 4, thus e = 4 by (4.71) and
Proposition 4.69 applies. If d = 4, then H = (1, e, 4, e, 1). Suppose e > 5, then Lemma 2.25
gives e 6 3, a contradiction. Thus e = 4 and Proposition 4.69 applies also to this case.

Note that for d > 8 and k = C, Corollary 4.70 was proved in [BB14, Theorem 1.1].
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Chapter 5

Smoothings

One geometric way to obtain a finite scheme of degree r embedded into an ambient scheme X
is to take r points over k of X and collide them (we make this precise in Section 5.1). The
result is a smoothable finite scheme and the family describing the trajectories of points is called
an embedded smoothing. We also consider abstract smoothings. In the following subsections we
formally develop the theory of smoothings. Our main aim is to prove the following theorem.

Theorem 5.1. Suppose X is a smooth variety over a field k and R ⊂ X is a finite k-subscheme.
The following conditions are equivalent:

1. R is abstractly smoothable,

2. R is embedded smoothable in X,

3. every connected component of R is abstractly smoothable,

4. every connected component of R is embedded smoothable in X.

We closely follow [BJ17].

5.1 Abstract smoothings

In this subsection we introduce smoothings as (finite flat) generically smooth families with pre-
scribed special fiber. Most importantly, we prove that once a smoothing exists, also a smoothing
over a small base (one-dimensional complete local ring) exists as well. We deduce that smootha-
bility can be checked independently on each component of a finite scheme.

Definition 5.2 (abstract smoothing). Let R be a finite scheme over k. We say that R is
abstractly smoothable if there exist an irreducible scheme T and a finite flat family Z → T such
that

1. T has a k-rational point t, such that Zt ' R. We call t the special point of T .

2. Zη is a smooth scheme over η, where η is the generic point of T .

The T -scheme Z is called an abstract smoothing of R. We sometimes denote it by (Z, R)→ (T, t),
which means that t is the k-rational point of T , such that Zt ' R.
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An abstract smoothing Z → T is finite, so the relative cotangent sheaf ΩZ/T is coherent.
Therefore the set of fibers which are smooth is open and, by assumption, non-empty. For example,
if T is a curve, then all but finitely many fibers are smooth. A fiber over a k-point is smooth if
and only if it is a union of degR points.

Example 5.3. Any finite smooth scheme R has a trivial smoothing Z = R, T = Speck.

Example 5.4. For every finite field extension k ⊂ K the k-scheme R = SpecK is smoothable.
Suppose first that k ⊂ K is a separable extension. Then R = SpecK is smooth over k, so it is
trivially smoothable. Suppose now that k ⊂ K is not separable. Every extension of a finite field
is separable, so we may assume k is infinite. We may decompose k ⊂ K as a chain of one-element
extensions k ⊂ k(t1) ⊂ k(t1, t2) ⊂ . . . ⊂ k(t1, . . . , tn) = K. Then K = k[α1, . . . , αn]/(f1, . . . , fn)

where fi is the lifting of minimal polynomial of ti; in particular fi = αdii +ai,di−1α
di−1
i + . . .+ai,0,

where ai,j ∈ k[α1, . . . , αi−1]. We now inductively construct, for i = 1, . . . , n, polynomials Fi ∈
k[α1, . . . , αn][t] such that:

1. The family Z = Speck[α1, . . . , αn, t]/(F1, . . . , Fn)→ Speck[t] is flat and finite,

2. Fi(0) = fi, so that Z|t=0 = SpecK,

3. The fiber Z|t=1 is a disjoint union of copies of k.

First, we construct polynomials gi such that gi has degree di = deg(fi) and

gi = αdii + bi,di−1α
di−1
i + . . .+ bi,0 where bi,j ∈ k[α1, . . . , αi−1] (5.5)

and k[α1, . . . , αn]/(g1, . . . , gn) is a product of k. This is done inductively. We choose g1 as any
polynomial of degree d1 having d1 distinct roots in k, then k[α1]/g1 ' k×d1 . We choose g2 as a
polynomial of degree d2 in k[α1, α2]/g1 ' (k[α2])×d1 such that after projecting to each factor gi
has d2 distinct roots in k, then k[α1, α2]/(g1, g2) ' k×d1d2 and so we continue.

Define Fi = (1−t)fi+tgi, then Fi = αdii +((1−t)ai,di−1+tbi,di−1)αdi−1
i +. . .+((1−t)ai,0+tbi,0)

where (1 − t)aj,di−1 + tbj,di−1 ∈ k[α1, . . . , αi−1][t]. From this “upper-triangular” form of Fi we
see that the quotient

k[α1, . . . , αn, t]/(F1, . . . , Fn)

is a free k[t]-module with basis consisting of monomials αs11 . . . αsnn such that si < di for all i.
Hence, Condition 1 is satisfied; Conditions 2 and 3 are satisfied by construction. In particular,
a fiber of Z is smooth, so the generic fiber is also smooth, thus the family Z is a smoothing of
k-scheme SpecK.

We now introduce embedded smoothings. The difference between the previous setting is in the
presence of the ambient scheme X, where the whole smoothing must be embedded. According
to Theorem 5.1 we eventually prove that for smooth X the notions are equivalent.

Definition 5.6 (embedded smoothing). Let X be a scheme and R be a finite closed subscheme
of X. We say that R is smoothable in X if there exist an irreducible scheme T and a closed
subscheme Z ⊆ X × T such that Z → T is an abstract smoothing of R. The scheme Z is called
an embedded smoothing of R ⊆ X.

Example 5.7. Let X = Spec k[α, β, γ]/(αβ, αγ, βγ), i.e. X is the union of three coordinate lines
in the three dimensional affine space A3

k. Let R = Spec k[α, β, γ]/(α− β, α− γ, α2) ' k[ε]/ε2 be
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the degree two subscheme of X, which is the intersection of X with the affine line x = y = z.
Then R is abstractly smoothable, but R is not smoothable in X.

Smoothings behave well under base-change, modulo the existence of a k-point.

Lemma 5.8 (Base change for smoothings). Let T be an irreducible scheme with the generic point
η and a k-rational point t. Let (Z, R)→ (T, t) be an abstract smoothing of a finite scheme R.

Suppose T ′ is another irreducible scheme with a morphism f : T ′ → T such that η is in
the image of f and there exists a k-rational point of T ′ mapping to t. Then the base change
Z ′ = Z ×T T ′ → T ′ is an abstract smoothing of R. Moreover, if R is embedded into some X
and Z ⊆ X × T is an embedded smoothing, then Z ′ ⊆ X × T ′ is also an embedded smoothing of
R ⊆ X.

Proof. Z ′ → T ′ is finite and flat. The generic point η′ of T ′ maps to η under f so that Z ′η′ → η′

is a base change of a smooth morphism Zη → η. In particular it is smooth, so that Z ′ → T ′ is
a smoothing of R. If Z ⊆ X × T was a closed subscheme, then Z ′ ⊆ X × T ′ is also a closed
subscheme.

The next lemma can be informally summarised as follows: if U is an open subset of a scheme
T , and t is a point in the closure of U , then there exists a curve in T through t intersecting U .

Lemma 5.9. Suppose T is a scheme, U ⊂ T is an open subset and t ∈ T is a point in U .
Suppose the residue field of t is κ. Then there exists a one-dimensional Noetherian complete
local domain A′ with residue field κ, and a morphism T ′ = SpecA′ → T , such that the closed
point t′ ∈ T ′ is κ-rational and it is mapped to t and the generic point η′ ∈ T ′ is mapped into U .

If in addition κ is algebraically closed, we may furthermore assume that A′ = κ[[x]].

Proof. First, we may replace T with SpecA1 := SpecOT,t, and U with the preimage under
SpecA1 → T . The ringA1 is Noetherian by our global assumption. LetA be the completion ofA1

at the maximal ideal m of A1. Then A is Noetherian and flat over A1, so that SpecA→ SpecA1 is
surjective [sta17a, Tag 0316, Tag 0250, items (6)&(7)]. Let any prime ideal p ⊂ A mapping to the
generic point of T . Then SpecA/p is integral and satisfies the assertions on T ′ except, perhaps,
one-dimensionality. Replace T with SpecA/p and U with the preimage under SpecA/p→ T .

If dimT = 0, then T = {t} = Specκ and U = T , and T ′ = Specκ[[x]] with a morphism
T ′ → T corresponding to κ→ κ[[x]] will satisfy the claim of the lemma. So suppose dimT > 0.

Let η be a generic point of T . If U = {η}, then T is at most one-dimensional by the
Theorem of Artin-Tate, see [GW10, Corollary B.62]. If not, then we may take an irreducible
closed subset V ( T such that the generic point of V is in U and again replace T with V . Since
dimV < dimT <∞, after a finite number of such replacements we obtain that dimT = 1. Thus
T is a spectrum of a Noetherian complete local domain with quotient field κ and we may take
the identity T ′ = T to finishes the proof of the first part.

Suppose now that κ is algebraically closed. We may assume that T = SpecA, is as above.
Let m be the maximal ideal of A. The normalisation Ã of A is a finite A-module, see e.g. [Nag58,
Appendix 1, Corollary 2]. Then T̃ = Spec Ã→ T is finite and dominating, thus it is onto. Since
κ is algebraically closed, any point in the preimage of the special point is a κ-rational point, thus
T̃ → T satisfies claim of the lemma. Now Ã is a one-dimensional normal Noetherian domain
which is a finite A-module. By [Eis95, Corollary 7.6] the algebra Ã is a finite product Ã =

∏
Bi,

where each Bi is local and complete, and the residue field of each Bi is κ. From the first part of
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the proof it follows, that we may replace Ã by one of the factors Bi, which is a one-dimensional
Noetherian normal local complete domain with quotient field κ. Thus Bi is regular by Serre’s
criterion [Eis95, Theorem 11.5], so from the Cohen Structure Theorem [Eis95, Theorem 7.7], it
follows that Bi is isomorphic to κ[[x]].

Example 5.10. Suppose k = R and consider the R-algebra A := R ⊕ xC[[x]] ⊂ Ã := C[[x]].
Then the normalisation of A is Ã, which has no R-points. This illustrates that in the proof of
the final part of Lemma 5.9 the assumption that κ is algebraically closed is necessary.

The following Theorem 5.11 is the key result of this section. It allows us to shrink the base
of smoothing to an algebraic analogue of a small one-dimensional disk.

Theorem 5.11. Let Z → T be an abstract or embedded smoothing of some scheme. Then,
after a base change, we may assume that T ' SpecA, where A is a one-dimensional Noetherian
complete local domain with quotient field k.

If k is algebraically closed, we may furthermore assume that A = k[[x]].

Proof. Since Z → T is finite, the relative differentials sheaf is coherent over T , so that there
exists an open neighbourhood U of the generic point η such that Zu is smooth for any u ∈ U .
Thus the claim is a combination of Lemmas 5.8 and 5.9.

Now we recall the correspondence between the smoothings of R and of its connected compo-
nents. Intuitively, by Theorem 5.11 we may choose such a small basis of the smoothings, that
smoothings of connected components are connected components of the smoothing.

Proposition 5.12. Let R = R1 t R2 t . . . t Rk be a finite scheme. If (Zi, Ri) → (T, t) are
abstract smoothings of Ri over some base T , then Z =

⊔Zi → T is an abstract smoothing of R.
Conversely, let (Z, R) → (T, t) be an abstract smoothing of R over T = SpecA, where

A = (A,m, k) is a local complete k-algebra. Then Z = Z1 t . . . t Zk, where (Zi, Ri) → (T, t) is
an abstract smoothing of Ri.

Proof. The first claim is clear, since we may check that Z =
⊔Zi is flat and finite locally on

connected components of Z. Let η be the generic point of T , then Zη =
⊔

(Zi)η is smooth over
η since (Zi)η are all smooth.

For the second part, note that Z is affine by definition. Let Z = SpecB, then B is a
finite A-module and R = SpecB/mB. Let ni be the maximal ideals in B containing m. They
correspond bijectively to maximal ideals of B/mB and thus to components of R. Namely,
Ri = (B/mB)ni for appropriate indexing of ni. Since A is complete Noetherian k-algebra,
by [Eis95, Theorem 7.2a, Corollary 7.6] we get that B = Bn1 × . . . × Bnn . Then Bni is a flat
A-module, as a localisation of B, and also a finite A-module, since it may be regarded as a
quotient of B. The fiber of Bni over the generic point of SpecA is a localisation of the fiber of
B. Therefore SpecBni → SpecA is a smoothing of Spec(Bni)/mBni = Spec(B/mB)ni = Ri.

Corollary 5.13. Let R = R1tR2t . . .tRk be a finite scheme. Then R is abstractly smoothable
if and only if each Ri is abstractly smoothable.

Proof. If each Ri is abstractly smoothable, then we may choose smoothings over the same base
T , for instance by taking the product of the all bases of the individual smoothings. The claim
follows from Proposition 5.12.
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Conversely, if R is smoothable, then we may choose a smoothing over a one-dimensional
Noetherian complete local domain by Theorem 5.11. Again the result is implied by Proposi-
tion 5.12.

5.2 Comparing abstract and embedded smoothings

Now we will compare the notion of abstract smoothability and embedded smoothability of a
scheme R and prove Theorem 5.1. We begin with a technical lemma.

Lemma 5.14. Let (A,m,k) be a local k-algebra and T = SpecA with a k-rational point t
corresponding to m. Let Z be a scheme with a unique closed point and Z → T be a finite flat
morphism. Let X be a separated scheme and f : Z → X × T be a morphism such that the
following diagram is commutative:

Z X × T

T

If ft : Zt → X is a closed immersion, then f is also a closed immersion.

Proof. Since X × T → T is separated and Z → T is finite, from the cancellation property
([Vak15, Theorem 10.1.19] or [Har77, Exercise II.4.8]) it follows that f : Z → X × T is finite,
thus the image of Z in X × T is closed. Then it is enough to prove that Z → X × T is a locally
closed immersion.

Let U ⊆ X be an open affine neighbourhood of ft(p), where p is the unique closed point of
Z. Since the preimage of U × T in Z is open and contains p, the morphism Z → X × T factors
through U × T . We claim that Z → U × T is a closed immersion. Note that it is a morphism
of affine schemes. Let B, C denote the coordinate rings of Z and U × T , respectively. Then
the morphism of schemes Z → X × T corresponds to a morphism of A-algebras C → B. Since
the base change A → A/m induces an isomorphism C/mC → B/mB, we have B = mB + C,
thus C → B is onto by Nakayama Lemma and the fact that B is a finite A-module. Hence, the
morphism f : Z → U × T → X × T is a locally closed immersion.

The following Theorem 5.15 together with its immediate Corollary 5.16 is a generalization of
[CN09a, Lemma 2.2] and [BB14, Prop. 2.1]. Similar ideas are mentioned in [CEVV09, Lemma 4.1]
and in [Art76, p. 4].

The theorem uses the notion of formal smoothness, see [Gro67, Def 17.1.1]. A scheme X is
formally smooth if for every affine scheme Y and every closed subscheme Y0 ⊂ Y defined by a
nilpotent ideal of OY , every morphism Y0 → X extends to a morphism Y → X.

Theorem 5.15 (Abstract smoothing versus embedded smoothing). Let R be a finite scheme
over k which is embedded into a formally smooth, separated scheme X. Then R is smoothable in
X if and only if it is abstractly smoothable.

Proof. Clearly from definition, if R is smoothable in X, then it is abstractly smoothable. It
remains to prove the other implication.

Let us consider first the case when R is irreducible. Let (Z, R) → (T, t) be an abstract
smoothing of R. Using Theorem 5.11 we may assume that T is a spectrum of a complete local
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ring (A,m,k). Since Z → T is finite, Z ' SpecB, where B is a finite A-algebra. In particular,
since B is irreducible, it is complete by [Eis95, Corollary 7.6], and by [Eis95, Theorem 7.2a], the
algebra B is the inverse limit of Artinian k-algebras B/(mB)n, where n ∈ N.

By definition of X being formally smooth, the morphism R = SpecB/mB → X lifts to
SpecB/(mB)2 → X and subsequently SpecB/(mB)n → X lifts to SpecB/(mB)n+1 → X for
every n ∈ N. Together these morphisms give a morphism Z = SpecB → X, which in turn
gives rise to a morphism of T -schemes Z → X × T . This morphism is a closed immersion by
Lemma 5.14. This finishes the proof in the case of irreducible R.

Now consider a not necessarily irreducible R. Let R = R1t. . .tRk be the decomposition into
irreducible (or connected) components. By Proposition 5.12, the smoothing Z decomposes as
Z = Z1t . . .tZk, where (Zi, Ri)→ (T, t) are smoothings of Ri. The schemes Ri are irreducible,
so by the previous case, these smoothings give rise to embedded smoothings Zi ⊆ X × T . In
particular, each subscheme Zi is closed. Moreover, the images of closed points of Zi are pairwise
different in X×T , thus Zi are pairwise disjoint and we get an embedding of Z = Z1t . . .tZk ⊂
X × T , which is the required embedded smoothing.

Corollary 5.16. Suppose that R is a finite scheme and X and Y are two smooth separated
schemes. If R can be embedded in X and in Y , then R is smoothable in X if and only if R is
smoothable in Y .

Proof. Follows directly from Theorem 5.15.

Proof of Theorem 5.1. Corollary 5.13 gives the equivalence of 1 and 3. Smooth variety is formally
smooth and separated by definition, so Theorem 5.15 implies equivalence of 1 and 2 as well as 3
and 4.

5.3 Embedded smoothability depends only on singularity type

While the comparison between abstract and embedded smoothings given in Theorem 5.15 above
is satisfactory, it is natural to ask what is true without formal smoothness assumption. This
assumption cannot be removed altogether: for a projective curve C all its non-zero tangent
vectors, regarded as Spec(k[ε]/ε2) ⊂ C, are smoothable in C if and only if all tangent spaces
are contained in tangent stars, see [BGL13, Section 3.3]. However we will see that the formal
smoothness assumption may be removed entirely if we have an appropriate morphism, see Corol-
lary 5.17, and that the existence of smoothings depends only on the formal geometry of X near
the support of its subscheme, see Proposition 5.19.

Corollary 5.17. Let R be a finite scheme embedded in X and smoothable in X. Let Y be a
separated scheme with a morphism X → Y which induces an isomorphism of R with its scheme-
theoretic image S ⊆ Y . Then R ' S is smoothable in Y .

Proof. Let Z ⊆ X × T → T be an embedded smoothing of X over a base (T, t). The morphism
X → Y induces a morphism Z → Y ×T which, over t, induces a closed embedding R ⊆ Y . Then
we need to prove that Z → Y ×T is a closed immersion. By Theorem 5.11 and Proposition 5.12
we may reduce to the case when R is irreducible. Then the claim follows from Lemma 5.14.

Using Corollary 5.17 we may strengthen Corollary 5.16 a bit, obtaining a direct generalization
of [BB14, Proposition 2.1].
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Corollary 5.18. Let X be a finite type, separated scheme and R ⊆ X be a finite subscheme,
supported in the smooth locus of X. If R is abstractly smoothable, then R is smoothable in X.

Proof. Let Xsm be the smooth locus of X. By Theorem 5.15 the scheme R is smoothable in
Xsm and by Corollary 5.17 is it also smoothable in X.

We now show that possibility of smoothing a given R inside X depends only on R and the
formally local structure of X near R. This is the strongest result in this direction we could
hope for; it implies that smoothability depends only on Zariski-local or standard étale local
neighbourhoods of R in X.

Proposition 5.19. Let X be a separated scheme and R ⊂ X be a finite scheme, supported at
points x1, . . . , xk of X. Then R is smoothable in X if and only if R is smoothable in

⊔
Spec ÔX,xi.

Proof. The “only if” part follows from Corollary 5.17 applied to the map
⊔

Spec ÔX,xi → X. We
prove the “if” part, so we assume that R is smoothable in X. By Theorem 5.11 we may take a
smoothing of R over T = SpecA where (A,m) is local and complete; this is a family Z ⊂ X ×T
cut out of OX ⊗k A by an ideal sheaf I. By Proposition 5.12 we have Z =

⊔Zi where Zi is a
smoothing of Rxi . We now show that Zi → X × T can be factorized as follows:

Zi → Spec ÔX,xi × T → X × T. (5.20)

Fix i. Let x := xi, Z ′ = Zi and n ⊂ OX be the ideal sheaf of y ∈ X. Since Z ′ → T is
finite, the algebra H0(Z ′,OZ′) is m-adically complete. Since R is finite, say of degree d, we
have ndOZ′ ⊂ mOZ′ . This means that each nOZ′-adic Cauchy sequence is also an mOZ′-adic
Cauchy sequence and hence has a unique limit in OZ′ . Thus the algebra H0(Z ′,OZ′) is complete
in nOZ′-adic topology. By universal property of completion, the map Z ′ → X × T factors
through Spec ÔX,y ×T . The map Spec ÔX,x → X is separated, hence from (5.20) it follows that
Z ′ → Spec ÔX,x×T is a closed immersion; this gives a deformation Z ′ embedded into Spec ÔX,x.
Summing over all components we obtain the desired embedding Z ⊂ T ×⊔ Spec ÔX,xi .

Corollary 5.21. Let X and Y be two separated schemes and x ∈ X, y ∈ Y be points with
isomorphic completions of local rings; let ϕ : Spec ÔX,x → Spec ÔY,y be an isomorphism.

Suppose that R is a finite irreducible scheme with embeddings iX : R → X and iY : R → Y

such that iX(R), iY (R) are supported at x, y respectively. Suppose that ϕ induces an isomorphism
of iX(R) and iY (R). Then R = iX(R) is smoothable in X if and only if R = iY (R) smoothable
in Y .

Proof. By Proposition 5.19 the scheme iX(R) is smoothable in X if and only if it is smoothable
in ÔX,x. By assumption iX(R) ⊂ Spec ÔX,x is isomorphic to iY (R) ⊂ Spec ÔY,y via ϕ. By
Proposition 5.19 again, iY (R) is smoothable in ÔY,y if and only if it is smoothable in Y .

5.4 Comparing embedded smoothings and the Hilbert scheme

We now compare the abstract notion of smoothability of a finite scheme R ⊂ X to the geometry
of Hilbert scheme around [R] ∈ Hilbr (X). This enables direct investigation of smoothability:
we prove that it is faithfully preserved under field extension, that for a given family the set of
smoothable fibers is closed and, in Section 5.6, we give examples of nonsmoothable schemes.

Fix a scheme X of finite type over k and such that the Hilbert scheme Hilbr (X) exists.
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Proposition 5.22. Let X be a scheme such that Hilbr (X) exists and R ⊂ X be a finite sub-
scheme of degree r. The following are equivalent

1. R is smoothable in X,

2. [R] ∈ Hilbsmr (X).

Proof. To show 1 =⇒ 2, pick an embedded smoothing of R in X, which is a family Z ⊂ X × T
flat over an irreducible base T , such that a fiber over a k-rational point t ∈ T is Zt = R. In
particular, the degree of Z → T is r, and hence it gives a map ϕ : T → Hilbr (X). The base T
is irreducible and the fiber of Z → T over the generic point η ∈ T is smooth. Thus the image of
the generic point ϕ(η) is contained in Hilb◦r (X), and the image of any point of T is contained in
its closure Hilbsmr (X). In particular, ϕ(t) = [R] ∈ Hilbsmr (X).

To show 2 =⇒ 1 pick an irreducible component T of Hilbsmr (X) containing [R] and let
Z ⊂ X × T be the restriction of the universal family Ur to T . The map f : Z → T is flat and
finite. Since Hilbsmr (X) = Hilb◦r (X) by its definition 4.23, there exists an open dense U such
that f : f−1(U) → U is smooth. Hence in particular the fiber over the generic point of T is
smooth, so Z → T gives an embedded smoothing of R.

The following corollary reduces the questions of smoothability to schemes over k = k.

Corollary 5.23. Let R be a finite scheme over k and k ⊂ K be a field extension. Then R is
smoothable if and only if the K-scheme

RK = R× SpecK

is smoothable.

Proof. Suppose R is smoothable and take its smoothing (Z, R)→ (T, t). Then (Z ×k K, RK)→
(T ×k K, t) is a smoothing of RK. Suppose now RK is smoothable as a scheme over K. Since R
is finite, we can embed R into an affine space ANk . Since ANk is smooth, by Theorem 5.15 the
scheme RK is smoothable in ANK = ANk ×kK. By Proposition 5.22 this means that the point [RK]

lies in Hilbsmr (ANK /K) =
(
Hilbsmr (ANk )× SpecK

)
red

. The image of the projection of this point
to Hilbsmr (ANk ) is equal to [R]. Using Proposition 5.22 again, we get that R is smoothable in
X.

By the above comparison we can also translate known results about the Hilbert scheme to
the language of smoothability.

Corollary 5.24. Let R ⊂ A2 be a finite subscheme. Then R is smoothable. Let R′ ⊂ A3 be a
finite Gorenstein subscheme. Then R′ is smoothable.

Proof. From Theorem 4.34 and Theorem 4.35 it follows that Hilbr (A2) = Hilbsmr (A2) and
HilbGorr (A3) = HilbGor,smr (A3) for all r, hence the result follows from Proposition 5.22.

Corollary 5.25. Let (A,m,k) be a finite local algebra with dimkm/m
2 6 2. Then A is smooth-

able. Let (A′,m′, k) be a finite local Gorenstein algebra with dimkm
′/m′2 6 3. Then A′ is

smoothable.

Proof. Finite schemes SpecA and SpecA′ are embeddable in A2 and A3, respectively, and the
result follows from Corollary 5.24.
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Proposition 5.22 implies that smoothability is a closed property.

Proposition 5.26. Let π : Z → T be a (finite flat) family. Then the set

T sm := {t ∈ T | Zt smoothable}

is closed in T .

Proof. It is enough to find an open cover {Ui} of T such that T sm ∩ Ui is closed in Ui. Let
r = deg π. For each point x ∈ T the fiber Zt embeds into Arκ(x), so there is a neighbourhood Ui
of x such that π−1(Ui) embeds into Ar×Ui. These embeddings induce maps ϕi : Ui → Hilbr (Ar)
and T sm ∩ Ui = ϕ−1

i (Hilbsmr (Ar)) are closed.

5.5 Smoothings over rational curves

We now show that every finite smoothable scheme R over an algebraically closed k of character-
istic zero has a smoothing over a P1. In fact it has such embedded smoothings for all embeddings
R into Pnk or other smooth, projective, rational variety. This is because Hilbsmr (Pnk) is a rational
variety, hence it has enough rational curves. Note that in this section we use Hilbsmr (Pnk) rather
than Hilbsmr (An), because we invoke Theorem 5.28 by Kollár, which applies to projective (or
proper) schemes.

Lemma 5.27. The variety Hilbsmr (Pnk) is rational.

Proof. Recall that Hilbsmr (Pnk) is a closure of ((Pnk)×r\∆)/Σr, where ∆ is the sum of all diagonals
(xi = xj)i 6=j ⊂ (Pnk)×r and Σr acts on (Pnk)×r by permutations. This already proves that it is
uni-rational. The fact that is is rational is a result of Mattuck [Mat68, Theorem, p. 764].

The following is a deep result by Kollár.

Theorem 5.28. Let k = k and char k = 0. Through any tuple of points of a proper, rationally
chain connected variety X over k there is a rational curve.

Proof. By replacing X with a resolution of singularities we may assume X is smooth. In that
case X is rationally connected by [Kol96, Theorem 3.10] and separably rationally connected
by [Kol96, Proposition 3.3]. The result for smooth, separably rationally connected varieties
is [Kol96, Theorem 3.9].

Corollary 5.29. Let k = k and char k = 0. Though any tuple of points on Hilbsmr (Pnk) there is
a rational curve.

Proof. The scheme Hilbsmr (Pnk) is a projective variety by Proposition 4.29 and Theorem 4.7. It
is also rational by Lemma 5.27, so in particular rationally chain connected, so the claim follows
from Theorem 5.28.

Corollary 5.30. Let k = k and char k = 0. Every finite smoothable scheme R over k has a
smoothing over P1.

78



Proof. For n large enough we have an embedding R ⊂ Pnk . Since R is smoothable, by Theorem 5.1
it is smoothable in Pnk , so it corresponds to a point [R] ∈ Hilbsmr (Pnk). Take any point [R′] ∈
Hilbsmr (Pnk) corresponding to a smooth R′ ⊂ Pnk . By Corollary 5.29 there exists a rational curve
C ⊂ Hilbsmr (Pnk) through [R] and [R′]. Its normalization C̃ ' P1

k comes with a morphism to
Hilbsmr (Pnk). The pullback U|C̃ → C̃ of the universal family via C̃ → Hilbsmr (X) is the required
smoothing of R as in Proposition 5.22.

Corollary 5.30 gives the following affine version, which is stronger version of Theorem 5.11.

Corollary 5.31. Let k = k and char k = 0. Every smoothable k-scheme has a smoothing over
Speck[t].

Proof. Restrict the smoothing given by Corollary 5.30 to A1 = P1 \ {pt}.

Remark 5.32. Roggero and Lella proved [LR11, Theorem C] that each smooth component of
each Hilbr (Pnk) is rational. As pointed in Problem 1.14, no nonrational component of a Hilbert
scheme of points Hilbr (Pnk) is known.

5.6 Examples of nonsmoothable finite schemes

A finite scheme is nonsmoothable if and only if one of its components is nonsmoothable by
Theorem 5.1. Therefore below we consider only irreducible nonsmoothable schemes. Known
examples of irreducible nonsmoothable schemes fall into two categories. Both exploit the fact
that Hilbsmr (An) is quasi-projective and irreducible of dimension rn, see Proposition 4.29.

First, there are schemes with small tangent space. Indeed, if a degree r subscheme R ⊂ An

has dimTHilbr (An),[R] < nr, then [R] 6∈ Hilbsmr (An), so R is nonsmoothable by Proposition 5.22.

Example 5.33 ((1, 4, 3), [CEVV09]). In this example we consider elements of H = Hilb8 (A4).
Let F1, F2, F3 ∈ kdp[x1, . . . , x4] be general quadrics. Let S = k[α1, . . . , α4], I = Ann(F1, F2, F3)

and A = S/I. Since F• are general, we have HA = (1, 4, 3) and I is generated by 7 quadrics.
Let R = SpecA ⊂ A4. We claim that

dimTH,[R] = 25 < 4 · 8. (5.34)

To prove (5.34), first note that Hom (I, A) is graded, concentrated in degrees 0,−1,−2. The
subspace Hom (I, A)0 corresponds to S-homomorphisms I → A induced by I2 → A2, so that
dim Hom (I, A)0 = 7 · 3 = 21.

For every linear ` ∈ kdp[x1, . . . , x4] we have a differentiation ∂` ∈ Hom (I, A)−1. These
differentiations span a space of dimension four. Therefore, dimTH,[R] > 25.

Let F ◦1 = x1x3, F ◦2 = x2x4, F ◦3 = x1x4 − x2x3. Let R◦ = Spec Apolar (F ◦• ). Then
dimTH,R◦ = 25 for every k, as proven in [CEVV09, Proposition 5.1], so that R◦ is nonsmooth-
able. By semicontinuity, (5.34) holds also for general F•. See [CEVV09, Theorem 1.3] for a
precise necessary and sufficient condition for smoothability of Apolar (F•) in this case.

Consider the open subset V ⊂ Gr(3, P2) parameterizing triples F• of quadrics withHApolar(F•) =

(1, 4, 3). Similarly to Proposition 4.62, it gives a map ϕ : V → H with 3 · 7-dimensional image.
Each subscheme in ϕ(V ) is supported at the origin of A4. Adding schemes with translated sup-
port, we obtain a 25-dimensional family A4×ϕ(V ) ⊂ H. By (5.34) we conclude that the closure
of this family is a component of H.
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Example 5.35 ((1, d, e), 3 6 e 6 (d−1)(d−2)
6 + 2). Consider k = k of characteristic zero. Fix

d > 4 and 3 6 e 6 (d−1)(d−2)
6 + 2. Consider a general tuple F• of e quadrics in kdp[x1, . . . , xd].

Then Spec Apolar (F•) has Hilbert function (1, d, e) and is nonsmoothable by [Sha90, Theorem 2].
In fact, such Spec Apolar (F•) together with translations form an open subset of a component
of Hilb1+d+e (Ad). Note that for d = 4 the only possibility is e = 3 and we obtain the example
(1, 4, 3).

Example 5.36 ((1, 6, 6, 1), Gorenstein, [IE78, Jel16]). In this example we consider elements
of H = HilbGor14 (A6). Let F ∈ kdp[x1, . . . , x6] be a general polynomial of degree three, so that
HApolar(F ) = (1, 6, 6, 1). Since Apolar (F ) ' Apolar (F3) by Corollary 3.73, we assume that
F = F3 is homogeneous. Using generality once more, we assume that I = Ann(F ) is generated
by 15 quadrics. Computing HApolar(F3)(3) = 1 by means of resolution, we see that there are
exactly 6 · 15−

(
6+2

3

)
+ 1 = 35 linear syzygies. Let S = k[α1, . . . , α6], A = S/I and R = SpecA.

We claim that
dimTH,[R] = 76 < 6 · 14. (5.37)

First, we prove the lower bound. The space Hom (I, A) is graded with dim Hom (I, A)1 =

15 and HomS (I, A)0 ⊂ Homk (I2, A2) is cut out of a (15 · 6)-dimensional space by 35-linear
syzygies so dim HomS (I, A)0 > 55. There is a 6-dimensional space of partial derivatives, so
dim HomS (I, A)−1 > 6. Thus dimTH,[R] > 76.

As in the previous example, to prove (5.37) it is enough to find an example with 76-
dimensional tangent space. For char k = 2 the scheme

R◦ = Spec Apolar
(
x1x2x3 + x1x

[2]
4 + x

[2]
1 x5 + x2x3x5 + x2x4x6 + x3x5x6 + x2x

[2]
6

)
satisfies dimTH,[R◦] = 76. Let char k 6= 2 and

R◦ = Spec Apolar
(
x1x2x4 − x1x

[2]
5 + x2x

[2]
3 + x3x5x6 + x4x

[2]
6

)
.

Let I = I(R). A direct check shows that HS/I2 = (1, 6, 21, 56, 6) for all k with char k 6= 2,
compare [Jel16, Lemma 23]. Then dimTH,[R◦] = 76, by Example 4.12.

Consider the open subset V ⊂ P63 parameterizing cubics with Hilbert function (1, 6, 6, 1).
By Proposition 4.62 and Proposition 4.66 we obtain an injective morphism from V to a bundle
of rank 14 over HilbGor14 (A6), so also a morphism ϕ : V → HilbGor14 (A6), whose fibers are at most
14-dimensional. Hence dimϕ(V ) >

(
9
3

)
− 14 = 84 − 14 = 70. All points in ϕ(V ) correspond

to subschemes supported at the origin. By adding isomorphic subschemes supported elsewhere,
we obtain 76-dimensional family ϕ(V )×A6 ⊂ HilbGor14 (A6). By (5.37) the closure of this family
forms a component.

The above examples are the only known components of Hilbr (An), which have dimension
less than rn, see Problem 1.23 and Problem 1.22.

Second, and much more commonly, there are large families. If Z ⊂ An × V → V is an
embedded family with distinct fibers and dimV > rn, then V → Hilbr (An) is injective on points
so the image has dimension greater that rn = dimHilbsmr (An) and so it is not contained in the
smoothable component. This idea first appeared in [Iar72] and was later expanded in [Iar84].
Proposition 4.59 and Proposition 4.62 enable us to produce such families using large loci of forms.
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Example 5.38 ((1,n,n,1), n > 8). Let k be an arbitrary field. Let n > 8 and P = kdp[x1, . . . , xn],
then

dimP63 =

(
n+ 3

3

)
> (2n+ 2) + n · (2n+ 2) (5.39)

Let V ⊂ P63 be the open set parameterizing polynomials F ∈ P63 with maximal Hilbert function,
in particular V is irreducible. By Proposition 4.62 we have a finitely flatly embedded family
{(f,Apolar (f))} → V . Consequently, by Proposition 4.66 we obtain an injective morphism from
V to a bundle of rank 2n + 2 over HilbGor2n+2 (An), so also a morphism ϕ : V → HilbGor2n+2 (An),
whose fibers are at most (2n+ 2)-dimensional.

Therefore the image ϕ(V ) has dimension at least
(
n+3

3

)
− (2n+ 2), which by (5.39) is greater

than dimHilbGor,sm2n+2 (An), so ϕ(V ) 6⊂ HilbGor,sm2n+2 (An). As far as we know, there are no known
explicit examples of nonsmoothable finite subschemes in ϕ(V ).

Remark 5.40. Consider Gorenstein local algebras with Hilbert function (1, n, n, 1) over k of
characteristic zero. Examples 5.36, 5.38 give nonsmoothable examples of those for all n > 8 or
n = 6. In contrast, [CJN15, Theorem A], which we reproduce as Theorem 6.1, asserts that for
n 6 5 such algebras are smoothable. Bertone, Cioffi and Roggero prove that such algebras are
also smoothable for n = 7, see [BCR12].

Example 5.41 (Gorenstein subschemes of A4 of large degree). We follow Example 5.38. Fix
an arbitrary field k and consider polynomials of degree nine in kdp[x1, . . . , x4]. Their space
is of dimension 715 and the apolar algebra of a general polynomial has degree 140, so that
arguing as in Example 5.38 we obtain a (715− 140)-dimensional locus inside HilbGor140 (A4). Since
715− 140 = 575 > 560, a general element of this locus corresponds to a nonsmoothable algebra
and HilbGor140 (A4) is reducible. This Example follows easily from [Iar84], as described in [BB14,
Proposition 6.2] over k = C.

Example 5.42 (Gorenstein subschemes of A5 of large degree). Analogously to Example 5.41
we may consider polynomials of degree five in five variables. Their space is 252 dimensional, a
general apolar algebra has degree 42 and so we obtain 210-dimensional locus. But 210 = 42 · 5
and this locus does not contain any smooth schemes, so it cannot be dense inside HilbGor,sm42 (A5).
Thus, this locus does not lie inside the smoothable component and the scheme HilbGor42 (A5) is
reducible. This example appeared in [BB14, Proposition 6.2].

Example 5.43 (subschemes of A3 of degree 96). Let k be an arbitrary field. The scheme
Hilb96 (A3) is reducible, as shown in [Iar72]. Namely, the locus of irreducible subschemes
corresponding to local algebras with Hilbert function (1, 3, 6, 10, 15, 21, 28, 12) has dimension
12 · 24 + 3 = 291 > 3 · 96, so it is not contained in the smoothable component.

Example 5.44 (subschemes of A3 of degree 78). Let k be an arbitrary field. The scheme
Hilb78 (A3) is reducible, as shown in [Iar84, Example 4.3]. Namely, the locus of irreducible
subschemes corresponding to local algebras with Hilbert function (1, 3, 6, 10, 15, 21, 17, 5) has
dimension 235, while the dimension of smoothable component is 3 · 78 = 234. We refer the
reader to the aforementioned paper for details.

For k = k, existence of nonsmoothable subschemes of Ank of degree r is equivalent to re-
ducibility of Hilbr (Ank). Consider the following condition:

(?) Every finite subscheme of An having degree r is smoothable.
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Example 5.33 and Example 5.44 show that (?) does not hold for n = 3 and r > 78 or n > 4 and
r > 8; regardless of k. Cartwright et.al. prove in [CEVV09], under the assumption char k 6= 2, 3,
that (?) holds for r 6 7 and all n and for r = 8 and n = 3. Borges dos Santos et.al. [BdSHJ13]
prove, for char k = 0, that (?) holds also for r = 9, 10 and n = 3. Douvropoulos et.al. [DJUNT17]
prove, for char k = 0, that (?) holds for r = 11 and n = 3. We summarize what is known it
Table 5.1, where we take char k = 0.

n 6 2 n = 3 n > 4

r 6 7
8 6 r 6 11 no

12 6 r 6 77 ? no
78 6 r no no

Table 5.1: Is Hilbr (Ank) irreducible (for char k = 0)?

A similar analysis is conducted for Gorenstein locus. Here the main positive results come
from [CJN15], where the authors, in characteristic 6= 2, 3, prove that HilbGorr (An) is irreducible
for r 6 13 and arbitrary n and also for r = 14 and n 6 5, see Theorem 6.1. The negative results
stem from Example 5.36, which gives a nonsmoothable degree 14 finite Gorenstein subscheme of
A6
k for all fields k. See Table 5.2 for a summary of what is known.

n 6 3 n = 4 n = 5 n > 6

r 6 13
r = 14 no

15 6 r 6 41 ? ? no
42 6 r 6 139 ? no no

140 6 r no no no

Table 5.2: Is HilbGorr (An) irreducible (for char k 6= 2, 3)?

5.7 Example of smoothings: one-dimensional torus limits

There are few classes of smoothings known, mainly because checking flatness of a finite family
is subtle. In this section we present a class of smoothings coming from, equivalently, one-
dimensional torus actions (from the point of view of affine geometry), cones over projective
schemes (from the point of view of projective geometry) or initial ideals (from the algebraic
point of view). We call these smoothings Gm-limits (Definition 5.53). We use them to analyze
smoothability of very compressed algebras (Definition 5.58). We also prove that there exists
subschemes which are smoothable but are not Gm-limits of smooth schemes, see Example 5.65.

The theory of Gm-limits is classical, for the algebraic side see [Eis95, Chapter 15]. The
application to very compressed algebras first appeared in [DJUNT17], while Example 5.65 was
not published before.

Let us introduce the necessary notions.

Definition 5.45. For an ideal I of a polynomial ring S, its initial ideal is the ideal spanned by
top degree forms (with respect to the standard grading) of all elements of I. It is denoted by
in(I) ⊂ S.
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Let An = SpecS = Spec k[α1, . . . , αn]. The torus Gm acts on An by dilation

µ : Gm × An 3 (t, (x1, . . . , xn))→ (tx1, . . . , txn).

On the level of functions, µ# : S → S[t±1] is defined by µ#(αi) = tαi. Let inv : Gm → Gm

be the inverse, then inv# : k[t±1] → k[t±1] is given by inv#(t) = t−1. By abuse of notation, let
inv# : S[t±1]→ S[t±1] be the map inv⊗ id. Then inv# µ#(αi) = t−1αi.

Lemma 5.46. The dilation action of Gm on An induces a Gm-action on Hilbpts (An). The orbit
of a finite subscheme R ⊂ An is a (finite flat) family

π : Gm · [R] ⊂ Gm × An → Gm, (5.47)

given by the ideal I(Gm[R]) = inv# µ#(I(R)).

Proof. Let H := Hilbpts (An) and U ⊂ H × An be the universal family. Before we prove that
Gm acts on H, let us describe its action point-wise. A k-point t ∈ Gm induces an isomorphism
µ(t) : An → An, so also an isomorphism µ(t) : H × An → H × An. Let tU = µ(t)(U). Then
tU → H is a composition of the isomorphism µ(t)−1 and a flat map, hence it is flat. The family
tU → H induces a map µH(t) : H → H, which is the action of t. By uniqueness, all axioms of
group action are satisfied for k-points. While this is enough to define the action of Gm, below
we present this action abstractly to prove the description of I(Gm[R]).

The action µ : Gm × An → An gives a diagram

Gm × An Gm × An Gm

An An Speck,

ϕ

inv

µ

pr1

=

(5.48)

where ϕ = µ ◦ (inv× id). The right square of the diagram (5.48) is isomorphic to the pullback
square via the isomorphism id×µ : Gm × An → Gm × An. Define U ′ as the pullback of U via
ϕ× idH. Then the following diagram consists of pullback squares.

U ′ Gm × An ×H Gm ×H

U An ×H H.
ϕ×id (5.49)

In particular, U ′ → Gm×H is a pullback of U → H, so it is flat and it induces a mapGm×H → H,
which is an action of Gm. For fixed k-point t ∈ Gm, the action of t comes as pullback of upper
row via t→ Gm and so it is

U ′|t An ×H H

U An ×H H.

ϕ(t)×id (5.50)

Since ϕ = µ◦ (inv× id), we have ϕ(t) = µ(t−1), so U ′|t is the pullback of U via µ(t−1). This is the
same as µ(t)(U), so the two descriptions of the action of Gm agree. The equality I(Gm[R]) =

ϕ#(I(R)) = inv# µ#(I(R)) follows by construction of the action.

For a one-parameter subgroup of a projective variety, we may always take a flat limit
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(see [Har77, Proposition III.9.8]). In the special case of Lemma 5.46 we have a flat limit in
An.

Proposition 5.51. Let R ⊂ An = SpecS be a finite k-scheme. The family (5.47) uniquely
extends to an embedded (finite flat) family

π : Z ⊂ A1 × An → A1,

where A1 = Gm ∪ {0}. The ideal of R0 := π−1(0) ⊂ An is equal to in(I(R)).

Proof. By Lemma 5.46 the family (5.47) is given by ideal I = inv# µ#(I(R)) ⊂ S[t±1]. For an
element f ∈ I(R), write its decomposition into homogeneous summands as f = f0 + . . . + fd.
Then inv# µ#(f) = f0 + t−1f1 + . . .+ t−dfd. Thus we have

tdf0 + td−1f1 + . . .+ tfd−1 + fd ∈ inv# µ#(I(R)). (5.52)

Define Z by the ideal I ∩ S[t]. Then clearly Z restricts to (5.47) on A1 \ {0} and

OZ = S[t]/I(Z) ⊂ S[t±1]/I,

so OZ is a torsion-free OT -module, hence Z → A1 is flat over A1, see [Eis95, Corollary 6.3].
Moreover, if a finite set of monomials spans H0(R,OR) as k-vector space, then it also spans OZ
as a OT -module, so Z → T is finite. Hence Z → T is a family. By (5.52), for every f ∈ I(R)

we have fd ∈ I(Z0), so Z|0 is contained in V (in(I(R))). But V (in(I(R))) and R have the same
degree, so we must have Z|0 = V (in(I(R))).

Definition 5.53. For finite R ⊂ An the scheme R0 = V (in(I(R)) is called the Gm-limit of R.

Note that in(I(R)) is always a homogeneous ideal.

Proposition 5.54. Let R ⊂ An be a smoothable subscheme given by ideal I. Then its Gm-limit
R0 ⊂ An is also smoothable.

Proof. By Proposition 5.51 we have a family π : Z ⊂ A1×An → A1 with general fiber isomorphic
to R and special fiber R0, so the smoothability of R0 follows from Proposition 5.26.

In the language of Proposition 5.51, the family π : Z ⊂ A1×An is invariant under the dilation
action of Gm on An+1 = A1 × An, so it is a cone over a projective scheme (Z \ {0})/Gm ' R

and R0 is obtained as a section of the cone over this scheme with the cone over the hyperplane
V (t), where t is the parameter on A1.

The initial ideal construction can be made relative. Indeed, the extension of in(−) to ideals
I ⊂ A ⊗ S is straightforward. In the general case of I ⊂ OT ⊗ S we construct in(I) locally on
affine covering of T and glue the construction. The gluing is possible, because an initial form of
a section s of I restricts either to initial form of restriction of s or to zero.

Definition 5.55. Let Z ⊂ T × An → T be (finite flat) family over T given by ideal sheaf
IZ ⊂ OT ⊗ S. Then its initial scheme is Z0 = V (in(IZ)).

Lemma 5.56. For every finite flat π : Z → T , the initial scheme Z0 constructed in Defini-
tion 5.55 is finite over T .
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Proof. Locally on T the sheaf π∗OZ is an OT -module spanned by finitely many fixed monomials.
Then also π∗OZ0 is an OT -module spanned by these monomials, so that Z0 → T is finite.

Even though Z → T is flat, the morphism Z0 → T need not be flat.

Example 5.57. Let T = Spec k[s]. Consider D = V (α2, αβ, β3) ⊂ A2 = Speck[α, β] and

Z = V (α− sβ2) ⊂ D × T ⊂ A2 × T

considered as a finite family π : Z → T . For each λ ∈ T , the fiber Zλ is a degree three subscheme
of A2, so π∗OZ is a locally free sheaf of rank three; in particular π is flat. We have IX =

(α2, αβ, β3)k[α, β, s] ⊕ (α − sβ2)k[s], so in(IX) = (α2, αβ, β3)k[α, β, s] ⊕ (sβ2)k[s] and hence
V (in(IX))→ T is not flat near s = 0.

We now proceed to define an open subset of Hilbr (An) where the initial scheme of the
universal family is flat. Before we do it, we introduce very compressed subschemes.

Definition 5.58. Choose n and r. Let An = SpecS and mS ⊂ S be the ideal of the origin.
Consider subschemes of degree r given by ideals I such that ms+1

S ⊆ I ( ms
S for an integer s.

We call such subschemes very compressed and denote by

Hilbmax
r An ⊂ Hilbr (An)

their family (with reduced structure).

Clearly, Hilbmax
r An ' Gr(a,ms

S/m
s+1
S ) for appropriate a; in particular it is irreducible. The

integer s = s(n, r) appearing in Definition 5.58 is uniquely determined by n and r:

s(n, r) = min

{
i |
(
n+ i

i

)
> r

}
.

Let An = SpecS and let Monor denote the set of monomial ideals λ in S which are finite of
degree r and satisfy m

s(n,r)+1
S ⊂ λ ( m

s(n,r)
S . For λ ∈Monor consider the subset Uλ ⊂ Hilbr (An)

consisting of subschemes R ⊂ An such that H0(R,OR) has a k-basis given by all monomials not
in λ. Then Uλ is an open subset of Hilbr (An). Let

U =
⋃
{Uλ | λ ∈Monor} .

Let U ⊂ U × An be the restriction of the universal family to U . Let U0 ⊂ U × An be its initial
scheme.

Proposition 5.59. The initial scheme U0 → U is flat. Its fibers are given by initial ideals of the
fibers of U → U .

Since U0 → U is flat, we call it the initial family.

Proof. Consider the ideal sheaf IU ⊂ OU ⊗S and pick a point x ∈ U and λ such that x ∈ Uλ. It
is enough to prove that the restriction of U0 to −1(Uλ) is flat. Let B denote the set of monomials
not in λ and Bs ⊂ B denote the set of elements of degree s := s(n, r). In H0(Ux,OUx) the image
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of every monomial in λ may be written as a combination of B. Hence, also in a neighbourhood
T of x, for every m ∈ λ we have an element

m−
∑
mi∈B

aimi ∈ IU . (5.60)

In particular, if m is a monomial of deg(m) > s = max deg(B) then m ∈ λ and also m is the
initial form of (5.60). If deg(m) 6 s, then deg(m) = s by construction of λ, so

m−
∑
mi∈Bs

aimi ∈ IU . (5.61)

Up to multiplying by OU , these are the only equations of U ⊂ U × An near x, so near x the
sheaf OU is free with basis Bλ. Since x is arbitrary, the map U0 → U is flat. The claim about
the fibers follows.

See [MS05, Chapter 18] for details of the above construction of U0. The finite flat family
U0 → U induces a mapping

ϕr : U → Hilbmax
r An.

Note that Hilbmax
r An ⊂ U and (ϕr)|Hilbmax

r An = id. Thus the map ϕr is a retraction onto
Hilbmax

r An. The map ϕr plays a key role in checking smoothability of very compressed schemes,
as the following Proposition 5.62 shows.

Proposition 5.62. We have Hilbmax
r An ⊂ Hilbsmr (An) if and only if ϕr(U∩Hilbsmr (An)) surjects

onto Hilbmax
r An.

Proof. The map ϕr maps every subscheme to its initial subscheme. If a subscheme is smoothable,
also its initial subscheme is smoothable, by Proposition 5.54. Hence ϕr(U ∩ Hilbsmr (An)) ⊂
Hilbsmr (An). Therefore ϕr(U ∩Hilbsmr (An)) = Hilbsmr (An) ∩Hilbmax

r An.

Example 5.43 shows that Hilbmax
96 A3 6⊂ Hilbsm96 (A3) by dimensional reasons. We now show

that Hilbmax
r A3 ⊂ Hilbsmr (A3) for all r < 96. This result first appeared in [DJUNT17].

Proposition 5.63. Let char k = 0. The family Hilbmax
r A3 of very compressed ideals is contained

in the smoothable component if and only if r 6 95.

Proof. The only if part follows from Example 5.43. To prove the if part, suppose first that
char k = 0. It is enough to check that ϕr is dominant for all r 6 95. All schemes of degree up
to 7 in A3 are smoothable by [CEVV09], so it is enough to check for 8 6 r 6 95. Pick a general
tuple R of r points of A3 over k. Then the tangent map

Tϕr : THilb◦r (A3), [R] → THilbmax
r A3, ϕr([R])

is surjective. This is verified by a direct computer calculation, see the Macaulay2 package
CombalggeomApprenticeshipsHilbert.m2 accompanying the arXiv version of [DJUNT17]. Then
by [Gro67, Theorem 17.11.1d, p. 83] the morphism ϕr is smooth at [R], thus flat, thus open, and
thus the claim.

Remark 5.64 (Comparison with the case of 8 points in A4). For r > 96 the map ϕr is not
surjective by dimensional reasons. Even though Tϕr is not surjective, we conjecture that the
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maps Tϕr are of maximal rank. This is no longer true for A4: in fact Tϕ8 A4 has 20-dimensional
image in the 21-dimensional Grassmannian Gr(3, 10), which accounts for the fact that there are
nonsmoothable ideals of degree 8 in A4, as exhibited in Example 5.33.

Example 5.65 (smoothable schemes, which are not Gm-limits of smooth schemes). We sketch
an example of a family of schemes which are smoothable and Gm-invariant but whose general
member is not a Gm-limit of a smooth scheme.

Assume k = k. Consider a subset H ⊂ HilbGor18 (A7) consisting of subschemes R ⊂ A7 such
that R is Gorenstein, the ideal I(R) graded (hence R is irreducible), and HH0(R,OR) = (1, 7, 7, 1).
Elements of H are smoothable by a result of Bertone, Cioffi and Roggero, see Remark 5.40. Each
R ∈ H has a unique up to scaling cubic dual generator in kdp[x1, . . . , x7] and a general cubic F
in kdp[x1, . . . , x7] corresponds to a Spec Apolar (F ) ∈ H, so dimH =

(
7+3−1

3

)
− 1 = 83.

Suppose that an element R ∈ H is a Gm-limit of a smooth scheme R◦ ⊂ A7. The family
Z ⊂ A7 × A1 gives a projective scheme (Z \ {0})/Gm ⊂ P7, abstractly isomorphic to R◦. The
scheme R is Gorenstein and is a hyperplane section of the cone over (Z \{0})/Gm, so the scheme
(Z \ {0})/Gm is arithmetically Gorenstein [Har10, Chapter 10]. Moreover, (Z \ {0})/Gm spans
P7. Denote by P the variety of ordered arithmetically Gorenstein tuples of points in P7 which
span P7, so that

P ⊂ (P7)18/PGL7 .

We have dimP =
(

8
2

)
= 28 by the results of Coble and Dolgachev-Ortland, see [EP00, Corol-

lary 8.4]. Each element of P gives, by intersecting with a hyperplane, an element of H defined
up to PGL7-action. But dimH/PGL7 = 83 − 48 > 28, so a general point of H is not obtained
this way.
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Part III

Applications

In this part prove that the Gorenstein locus of the Hilbert scheme – the open sub-
scheme containing all finite Gorenstein subschemes – is irreducible for small degrees,
see Theorem 6.1. We describe the smallest case when it is reducible, see Theorem 6.3.
These results about the Gorenstein locus first appeared in [CJN15, Jel16]. We also
bound the dimension of the punctual Gorenstein Hilbert scheme, which parameter-
izes irreducible subschemes supported at a fixed point, see Theorem 7.2. This result
first appeared in [BJJM17].

Theorem 6.1 and Theorem 7.2 are motivated by applications to secant varieties
and constructing r-regular maps respectively, as explained in Section 1.2 and Sec-
tion 1.3.



Chapter 6

Gorenstein loci for small number of
points

In this section we discuss smoothability of Gorenstein schemes, with the aim of proving the
following main theorem of [CJN15].

Theorem 6.1 (Irreducibility up to 13 points). Let k be a field of characteristic 6= 2, 3. Let R be
an finite Gorenstein scheme of degree at most 14. Then either R is smoothable or it corresponds
to a local algebra (A,m, k) with HA = (1, 6, 6, 1). In particular, if R has degree at most 13, then
R is smoothable.

This theorem will be proved along a series of partial results. By Corollary 5.23 we reduce to
k = k. The proof goes by induction on the degree. Under the inductive assumption, all reducible
schemes are smoothable (Corollary 5.13). By Proposition 5.26 also limits of reducible schemes
are smoothable. Proving that a given scheme is a limit of reducible ones is a key ingredient in
our approach. Accordingly, we define cleavable schemes.

Definition 6.2. A finite subscheme R is cleavable (or limit-reducible) if there exists a finite
flat family Z → T over an irreducible T , with a special fiber isomorphic to R and general fiber
reducible. Each such family is called a cleaving of R.

The name limit-reducible is introduced in [CJN15], while cleavable is used in [BBKT15]. If a
cleavable R is embedded into X, then, after changing T , we may assume that the cleaving Z is
embedded into X, see the argument of Theorem 5.11. In fact, the families Z → T constructed
below are all embedded into affine spaces.

Nonsmoothable component for 14 points. For degree 14, there are nonsmoothable finite
schemes R, which are irreducible and correspond to algebras with Hilbert function (1, 6, 6, 1).
Each such subscheme can be embedded into A6. As proven in Example 5.36 using relative
Macaulay inverse systems, these nonsmoothable schemes form a component of HilbGor14 (A6).
Denote this component by H1661 and the smoothable component by Hgen, so that topologically

HilbGor14 (A6) = Hgen ∪H1661.

Let H = HilbGor14 (A6) and introduce a scheme structure on H1661 by H1661 = H \Hgen. Under
this definition it is not clear whether H1661 is reduced or smooth. For char k = 0 we show that
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indeed it is (we do not say anything about the reducedness or smoothness of Hgen). Moreover,
we describe H1661 and explicitly find the intersection Hgen ∩ H1661 of the two components.
Equivalently, we find necessary and sufficient conditions for smoothability of finite Gorenstein
schemes of degree 14. Such condition are rarely known, the only other case is [EV10]. We
follow [Jel16].

Let Hgr1661 ⊂ H1661 be the set corresponding to R invariant under the dilation action of
Gm, i.e., such that I(R) is homogeneous. Then Hgr1661 ⊂ H1661 is a closed subset and we endow
it with a reduced scheme structure.

Let DIR ⊂ P
(
Sym3 k6

)
denote the Iliev-Ranestad divisor in the space of cubic fourfolds.

This divisor consists of cubics corresponding to finite schemes which are sections of the cone over
Gr(2,k6) in the Plücker embedding; see Section 6.6 for a precise definition.

Let P
(
Sym3 k6

)
1661
⊂ P

(
Sym3 k6

)
be the open subset of cubics F such that dimk S1 yF = 6.

Geometrically, these are F such that V (F ) ⊂ P5 is not a cone.

Theorem 6.3. Assume char k = 0. With notation as above, we have the description of H1661.

1. The component H1661 is smooth (hence reduced) and connected.

2. There is an “associated-graded-algebra” morphism

π : H1661 → Hgr1661

which makes H1661 the total space of a rank 21 vector bundle over Hgr1661.

3. The scheme Hgr1661 is canonically isomorphic to P
(
Sym3 k6

)
1661

.

4. The set theoretic intersection Hgen ∩ H1661 is a prime divisor inside H1661 and it is equal
to π−1(DIR), where DIR ⊂ Hgr1661 ⊂ P

(
Sym3 k6

)
is the restriction of the Iliev-Ranestad

divisor. We get the following diagram of vector bundles:

Hgen ∩H1661 ⊂ H1661

DIR ⊂ P
(
Sym3 k6

)
1661

The most difficult steps of the proof are reducedness of H1661 and description of the inter-
section. The map π is defined at the level of points as follows. We take [R] ∈ H1661. After
translation, its support becomes 0 ∈ A6. Then we replace H0(R,OR) by its associated graded
algebra which is also Gorenstein by Corollary 3.73. We take π([R]) to be the point corresponding
to Spec grH0(R,OR) supported at the origin of A6.

The identification ofHgr1661 with P
(
Sym3 k6

)
1661

in Point 3 is done canonically using Macaulay’s
inverse systems, as in the argument of Example 5.36. Note that the complement of P

(
Sym3 k6

)
1661

has codimension greater than one, hence divisors on P
(
Sym3 k6

)
and Hgr1661 are identified via

restriction and closure.

6.1 Ray families

To prove that a finite scheme R is smoothable, we need to find a family with special fiber R
and general fiber smoothable. We find such families over A1. We are interested primarily in the
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case of irreducible R, as smoothability is checked on components by Theorem 5.1. Recall that
in a family is by assumption finite and flat (Definition 4.1). For finite morphisms, which are not
necessarily flat, we use the name deformation.

Suppose that R ⊂ An is irreducible, supported at the origin and that C ⊂ An is curve
intersecting R and smooth at the intersection point. Denote by I(R), I(C) their ideals in An.
Let H = V (α) be a hyperplane intersecting C transversely. Then α|C is a local parameter on C
at the origin. Consequently, R ∩ C ⊂ C is cut out of C by αν for some ν > 1. Take a lifting αν

to an element αν − ∂ ∈ I(R).

Lemma 6.4. In the setup above, R is cut out of R ∪ C by a single equation αν − ∂.

Proof. By assumption, (αν − ∂) + I(C) = I(R∩C) = I(R) + I(C). Intersecting both sides with
I(R), we get (αν − ∂) + I(C) ∩ I(R) = I(R), hence the claim.

In light of Lemma 6.4 above, we try to deform R inside R ∪ C by deforming αν − ∂. We
would like a general fiber of the deformation to be reducible, so a natural deformation over k[t]

is given by
(αν − tαs − ∂ = 0) ⊂ (R ∪ C)× Speck[t]

for a chosen s < ν. The restriction of this deformation to C×Speck[t] is flat, given by αν − tαs.
We will see that the deformation itself is flat provided that R ∩ C is large enough. Intuitively,
when R ∩C ⊂ C is large, we may peel a point off R along C. We illustrate this in the following
Proposition 6.5. Let Hν−1 = V (αν−1) be a thick hyperplane.

Proposition 6.5. In the above setup, assume that R ⊂ C ∪Hν−1. Then R is cleavable.

Proof. For brevity denote D = R ∪ C. Consider the deformation

V (αν − tαν−1 − ∂) ⊂ D × A1, (6.6)

with t being the local parameter on A1. Let IC , IR ⊂ k[D × A1] be the ideals of C × A1 and
R×A1, respectively, so IC ∩IR = 0. Let IV = (αν− tαν−1−∂) ⊂ k[D×A1]. By the assumption,
we have (αν−1) ∩ IC ⊂ IR. Since H = (α) is transversal to C, we have IV ∩ IC = IV · IC .
Consequently, we obtain

IV ∩ IC = IV · IC = (αν − tαν−1 − ∂) · IC ⊂ (αν − ∂) · IC + (αν−1) · IC ⊂ IR ∩ IC = 0. (6.7)

To prove flatness of Deformation (6.6) it is enough to prove that every polynomial f ∈ k[t]

is not a zero-divisor in the coordinate ring of V = V (αν − tαν−1 − ∂), see [Eis95, Corollary 6.3].
Suppose there is an f ∈ k[t] and a function g ∈ k[V ] such that fg = 0 in k[V ].

Let us restrict to C, i.e., consider the deformation V ∩ (C ×A1). It is given by the equation
αν − tαν−1 thus, it is flat over k[t]. Therefore, f is not a zero-divisor, hence, g restricts to zero
on V ∩ (C ×A1). Therefore, g lies in (IC + IV )/IV ⊂ k[V ]. By Equation (6.7) we have naturally

(IC + IV )/IV ' IC/(IV ∩ IC) = IC ⊂ k[D × A1], (6.8)

so g is an element of a flat k[t]-module k[D × A1]. Since fg = 0, it follows that g = 0, which
concludes proof of flatness; therefore (6.6) is a family. The fiber of the family (6.6) over t 6= 0

is supported on at least two points: the origin and (t, 0, . . . , 0), thus, reducible. Therefore, R is
cleavable.
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We now formally define ray deformations.

Definition 6.9. Let R ⊂ An be an irreducible finite scheme supported at the origin, C ⊂ An be
a curve smooth at the origin and H = V (α) ⊂ An be transversal to C, so that R∩C = V (αν)∩C
for an element ν > 1. A ray decomposition of R is a subscheme D ⊂ An such that C ∪ R ⊂ D

together with a lift of αν to an element αν − ∂ ∈ I(R) ⊂ k[An] such that

R = D ∩ V (αν − ∂).

The associated lower ray deformation is Z = V (αν − tα − ∂) ⊂ D × Speck[t]. The associated
upper ray deformation is Z = V (αν − tαν−1 − ∂) ⊂ D × Speck[t].

If Z is an upper ray deformation, then Z ∩ (C × Speck[t]) = V (αν − tαν−1), so the support
of any fiber over k∗ is reducible. Therefore if the upper deformation is flat in a neighborhood of
0 ∈ k, then R is cleavable; similarly for lower ray deformation. Proposition 6.5 may be rephrased
as: if D = C∪R and R ⊂ D∪Hν−1, then the upper ray deformation is flat. The extra flexibility
in choosing D is used in Section 6.2.

Flatness of ray deformations is, in general, a delicate issue. We exhibit more examples of flat
ray deformations in Section 6.2, where we consider ray families associated to polynomials. Below
we give an algebraic version of Proposition 6.5 and a special case of Gorenstein algebras.

Corollary 6.10. Let R ⊂ An be a finite scheme supported at the origin. Let I = I(R) be its
ideal. Choose coordinates α1, α2, . . . , αn on An. Assume that b is such that αb1 · αj ∈ I for all
j 6= 1. Assume moreover that αb1 /∈ I + (α2, α3, . . . , αn). Then R is cleavable.

Proof. This follows from Proposition 6.5 above if we take C = V (α2, α3, . . . , αn), H = (α1).
Then ν is defined by R ∩ C = (αν1) and by assumption ν > b, so that R ⊂ C ∪Hν−1.

The criterion of Corollary 6.10 has a convenient formulation in terms of inverse systems
(defined in Chapter 3). Recall that P = kdp[x1, . . . , xn] ⊂ Homk (S, k) is an S-module by the
contraction action, see Definition 3.1.

Corollary 6.11. Let R = Spec Apolar (f) ⊂ An, where f = x
[d]
1 + g ∈ P is such that αc1 y g = 0

for some c satisfying 2c 6 d. Then R is cleavable.

Proof. Let Spec Apolar (f) ∩ V (α2, . . . , αn) be defined by αν1 and αν1 − ∂ be a lift of αν1 to
Ann(f). Since αν1 − ∂ ∈ Ann(f), we have ∂ y g = ∂ y f = αν1 y f = x

[d−ν]
1 + αν1 y g. Then

αd−ν1 (∂ y g) = αd−ν1 yx[d−ν]
1 + αd1 y g = 1, thus αd−ν1 y g 6= 0. It follows that d − ν 6 c − 1, so

ν > d− c+ 1 > c+ 1. The assumptions of Corollary 6.10 are satisfied with b = ν − 1.

Corollary 6.12. Let k = k and char k 6= 2. Let R = SpecA ⊂ An, where A is Gorenstein
of socle degree d and such that ∆d−2 6= 0, where ∆• is the symmetric decomposition of Hilbert
function of A. Then R is cleavable.

Proof. By Proposition 3.78 we have R ' Apolar (f), where f = g+x
[2]
n for g ∈ kdp[x1, . . . , xn−1].

Thus αn y g = 0, so Spec Apolar (f) is cleavable by Corollary 6.11 with c = 1 and d = 2. In fact,
Spec Apolar (f) is a limit of subschemes isomorphic to Spec Apolar (g) t Speck.

Example 6.13. Let char k 6= 2, 3 and f ∈ kdp[x1, x2, x3, x4] be a polynomial, deg(f) = 4.
Suppose that the leading form f4 of f is written as f4 = x

[4]
1 + g4 where g4 ∈ kdp[x2, x3, x4]. By

Proposition 3.76 we may nonlinearly change coordinates so that f = x
[4]
1 + g, where α2

1 y g = 0.
By Corollary 6.11 we see that Apolar (f) is cleavable.
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Example 6.14. Suppose that an finite local Gorenstein algebra A has Hilbert function HA =

(1, H(1), . . . ,H(c), 1, . . . , 1) and socle degree d > 2c. By Example 3.77 we have an isomorphism
A ' Apolar

(
x

[d]
1 + g

)
, where αc1 y g = 0 and deg g 6 c+ 1. By Corollary 6.11 we obtain a upper

ray (flat) family

k[t]→ S[t]

(αν1 − tαν−1
1 − q) + J

, (6.15)

where J = Ann(x
[d]
1 + g) ∩ (α2, . . . , αn). Thus A is cleavable. Take λ 6= 0. The fiber over t = λ

is supported at (0, 0, . . . , 0) and at (λ, 0, . . . , 0) and the ideal defining this fiber near (0, 0, . . . , 0)

is I0 = (λαν−1
1 − q) + J . From the proof of Corollary 6.11 it follows that αν−1

1 y g = 0. Then the
ideal I0 lies in the annihilator of λ−1x

[d−1]
1 + g. Since σ y (x

[d]
1 + g) = σ y (λ−1x

[d−1]
1 + g) for every

σ ∈ (α2, . . . , αn), the apolar algebra of λ−1x
[d−1]
1 +g has Hilbert function (1, H1, . . . ,Hc, 1, . . . , 1)

and socle degree d − 1. Then dimk Apolar
(
x

[d−1]
1 + g

)
= dimk Apolar

(
λ−1x

[d]
1 + g

)
− 1. Thus

the fiber is a union of a point and Spec Apolar
(
λ−1x

[d]
1 + g

)
, i.e. the family (6.15) peels one

point off SpecA.

6.2 Ray families from Macaulay’s inverse systems.

While Proposition 6.5 is important for applications to smoothability of Gorenstein algebras,
its assumptions are often not satisfied, especially when the socle degree is small. Below we
present another source of flat ray families, using Macaulay’s inverse systems. We follow [CJN15,
Chapter 5].

The (divided power) polynomial ring P is defined in Definition 3.1. Let P [x] be a (divided
power) polynomial ring obtained by adjoining a new variable x to P . Let α be an element dual
to x, so that P [x] and T := S[α] are dual.

Definition 6.16. Let d > 2 be an integer. For a nonzero polynomial f ∈ P and ∂ ∈ mS such
that ∂ y f 6= 0 the ray sum of f with respect to ∂ is the polynomial∑

i>0

x[di]∂i y f = f + x[d]∂ y f + x[2d]∂2 y f + . . . ∈ P [x].

The following proposition shows that a ray sum induces an explicit ray decomposition.

Proposition 6.17. Let g be the d-th ray sum of f with respect to ∂. The annihilator of g in T
is given by the formula

AnnT (g) = AnnS(f) +

(
d−1∑
i=1

kαi
)

AnnS(∂ y f) + (αd − ∂)T, (6.18)

where the sum denotes the sum of k-vector spaces. In particular, the ideal AnnT (g) ⊂ T is
generated by AnnS(f), αAnnS(∂ y f) and αd−∂. The formula (6.18) induces a ray decomposition
of R = Spec Apolar (g) in An = SpecT , with H = V (α), C = V (mS) and D = V (AnnS(f)T +

αAnnS(∂ y f)T ).

Proof. It is straightforward to see that the right hand side of Equation (6.18) lies in AnnT (g).
Let us take any ∂′ ∈ AnnT (g). Reducing the powers of α using αd − ∂ we write

∂′ = σ0 + σ1α+ · · ·+ σd−1α
d−1,
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where σ• do not contain α. Then

0 = ∂′ y g = σ0 y f + xσd−1∂ y f + x[2]σd−2∂ y f + · · ·+ x[d−1]σ1∂ y f.

We see that σ0 ∈ AnnS(f) and σi ∈ AnnS(∂ y f) for i > 1, so the equality is proved. Since
∂ y f 6= 0, we have C ∪R ⊂ D, so that indeed we obtain a ray decomposition.

Remark 6.19. It is not hard to compute the Hilbert function of the apolar algebra of a ray sum
in some special cases. We mention one such case below. Let f ∈ P be a polynomial satisfying
f2 = f1 = f0 = 0 and ∂ ∈ m2

S be such that ∂ y f = ` is a linear form, so that ∂2 y f = 0.
Let A = Apolar (f) and B = Apolar

(
f + x[2]`

)
. The only different values of HA and HB are

HB(i) = HA(i) + 1 for i = 1, 2. The f2 = f1 = f0 = 0 assumption is needed to ensure that the
degrees of ∂ y f and ∂ y (f + x[2]`) are equal for all ∂ not annihilating f .

We now prove that the ray families coming from ray sums are flat. The proof is technical, so
we stick to the algebraic language. We first produce a suitable flatness criterion.

Proposition 6.20. Let k = k. Suppose that S is a k-module (in applications of this proposition,
S will be the polynomial ring, as before) and I ⊆ S[t] is a k[t]-submodule. Let I0 := I ∩ S. If for
every λ ∈ k we have

(t− λ) ∩ I ⊆ (t− λ)I + I0[t],

then S[t]/I is a flat k[t]-module.

Proof. The ring k[t] is a principal ideal domain, thus a k[t]-module is flat if and only if it is
torsion-free, see [Eis95, Corollary 6.3]. Since k = k, every polynomial in k[t] decomposes into
linear factors. To prove that M = S[t]/I is torsion-free it is enough to show that t − λ are
nonzerodivisors on M , i.e. that (t− λ)x ∈ I implies x ∈ I for all x ∈ S[t], λ ∈ k.

Fix λ ∈ k and suppose that x ∈ S[t] is such that (t − λ)x ∈ I. Then by assumption
(t− λ)x ∈ (t− λ)I + I0[t], so that (t− λ)(x− i) ∈ I0[t] for some i ∈ I. Since S[t]/I0[t] ' S/I0[t]

is a free k[t]-module, we have x− i ∈ I0[t] ⊆ I and so x ∈ I.

Remark 6.21. Let S be a ring and I ⊂ S[t] be an ideal, generated by i1, . . . , ir. To check the
inclusion which is the assumption of Proposition 6.20, it is enough to check that s ∈ (t− λ) ∩ I
implies s ∈ (t− λ)I + I0[t] for all s = s1i1 + . . .+ srir, where si ∈ S.

Indeed, take an arbitrary element s ∈ I and write s = t1i1 + . . .+ trir, where t1, . . . , tr ∈ S[t].
Dividing ti by t − λ we obtain s = s1i1 + . . . + srir + (t − λ)i, where i ∈ I and si ∈ S. Denote
s′ = s1i1 + . . .+ srir, then s ∈ (t− λ)∩ I if and only if s′ ∈ (t− λ)∩ I and s ∈ (t− λ)I + I0[t] if
and only if s′ ∈ (t− λ)I + I0[t].

Lemma 6.22. Let B be a ring. Consider a ring R = B[α] graded by the degree of α. Let d be
a natural number and J ⊆ R be a homogeneous ideal generated in degrees less or equal to d. Let
∂ ∈ B[α] be a (non necessarily homogeneous) element of degree strictly less than d and such that
for every b ∈ B satisfying bαd ∈ J , we have b∂ ∈ J . Then for every r ∈ R the condition

r(αd − ∂) ∈ J implies rαd ∈ J and r∂ ∈ J.

Proof. We apply induction with respect to degree of r, the base case being r = 0. Write

r =

m∑
i=0

riα
i, where ri ∈ B.
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The leading form of r(αd−∂) is rmαm+d and it lies in J . Since J is homogeneous and generated
in degree at most d, we have rmαd ∈ J . Then rm∂ ∈ J by assumption, so that r̂ := r − rmαm
satisfies r̂(αd − ∂) ∈ J . By induction we have r̂αd, r̂∂ ∈ J , then also rαd, r∂ ∈ J .

Proposition 6.23 (flatness of ray families). Let g be the d-th ray sum with respect to f and
∂. Then the corresponding upper and lower ray families are flat. Recall that these families are
explicitly given as

k[t]→ T [t]

J [t] + (αd − tαd−1 − ∂)T [t]
(upper ray deformation), (6.24)

k[t]→ T [t]

J [t] + (αd − tα− ∂)T [t]
(lower ray deformation), (6.25)

where J is defined in Proposition 6.17.

Proof. It is enough to prove flatness after tensoring with k, so we may assume k = k. We start
by proving the flatness of Deformation (6.25). We use Proposition 6.20. Denote by I ⊂ T [t] the
ideal defining the deformation and suppose that some z ∈ I lies in (t−λ) for some λ ∈ k. Write
z as i+ i2

(
αd − tα− ∂

)
, where i ∈ J [t], i2 ∈ T [t], and note that by Remark 6.21 we may assume

i ∈ J , i2 ∈ T . Since z ∈ (t− λ), we have that i+ i2(αd − λα− ∂) = 0, so

i2(αd − λα− ∂) = −i ∈ J.

By Proposition 6.17 the ideal J is homogeneous with respect to the grading by α. More precisely
it is equal to J0 + J1α, where J0 = AnnS(f)T, J1 = AnnS(∂ y f)T are generated by elements
not containing α, so that J is generated by elements of α-degree at most one. We now check
the assumptions of Lemma 6.22. Note that ∂J ⊆ J0 by definition of J . If r ∈ T is such that
rαd ∈ J , then r ∈ J1, so that r(λα+ ∂) ∈ αJ1 +J0 ⊆ J . Therefore the assumptions are satisfied
and the Lemma shows that i2αd ∈ J . Then i2α ∈ J , thus i2(αd − tα) ∈ J [t] ⊆ (I ∩ T )[t]. Since
i2∂ ∈ I ∩ T by definition, this implies that i + i2(αd − tα − ∂) ∈ J [t] ⊆ (I ∩ T )[t]. Now the
flatness follows from Proposition 6.20.

The same proof works equally well for upper ray deformation: one should just replace α by
αd−1 in appropriate places of the proof. For this reason we leave the case of Deformation (6.24)
to the reader.

Proposition 6.26. Let us keep the notation of Proposition 6.23 and additionally assume k = k.
Then the fibers of Families (6.24) and (6.25) over t− λ are reducible for every λ ∈ k∗.

Suppose moreover that ∂2 y f = 0 and the characteristic of k does not divide d− 1. Then the
fiber of the Family (6.25) over t− λ is isomorphic to

Spec Apolar (f) t (Spec Apolar (∂f))td−1 .

Proof. For both families the support of the fiber over t− λ contains the origin. The support of
the fiber of Family (6.24) contains furthermore a point with α = λ and other coordinates equal
to zero. The support of the fiber of Family (6.25) contains a point with α = ω, where ωd−1 = λ.

Now let us concentrate on Family (6.25) and on the case ∂2 y f = 0. The support of the fiber
over t − λ is (0, . . . , 0, 0) and (0, . . . , 0, ω), where ωd−1 = λ are (d − 1)-th roots of λ, which are
pairwise different because of the characteristic assumption. We will analyse the support point
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by point. By assumption ∂ ∈ AnnS(∂ y f), so that α · ∂ ∈ J , thus αd+1 − λ · α2 is in the ideal
I ⊂ T of the fiber over t = λ.

Near (0, 0, . . . , 0) the element αd−1 − λ is invertible, so α2 is in the localisation I(0,...,0), thus
α + λ−1∂ lies in I(0,...,0). Now we check that I(0,...,0) is generated by AnnS(f) + (α + λ−1∂)T .
Explicitly, one should check that(

AnnS(f) + (α+ λ−1∂)T
)

(0,...,0)
=
(

AnnS(f) + (αd − λα− ∂)T
)

(0,...,0)
.

Then the stalk of the fiber at (0, . . . , 0) is isomorphic to Apolar (f).
Near (0, 0, . . . , 0, ω) the elements α and αk+1−λ·α2

α−ω are invertible, so AnnS(∂ y f) and α−ω are
in the localisation I(0,...0,ω). This, along with the other inclusion, proves that this localisation is
generated by AnnS(∂ y f) and α−ω and thus the stalk of the fiber is isomorphic to Apolar (∂f).

6.3 Tangent preserving ray families

A ray family gives a morphism from A1 = Spec k[t] to an appropriate Hilbert scheme Hilbr (An).
In this section we prove that in some cases the dimension of the tangent space to Hilbr (An)

is constant along the image. We use it to prove that certain points of Hilbr (An) are smooth
without the need for computer aided computations; such a result was only obtained in [Sha90]
and [CJN15]. The complexity of calculating the tangent space is an obstacle to a direct anal-
ysis of Hilbr (An) for r � 0, see [Hui14]. The most important results here are Theorem 6.32
together with Corollary 6.34; see examples below Corollary 6.34 for applications. This section
first appeared in [CJN15].

Recall from Example 4.12 that for a k-point [R] ∈ Hilbr (SpecS) corresponding to a Goren-
stein scheme R = SpecS/I the dimension of the tangent space T[R] is dimk S/I

2 − dimk S/I.

Definition 6.27. A finite smoothable subscheme R ⊂ An of degree r is unobstructed if the
corresponding point [R] ∈ Hilbsmr (An) is smooth, that is, if dimk T[R] = rn.

Note that being unobstructed does not depend on the embedding of R, by Theorem 5.1
and Proposition 4.14. Thus we will freely speak about unobstructed finite schemes and finite
algebras. By abuse of language, we will also say that an f ∈ P is unobstructed if Apolar (f)

is. We prefer the word “unobstructed” to “smooth” as the latter is ambiguous: it might refer to
smoothness of R as a finite scheme. We will use unobstructed schemes to prove smoothability,
employing the following observation.

Lemma 6.28. Let Z ⊂ Hilbr (An) be an irreducible subset containing an unobstructed point.
Then Z ⊂ Hilbsmr (An).

Proof. Let U ⊂ Hilbsmr (An) be the smooth locus of the smoothable component. Then U is open
in Hilbr (An). An unobstructed point lies in U , hence U ∩ Z ⊂ Z is open and non-empty, thus
dense. Therefore, Z ⊂ U ⊂ Hilbsmr (An).

The key idea of the section is enclosed in the following technical Lemma 6.29, which gives
necessary and sufficient conditions for flatness of a thickening of a ray family. Regretfully, it
lacks geometric motivation and in fact the geometry behind it is unclear, apart from the special
case of complete intersections, which we discuss in Corollary 6.34.
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Lemma 6.29. Let k = k and d > 2. Let g be the d-th ray sum of f ∈ P with respect to ∂ ∈ S
such that ∂2 y f = 0. Denote I := AnnS(f) and J := AnnS(∂ y f). Let

I :=
(
I + Jα+ (αd − tα− ∂)

)
· T [t]

be the ideal in T [t] defining the associated lower ray family, see Proposition 6.23. Then the
morphism k[t]→ T [t]/I2 is flat if and only if (I2 : ∂) ∩ I ∩ J2 ⊆ I · J .

Proof. We begin with the “if” implication. To prove flatness we will use Proposition 6.20. Take
an element i ∈ I2 ∩ (t − λ). We want to prove that i ∈ I2(t − λ) + I0[t], where I0[t] = I2 ∩ T .
Let J := (I + Jα)T . Subtracting a suitable element of I2(t− λ) we may assume that

i = i1 + i2(αd − tα− ∂) + i3(αd − tα− ∂)2,

where i1 ∈ J 2, i2 ∈ J and i3 ∈ T . We will in fact show that i ∈ I2(t− λ) + J 2[t].
To simplify our notation, let σ = αd−λα−∂. Note that Jσ ⊆ J . We have i1+i2σ+i3σ

2 = 0.
Let j3 := i3σ. We want to apply Lemma 6.22, below we check its assumptions. The ideal J
is homogeneous with respect to α, generated in degrees less than d. Let s ∈ T be an element
satisfying sαd ∈ J . Then s ∈ J , which implies s(λα + ∂) ∈ J . By Lemma 6.22 and i3σ

2 =

j3σ ∈ J we obtain j3αd ∈ J , i.e. i3σαd ∈ J . Applying the same argument to i3αd we obtain
i3α

2d ∈ J , therefore i3 ∈ JT . Then

i3(αd− tα−∂)2− i3σ(αd− tα−∂) = i3α(t−λ)(αd− tα−∂) ∈ J (t−λ)(αd− tα−∂) ⊆ I2(t−λ).

Subtracting this element from i and substituting i2 := i2 + i3σ we may assume i3 = 0. We obtain

0 = i1 + i2σ = i1 + i2(αd − λα− ∂). (6.30)

Let i2 = j2 + v2α, where j2 ∈ S, i.e. it does not contain α. Since i2 ∈ J , we have j2 ∈ I. As
before, we have v2α((αd− tα−∂)−σ) = v2α

2(t−λ) ∈ I2(t−λ), so that we may assume v2 = 0.
Comparing the top α-degree terms of (6.30) we see that j2 ∈ J2. In equation (6.30), com-

paring the terms not containing α, we deduce that j2∂ ∈ I2, thus j2 ∈ (I2 : ∂). Jointly,
j2 ∈ I∩J2∩(I2 : ∂), thus j2 ∈ IJ by assumption. But then j2α ∈ J 2, thus j2(αd−tα−∂) ∈ J 2[t]

and since i1 ∈ J 2, the element i lies in J 2[t] ⊆ I0[t]. Thus the assumptions of Proposition 6.20
are satisfied and the k[t]-module T [t]/I2 is flat.

The “only if” implication is easier: one takes i2 ∈ I ∩ J2 ∩ (I2 : ∂) such that i2 6∈ IJ . On one
hand, the element j := i2(αd − ∂) lies in J 2 and we get that i2(αd − tα − ∂) − j = ti2α ∈ I2.
On the other hand if i2α ∈ I2, then i2α ∈ (I2 + (t)) ∩ T = (J + (αd − ∂))2, which is not the
case.

Remark 6.31. Let us keep the notation of Lemma 6.29. Fix λ ∈ k∗ and suppose that the char-
acteristic of k does not divide d− 1. The supports of the fibers of S[t]/I and S[t]/I2 over t = λ

are finite and equal. In particular, from Proposition 6.26 it follows that the dimension of the fiber
of I/I2 over t−λ is equal to tan(f)+(d−1) tan(∂ y f), where tan(h) = dimk AnnS(h)/AnnS(h)2

is the dimension of the tangent space to the point of the Hilbert scheme corresponding to
SpecS/AnnS(h), see Example 4.12.
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Theorem 6.32. Let k = k. Suppose that a polynomial f ∈ P corresponds to an unobstructed
(see Definition 6.27) algebra Apolar (f). Let ∂ ∈ S be such that ∂2 y f = 0 and the algebra
Apolar (∂ y f) is smoothable and unobstructed. The following are equivalent:

1. the d-th ray sum of f with respect to ∂ is unobstructed for some d such that 2 6 d 6 char k
(or 2 6 d if char k = 0).

1a. the d-th ray sum of f with respect to ∂ is unobstructed for all d such that 2 6 d 6 char k
(or 2 6 d if char k = 0).

2. The k[t]-module I/I2 is flat, where I is the ideal defining the lower ray family of the d-th
ray sum for some 2 6 d 6 char k (or 2 6 d if char k = 0).

2a. The k[t]-module I/I2 is flat, where I is the ideal defining the lower ray family of the d-th
ray sum for every 2 6 d 6 char k (or 2 6 d if char k = 0).

3. The family k[t] → S[t]/I2 is flat, where I is the ideal defining the lower ray family of the
d-th ray sum for some 2 6 d 6 char k (or 2 6 d if char k = 0).

3a. The family k[t] → S[t]/I2 is flat, where I is the ideal defining the lower ray family of the
d-th ray sum for every 2 6 d 6 char k (or 2 6 d if char k = 0).

4. The following inclusion (equivalent to equality) of ideals in S holds: I∩J2∩(I2 : ∂) ⊆ I ·J ,
where I = AnnS(f) and J = AnnS(∂ y f).

Proof. It is straightforward to check that the inclusion I · J ⊆ I ∩ J2 ∩ (I2 : ∂) in Point 4 always
holds, thus the other inclusion is equivalent to equality.
3. ⇐⇒ 4. ⇐⇒ 3a. The equivalence of Point 3 and Point 4 follows from Lemma 6.29. Since
Point 4 is independent of d, the equivalence of Point 4 and Point 3a also follows.

2. ⇐⇒ 3. and 2a. ⇐⇒ 3a. We have an exact sequence of k[t]-modules

0→ I/I2 → S[t]/I2 → S[t]/I→ 0.

Since S[t]/I is a flat k[t]-module by Proposition 6.23, we see from the long exact sequence of Tor

that I/I2 is flat if and only if S[t]/I2 is flat.
1. ⇐⇒ 2. and 1a. ⇐⇒ 2a. By assumption, char k does not divide d− 1. Let g ∈ P [x] be

the d-th ray sum of f with respect to ∂. We may consider Apolar (g), Apolar (f), Apolar (∂ y f)

as quotients of a polynomial ring T , corresponding to points of the Hilbert scheme. Assume 2.
(resp. 2a.). The dimension of the tangent space at Apolar (g) is dimk I/I

2⊗k[t]/t = dimk I/(I
2+

(t)). By Remark 6.31 it is equal to the sum of the dimension of the tangent space at Apolar (f)

and (d− 1) times the dimension of the tangent space to Apolar (∂ y f). Since both algebras are
smoothable and unobstructed we conclude that Apolar (g) is also unobstructed. On the other
hand, assuming 1. (resp. 1a.), we have Apolar (g) is unobstructed, so I/I2 is a finite k[t]-module
such that the degree of the fiber I/I2 ⊗ k[t]/m does not depend on the choice of the maximal
ideal m ⊆ k[t]. Then I/I2 is flat by [Har77, Exercise II.5.8] or [Har77, Theorem III.9.9] applied
to the associated sheaf.

Remark 6.33. The condition from Point 4 of Theorem 6.32 seems very technical. It is enlight-
ening to look at the images of (I2 : ∂) ∩ I and I · J in I/I2. The image of (I2 : ∂) ∩ I is the
annihilator of ∂ in I/I2. This annihilator clearly contains (I : ∂)·I/I2 = J ·I/I2. This shows that
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if the S/I-module I/I2 is “nice”, for example free, we should have an equality (I2 : ∂)∩ I = I ·J .
More generally this equality is connected to the syzygies of I/I2.

In the remainder of this subsection we will prove that in several situations the conditions of
Theorem 6.32 are satisfied.

Corollary 6.34. We keep the notation and assumptions of Theorem 6.32. Suppose further
that the algebra S/I = Apolar (f) is a complete intersection. Then the equivalent conditions of
Theorem 6.32 are satisfied.

Proof. Since S/I is a complete intersection, it is unobstructed by Theorem 4.36. Moreover, the
S/I-module I/I2 is free, see e.g. [Mat86, Theorem 16.2] and the discussion above it or [Eis95,
Exercise 17.12a]. This implies that

(I2 : ∂) ∩ I = (I : ∂)I = JI,

because J = AnnS(∂ y f) = {s ∈ S | s∂ y f = 0} = (AnnS(f) : ∂) = (I : ∂). Thus the condition
from Point 4 of Theorem 6.32 is satisfied.

Example 6.35 ((1, 4, 5, 3, 1)). Let k = k and char k 6= 2.
If A = S/I is a complete intersection, then it is unobstructed by Theorem 4.36. The apolar

algebras of monomials are complete intersections, therefore the assumptions of Theorem 6.32
are satisfied e.g. for f = x

[2]
1 x

[2]
2 x3 and ∂ = α2

2. Now Corollary 6.34 implies that the equivalent
conditions of the Theorem are also satisfied, thus

x
[2]
1 x

[2]
2 x3 + x

[d]
4 x

[2]
1 x3 =

(
x

[2]
2 x3

)(
x

[2]
1 + x

[d]
4

)
is unobstructed for every d > 2, provided char k = 0 or d 6 char k. Similarly, x[2]

1 x2x3 + x
[2]
4 x1 is

unobstructed and has Hilbert function (1, 4, 5, 3, 1).

Example 6.36 ((1, 4, 4, 1)). Let k = k and char k 6= 2.
Let f =

(
x

[2]
1 + x

[2]
2

)
x3, then AnnS(f) = (α2

1−α2
2, α1α2, α

2
3) is a complete intersection. Take

∂ = α1α3, then ∂ y f = x1 and ∂2 y f = 0, thus

f + x
[2]
4 ∂ y f = x

[2]
1 x3 + x

[2]
2 x3 + x

[2]
4 x1

is unobstructed. Note that, by Remark 6.19 or by a direct computation, the apolar algebra of
this polynomial has Hilbert function (1, 4, 4, 1).

Below in Proposition 6.37 we use a composition of ray families, in particular to produce
an example of a smoothable subscheme R ⊂ A5 corresponding to a local Gorenstein algebra A
with HA = (1, 5, 5, 1) and such that R is unobstructed. Such an example was first obtained
independently in [Jel14] and [BCR12].

Proposition 6.37. Let f ∈ P be such that Apolar (f) is a complete intersection.
Let d be a natural number. Suppose that k = k and char k = 0 or d 6 char k. Take ∂ ∈ S

such that ∂2 y f = 0 and Apolar (∂ y f) is also a complete intersection. Let g ∈ P [y] be the d-th
ray sum f with respect to ∂, so that g = f + y[d]∂ y f .
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Suppose that deg ∂ y f > 0. Let β be the variable dual to y and σ ∈ S be such that σ y (∂ y f) =

1. Take ϕ := σβ ∈ T = S[β]. Let h be any ray sum of g with respect to ϕ. Explicitly

h = f + y[d]∂ y f + z[m]y[d−1] for some m > 2.

Then the algebra Apolar (h) is unobstructed.

Proof. First note that ϕ y g = yd−1 and so ϕ2 y g = σ y yd−2 = 0, since σ ∈ mS . Therefore indeed
h has the presented form.

From Corollary 6.34 it follows that Apolar (g) is unobstructed. Since ϕ y g = yd−1, the algebra
Apolar (ϕ y g) is unobstructed as well. Now by Theorem 6.32 it remains to prove that

(I2
g : ϕ) ∩ Ig ∩ J2

g ⊆ IgJg, (6.38)

where Ig = AnnT (g), Jg = AnnT (ϕ y g). The rest of the proof is a technical verification of this
claim. Denote If := AnnS(f) and Jf := AnnS(∂ y f); note that we take annihilators in S. By
Proposition 6.17 we have Ig = IfT +βJfT +(βd−∂)T . Consider γ ∈ T lying in (I2

g : ϕ)∩Ig∩J2
g .

Write γ = γ0 + γ1β + γ2β
2 + . . . where γi ∈ S, so they do not contain β. We will prove that

γ ∈ IgJg.
First, since (βd − ∂)2 ∈ IgJg we may reduce powers of β in γ using this element and so we

assume γi = 0 for i > 2d. Let us take i < 2d. Since γ ∈ J2
g =

(
AnnT (yd−1)

)2
=
(
mS , β

d
)2 we see

that γi ∈ mS ⊆ Jg. For i > d we have βi ∈ Ig, so that γiβi ∈ JgIg and we may assume γi = 0.
Moreover, βdγd − ∂γd ∈ IgJg so we may also assume γd = 0, obtaining

γ = γ0 + · · ·+ γd−1β
d−1.

From the explicit description of Ig in Proposition 6.17 it follows that γi ∈ Jf for all i.
Let M = I2

g ∩ϕT = I2
g ∩ JfβT . Then for γ as above we have γϕ ∈M , so we will analyse the

module M . Recall that

I2
g = I2

f · T + βIfJf · T + β2J2
f · T + (βd − ∂)If · T + (βd − ∂)βJf · T + (βd − ∂)2 · T. (6.39)

We claim that
M ⊆ I2

f · T + βIfJf · T + β2J2
f · T + (βd − ∂)βJf · T. (6.40)

We have I2
g ⊆ Jf · T + (βd − ∂)2 · T , so if an element of I2

g lies in Jf · T , then its coefficient
standing next to (βd − ∂)2 in Presentation (6.39) is an element of Jf by Lemma 6.22. Since
Jf · (βd − ∂) ⊆ If + βJf , we may ignore the term (βd − ∂)2:

M ⊆ I2
f · T + βIfJf · T + β2J2

f · T + (βd − ∂)If · T + (βd − ∂)βJf · T. (6.41)

Choose an element of M and let i ∈ If · T be the coefficient of this element standing next to
(βd − ∂). Since IfT ∩ βT ⊆ JfT we may assume that i does not contain β, i.e. i ∈ If . Now, if
an element of the right hand side of (6.41) lies in β · T , then the coefficient i satisfies i · ∂ ∈ I2

f ,
so that i ∈ (I2

f : ∂). Since If is a complete intersection ideal the S/If -module If/I2
f is free, see

Corollary 6.34 for references. Then we have (I2
f : ∂) = (If : ∂)If and i ∈ (If : ∂)If = IfJf .

Then i · (βd − ∂) ⊆ I2
f + β · If · Jf and so the Inclusion (6.40) is proved. We come back to the

proof of proposition.
From Lemma 6.22 applied to the ideal J2

fT and the element β(βd − ∂) and the fact that
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β∂J2
f ⊆ I2

g we compute that M ∩ {δ | degβ δ 6 d} is a subset of I2
f · T + β · IfJf · T + β2J2

f · T .
Then γϕ = γβσ lies in this set, so that γ0 ∈ (IfJf : σ) and γn ∈ (J2

f : σ) for n > 1. Since
Apolar (f) and Apolar (∂ y f) are complete intersections, we have γ0 ∈ IfmS and γi ∈ JfmS for
i > 1. It follows that γ ∈ IgmS ⊆ IgJg.

Example 6.42 ((1, 5, 5, 1)). Let k = k and char k 6= 2.
Let f ∈ P be a polynomial such that A = Apolar (f) is a complete intersection. Take ∂ such

that ∂ y f = x1 and ∂2 y f = 0. Then the apolar algebra of f +y
[d]
1 x1 +y

[m]
2 y

[d−1]
1 is unobstructed

for every d,m > 2 (less or equal to char k if the characteristic is non-zero). In particular

g = f + y
[2]
1 x1 + y

[2]
2 y1

is unobstructed.
Continuing Example 6.36, if f = x

[2]
1 x3 + x

[2]
2 x3, then x

[2]
1 x3 + x

[2]
2 x3 + x

[2]
4 x1 + x

[2]
5 x4 is

unobstructed. The apolar algebra of this polynomial has Hilbert function (1, 5, 5, 1).
Let g = x

[2]
1 x3 + x

[2]
2 x3 + x

[2]
4 x1, then x

[2]
1 x3 + x

[2]
2 x3 + x

[2]
4 x1 + x

[2]
5 x4 is a ray sum of g with

respect to ∂ = α4α1. Let I := AnnS(g) and J := (I : ∂). In contrast with Corollary 6.34 and
Example 6.36 one may check that all three terms I, J2 and (I2 : ∂) are necessary to obtain
equality in the inclusion (6.38) for g and ∂, i.e. no two ideals of I, J2, (I2 : ∂) have intersection
equal to IJ ; we need to intersect all three of them, to obtain IJ .

Example 6.43 ((1, 4, 4, 3, 1, 1)). Let k = k and char k 6= 2.
Let f = x

[5]
1 + x

[4]
2 . Then the annihilator of f in k[α1, α2] is a complete intersection, and this

is true for every f ∈ kdp[x1, x2]. Let g = f + x
[2]
3 x

[2]
1 be the second ray sum of f with respect to

α3
1 and h = g+x

[2]
4 x3 be the second ray sum of g with respect to α3α

2
1. Then the apolar algebra

of
h = x

[5]
1 + x

[4]
2 + x

[2]
3 x

[2]
1 + x

[2]
4 x3

is unobstructed. It has Hilbert function (1, 4, 4, 3, 1, 1).

Remark 6.44. The assumption deg ∂ y f > 0 in Proposition 6.37 is necessary: the polynomial
h = x1x2x3 +x

[2]
4 +x

[2]
5 x4 is not unobstructed, since it has degree 12 and tangent space dimension

67 > 12 ·5 over k = Q. The polynomial g is the fourth ray sum of x1x2x3 with respect to α1α2α3

and h is the second ray sum of g = x1x2x3 + x
[2]
4 with respect to α4, thus this example satisfies

the assumptions of Proposition 6.37 except for deg ∂ y f > 0. Note that in this case α2
4 y g 6= 0.

6.4 Proof of Theorem 6.1 — preliminaries

This section is the starting point of the proof of Theorem 6.1 — irreducibility of the Gorenstein
locus for small degrees. It contains the necessary preliminaries and it is of limited interest of
its own. We employ Macaulay’s inverse systems, as described in Chapter 3, and in particular
the symmetric decomposition ∆• of the Hilbert function, see Section 3.4, Lemma 2.41 and the
standard form of the dual generator, see Section 3.5.

Recall from Proposition 4.62 that for a constructible V ⊂ P6d with dimk Apolar (f) = r for
all f ∈ V , we have an associated morphism V → Hilbr (SpecS). Consider f ∈ P6d. The apolar
algebra of f has degree at most s if and only if the space S6df has dimension at most s. In
coordinates, this is a rank 6 s condition, so it is closed and we obtain the following Remark 6.45.

101



Remark 6.45. Let d be a positive integer and V ⊆ P6d be a constructible subset. Then the
set U , consisting of f ∈ V such that the apolar algebra of f has the maximal degree (among the
elements of V ), is open in V . In particular, if V is irreducible then U is also irreducible.

Example 6.46. Let P>4 = kdp[x1, . . . , xn]>4. Suppose that the set V ⊆ P>4 parameterizing
algebras with fixed Hilbert function H is irreducible. Then also the set W of polynomials
f ∈ P such that f>4 ∈ V is irreducible. Let e := H(1) and suppose that the symmetric
decomposition of H, see Definition 2.37, has zero rows ∆d−3 = (0, 0, 0, 0) and ∆d−2 = (0, 0, 0),
where d = max{i | H(i) 6= 0}. We claim that general element of W corresponds to an algebra B
with Hilbert function

Hmax = H + (0, n− e, n− e, 0).

Indeed, since we only vary the degree three part of the polynomial, the function HB has the form
H + (0, a, a, 0) + (0, b, 0) for some a, b such that a+ b 6 n− e. Therefore algebras with Hilbert
function Hmax are precisely the algebras of maximal possible degree. Since Hmax is attained for
f>4 + x

[3]
e+1 + . . .+ x

[3]
n , the claim follows from Remark 6.45.

We now state a number of lemmas concerning the Hilbert function HA of a local Gorenstein
algebra A. These lemmas are used in the proof and themselves are probably of little interest
other than an exercise in properties of the symmetric decomposition ∆• of HA.

Lemma 6.47. Suppose that (A,m,k) is a finite local Gorenstein algebra of socle degree d > 3

such that ∆A,d−2 = (0, 0, 0). Then degA > 2 (HA(1) + 1). Furthermore, equality occurs if and
only if d = 3.

Proof. Consider the symmetric decomposition ∆• = ∆A,• of HA. From symmetry, see Defini-
tion 2.37, we have

∑
j ∆0 (j) > 2 + 2∆0 (1) with equality only if ∆0 has no terms between 1

and d − 1 i.e. when d = 3. Similarly
∑

j ∆i (j) > 2∆i (1) for all 1 6 i < d − 2. Summing these
inequalities we obtain

degA =
∑
i<d−2

∑
j

∆i (j) > 2 +
∑
i<d−2

2∆i (1) = 2 + 2HA(1).

Lemma 6.48. Let (A,m,k) be a finite local Gorenstein algebra of degree at most 14. Suppose
that 4 6 HA(1) 6 5. Then HA(2) 6 5.

Proof. Let d be the socle degree of A. Suppose HA(2) > 6. Then HA(3) +HA(4) + . . . 6 3, thus
d ∈ {3, 4, 5}. The cases d = 3 and d = 5 immediately lead to contradiction — it is impossible
to get the required symmetric decomposition. We will consider the case d = 4. In this case
HA = (1, ∗, ∗, ∗, 1) and its symmetric decomposition is (1, e, q, e, 1)+(0,m,m, 0)+(0, t, 0). Then
e = HA(3) 6 14 − 2 − 4 − 6 = 2. Since HA(1) < HA(2) by assumption, we have e < q. This
can only happen if e = 2 and q = 3. But then 14 > degA = 9 + 2m + t, thus m 6 2 and
HA(2) = m+ q 6 5. A contradiction.

Lemma 6.49. There does not exist a finite local Gorenstein algebra (A,m,k) with Hilbert func-
tion

(1, 4, 3, 4, 1, . . . , 1).

Proof. See [Iar94, pp. 99-100] for the proof or [CJN16, Lemma 5.3] for a generalization. We
provide a sketch for completeness. Suppose such an algebra A exists and fix its dual generator
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f ∈ k[x1, . . . , x4]d in the standard form (Definition 3.49). Let I = Ann(f). The proof relies
on two observations. First, the leading term of f is, up to a constant, equal to x[d]

1 and in fact
we may take f = x

[d]
1 + f64. Moreover, analysing the symmetric decomposition directly, we

have ∆A,d−2 = ∆A,d−3 = 0. Using Proposition 3.43, we derive that the Hilbert functions of
Apolar

(
x

[d]
1 + f4

)
and Apolar (f) are equal. Second, h(3) = 4 = 3〈2〉 = h(2)〈2〉 is the maximal

growth, so arguing similarly as in Lemma 2.25 we may assume that the degree two part I2 of the
ideal of grA is equal to ((α3, α4)S)2. Then any derivative of α3 y f4 is a derivative of x[d]

1 , i.e.,
a power of x1. It follows that α3 y f4 itself is a power of x1; similarly α4 y f4 is a power of x1.
It follows that f4 ∈ x[3]

1 · k[x3, x4] + k[x1, x2], but then f4 is annihilated by a linear form, which
contradicts the fact that f is in the standard form.

The following lemmas essentially deal with the cleavability (Definition 6.2) in the case
(1, 4, 4, 3, 1, 1). Here the method is straightforward, but the cost is that the proof is broken
into several cases and quite long.

Lemma 6.50. Let f = x
[5]
1 + f4 ∈ P be a polynomial such that HApolar(f)(2) < HApolar(f4)(2).

Let Q = S2 ∩Ann(x
[5]
1 ) ⊆ S2. Then x

[2]
1 ∈ Qf4 and Ann(f4)2 ⊆ Q.

Proof. Note that dimQf4 > dimS2f4 − 1 = HApolar(f4)(2) − 1. If Ann(f4)2 6⊆ Q, then there
is a q ∈ Q such that α2

1 − q ∈ Ann(f4). Then Qf4 = S2f4 and so we obtain HApolar(f)(2) =

HApolar(f4)(2), which is a contradiction. Suppose that x[2]
1 6∈ Qf4. Then the degree two partials

of f contain a direct sum of kx[2]
1 and Qf4, thus they are at least HApolar(f4)(2)-dimensional, so

that HApolar(f)(2) > HApolar(f4)(2), a contradiction.

Lemma 6.51. Let f = x
[5]
1 + f4 ∈ P be a polynomial such that HApolar(f) = (1, 3, 3, 3, 1, 1)

and HApolar(f4) = (1, 3, 4, 3, 1). Suppose that α3
1 y f4 = 0 and that (Ann(f4))2 defines a complete

intersection. Then Apolar (f4) and Apolar (f) are complete intersections.

Proof. Let I := Ann(f4). First we will prove that Ann(f4) = (q1, q2, c), where 〈q1, q2〉 = I2

and c ∈ I3. Then Apolar (f4) is a complete intersection. By assumption, q1, q2 form a regular
sequence. Thus there are no syzygies of degree at most three in the minimal resolution of
Apolar (f4). By the symmetry of the minimal resolution, see [Eis95, Corollary 21.16], there are
no generators of degree at least four in the minimal generating set of I. Thus I is generated in
degree two and three. But HS/(q1,q2)(3) = 4 = HS/I(3) + 1, thus there is a cubic c, such that
I3 = kc⊕ (q1, q2)3, then (q1, q2, c) = I, thus Apolar (f4) = S/I is a complete intersection.

Let Q := Ann(x
[5]
1 ) ∩ S2 ⊆ S2. By Lemma 6.50 we have q1, q2 ∈ Q, so that α3

1 ∈ I \ (q1, q2),
then I = (q1, q2, α

3
1). Moreover, by the same lemma, there exists σ ∈ Q such that σ y f4 = x

[2]
1 .

Now we prove that Apolar (f) is a complete intersection. Let J := (q1, q2, α
3
1−σ) ⊆ Ann(f).

We will prove that S/J is a complete intersection. Since q1, q2, α3
1 is a regular sequence,

the scheme SpecS/(q1, q2) is a cone over a scheme of dimension zero and α3
1 does not vanish

identically on any of its components. Since σ has degree two, α3
1 − σ also does not vanish

identically on any of the components of SpecS/(q1, q2), thus SpecS/J has dimension zero, so it
is a complete intersection (see also [VV78, Corollary 2.4, Remark 2.5]). Then the quotient by J
has degree at most deg(q1) deg(q2) deg(α3

1 − σ) = 12 = dimk S/Ann(f). Since J ⊆ Ann(f), we
have Ann(f) = J and Apolar (f) is a complete intersection.
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Lemma 6.52. Let f = x
[5]
1 + f4 + g ∈ P , where deg g 6 3, be a polynomial such that

HApolar(f>4) = (1, 3, 3, 3, 1, 1) and HApolar(f4) = (1, 3, 4, 3, 1). Suppose that α3
1 y f4 = 0 and

that (Ann(f4))2 does not define a complete intersection. Then Apolar (f) is cleavable.

Proof. Let 〈q1, q2〉 = (Ann(f4))2. Since q1, q2 do not form a regular sequence, we have, after a
linear transformation ϕ, two possibilities: q1 = α1α2 and q2 = α1α3 or q1 = α2

1 and q2 = α1α2.
Let β be the image of α1 under ϕ, so that β3 y f4 = 0.

Suppose first that q1 = α1α2 and q2 = α1α3. If β is up to constant equal to α1, then
α1α2, α1α3, α

3
1 ∈ Ann(f4), so that α2

1 is in the socle of Apolar (f4), a contradiction. Thus we
may assume, after another change of variables, that β = α2, q1 = α1α2 and q2 = α1α3. Then
f = x

[5]
2 +f4 + ĝ = x

[5]
2 +x

[4]
1 + ĥ+ ĝ, where ĥ ∈ kdp[x2, x3] and deg(ĝ) 6 3. Then by Lemma 3.76

we may assume that α2
1 y (f − x[4]

1 ) = 0, so Apolar (f) is cleavable by Corollary 6.11.
Suppose now that q1 = α2

1 and q2 = α1α2. If β is not a linear combination of α1, α2, then
we may assume β = α3. Let m in f4 be any term divisible by x1. Since q1, q2 ∈ Ann(f4), we
see that m = λx1x

[3]
3 for some λ ∈ k. But since β3 ∈ Ann(f4), we have m = 0. Thus f4 does

not contain x1, so HApolar(f4)(1) < 3, a contradiction. Thus β ∈ 〈α1, α2〉. Suppose β = λα1 for
some λ ∈ k∗. Applying Lemma 6.50 to f>4 we see that x[2]

1 is a derivative of f4, so β2 y f4 6= 0,
but β2 y f4 = λ2q1 y f4 = 0, a contradiction. Thus β = λ1α1 + λ2α2 and changing α2 we may
assume that β = α2. This substitution does not change 〈α2

1, α1α2〉. Now we directly check that
f4 = κ1x1x

[3]
3 + κ2x

[2]
2 x

[2]
3 + κ3x2x

[3]
3 + κ4x

[4]
3 , for some κ• ∈ k. Since x1 is a derivative of f ,

we have κ1 6= 0. Then a non-zero element κ2α1α3 − κ1α
2
2 annihilates f4. A contradiction with

HApolar(f4)(2) = 4.

Lemma 6.53. Let a quartic f4 ∈ P be such that HApolar(f4) = (1, 3, 3, 3, 1) and α3
1 y f4 = 0. Let

C = Apolar
(
x

[5]
1 + f4

)
, then HC(2) > 4.

Proof. Let Q = Ann(x
[5]
1 )2 ⊆ S2. Let I denote the apolar ideal of f4. By Proposition 4.68 we

see that I is minimally generated by three elements of degree two and two elements of degree
four. In particular, there are no cubics in the generating set. Since α3

1 ∈ I3, there is an element
in σ ∈ I2 such that σ = α2

1 − q, where q ∈ Q. Therefore Q y f4 = S2 y f4. Moreover, σ does not
annihilate x[2]

1 , so that x[2]
1 is not a partial of f4. We see that x[2]

1 and Q y f4 are leading forms
of partials of x[5]

1 + f4, thus

HC(2) > 1 + dim(Q y f4) = 1 + dim(S2 y f4) = 1 +HApolar(f4)(2) = 4.

Remark 6.54. In the setting of Lemma 6.53, it is not hard to deduce that HC = (1, 3, 4, 3, 1, 1)

by analysing the possible symmetric decompositions. We do not need this stronger statement,
so we omit the proof.

Lemma 6.55. Let char k 6= 2. Let (A,m,k) be a finite local Gorenstein algebra with Hilbert
function (1, 4, 4, 3, 1, 1). Then A is cleavable.

Proof. Using Corollary 5.23 we may assume k = k. Let d = 5 be the socle degree of A. If
∆A,d−2 6= (0, 0, 0) then A is cleavable by Corollary 6.12, so we assume ∆A,d−2 = (0, 0, 0). The
only possible symmetric decomposition of the Hilbert function HA with ∆A,d−2 = (0, 0, 0) is

(1, 4, 4, 3, 1, 1) = (1, 1, 1, 1, 1, 1) + (0, 2, 2, 2, 0) + (0, 1, 1, 0). (6.56)
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Let us take a dual generator f of A. We assume that f is in the standard form: f = x
[5]
1 +f4 +g,

where f4 ∈ kdp[x1, x2, x3] and deg g 6 3. By Lemma 3.76 we assume that α3
1 y f4 = 0. Let

C = Apolar
(
x

[5]
1 + f4

)
, then HC = (1, 3, 3, 3, 1, 1) by Proposition 3.43 and Equation (6.56). We

analyse the possible Hilbert functions of B = Apolar (f4). Suppose first that HB(1) 6 2. Since
HC(1) = 3, we have HB(1) = 2 and, up to coordinate change, we have f4 ∈ kdp[x2, x3]. Then by
Lemma 3.76 we may further assume that α2

1 y (f − x[5]
1 ) = 0. Then Proposition 6.11 asserts that

A = Apolar (f) is cleavable.
Suppose now that HB(1) = 3. Since x[5]

1 is annihilated by a codimension one space of
quadrics, we have HB(2) 6 HA(2) + 1, so there are two possibilities: HB = (1, 3, 3, 3, 1) or
HB = (1, 3, 4, 3, 1). By Lemma 6.53 the case HB = (1, 3, 3, 3, 1) is not possible, so that HB =

(1, 3, 4, 3, 1). Now by Lemma 6.52 we may consider only the case when (Ann(f4))2 is a complete
intersection, then by Lemma 6.51 we have that C is a complete intersection. In this case we will
actually prove that A is smoothable.

By Example 6.46 the set W of polynomials f with fixed leading polynomial f>4 and Hilbert
function HApolar(f) = (1, 4, 4, 3, 1, 1) is irreducible. Consider the apolar algebra B of the polyno-
mial x[5]

1 + f4 + x
[2]
4 x1 ∈ W . Since α3

1 y f4 = 0, this polynomial is a ray sum (Definition 6.16).
By Proposition 6.26, the scheme SpecB is the limit of smoothable schemes

Spec Apolar
(
x

[5]
1 + f4

)
t Spec Apolar (x1) ,

thus it is smoothable. By Corollary 6.34 the scheme SpecB is unobstructed. By Lemma 6.28,
the apolar algebra of every element of W is smoothable; in particular A is smoothable.

6.5 Proof of Theorem 6.1 — smoothability results

In this section we prove that all Gorenstein algebras of degree at most 14 are smoothable, with
the exception of local algebras with Hilbert function (1, 6, 6, 1). As in the previous section, our
pivotal tool are Macaulay’s inverse systems, see Chapter 3, and in particular the symmetric
decomposition ∆• of the Hilbert function, see Section 3.4, Lemma 2.41 and the standard form
of the dual generator, see Section 3.5.

Proposition 6.57. Let char k 6= 2. Let (A,m,k) be a finite local Gorenstein algebra of socle
degree at most two. Then A is smoothable.

Proof. Using Corollary 5.23 we assume k = k. If the socle degree is less than two, then A =

Apolar (x1) = k[ε]/ε2 or A = Apolar (1) = k, so A is smoothable. If A has socle degree two, then
HA = (1, n, 1) for some n and A ' Apolar (q), where q ∈ kdp[x1, . . . , xn] is a full rank quadric.
Then q is diagonalizable and A is smoothable by a repeated use of Corollary 6.12.

Proposition 6.58. Let char k 6= 2. Let (A,m,k) be a finite local Gorenstein algebra of socle
degree three and HA(2) 6 5. Then A is smoothable.

Proof. Using Corollary 5.23 we assume k = k. Suppose that the Hilbert function of A is
(1, n, e, 1). By Proposition 3.78 the dual generator of Amay be put in the form f+x

[2]
e+1+· · ·+x[2]

n ,
where f ∈ k[x1, . . . , xe]. If e < n, then by Corollary 6.12 the scheme SpecA is cleavable; it is a
limit of schemes of the form

Spec Apolar (f) t (Speck)tn−e.
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Thus it is smoothable if and only if B = Apolar (f) is. We have reduced to the case n = e.
Let e := HA(2), then HB = (1, e, e, 1). If HB(1) = e 6 3 then B is smoothable by Corol-

lary 5.25. It remains to consider e = 4, 5. The set of points corresponding to algebras with Hilbert
function (1, e, e, 1) is irreducible in HilbGore (A2e+2) by the argument given in Example 5.38. By
Lemma 6.28, it is enough to find an unobstructed point in this set. The cases e = 4 and e = 5

are considered in Example 6.36 and Example 6.42 respectively.

Remark 6.59. The claim of Proposition 6.58 holds true if we replace the assumption HA(2) 6 5

by HA(2) = 7, thanks to the smoothability of finite local Gorenstein algebras with Hilbert
function (1, 7, 7, 1), see [BCR12]. We will not use this result.

Lemma 6.60. Let char k 6= 2. Let (A,m,k) be a finite local Gorenstein algebra with Hilbert
function HA beginning with HA(0) = 1, HA(1) = 4, HA(2) = 5, HA(3) 6 2. Then A is
smoothable.

Proof. Using Corollary 5.23 we may assume k = k. Let f be a dual generator of A in the
standard form. From Macaulay’s Growth Theorem 2.21 it follows that HA(m) 6 2 for all m > 3,
so that HA = (1, 4, 5, 2, 2, . . . , 2, 1, . . . , 1). Let d be the socle degree of A.

Let ∆A,d−2 = (0, q, 0) be the (d − 2)-nd row of the symmetric decomposition of HA. If
q > 0, then by Corollary 6.12 the scheme SpecA is cleavable; it is a limit of schemes of the form
SpecBtSpeck, such thatHB(1) = HA(1)−1 = 3. Then SpecB is smoothable by Corollary 5.25.
Then SpecA is also smoothable. In the following we assume that q = 0.

We claim that f>4 ∈ kdp[x1, x2]. Indeed, the symmetric decomposition of the Hilbert function
is either (1, 1, . . . , 1) + (0, 1, . . . , 1, 0) + (0, 0, 1, 0, 0) + (0, 2, 2, 0) or (1, 2, . . . , 2, 1) + (0, 0, 1, 0, 0) +

(0, 2, 2, 0). In particular
∑

i>3 ∆i (1) = 2, so that f>4 ∈ kdp[x1, x2] and HApolar(f>4)(1) = 2.
Hence, the form x1 is a derivative of f>4, i.e., there exist a ∂ ∈ S such that ∂ y f>4 = x1. Then
we may assume ∂ ∈ m3

S , so ∂
2 y f = 0.

Let us fix f>4 and consider the set of all polynomials of the form h = f>4 + g, where
g ∈ kdp[x1, x2, x3, x4] has degree at most three. By Example 6.46 the apolar algebra of a general
such polynomial will have Hilbert function HA. The set of polynomials h with fixed h>4 = f>4,
such that HApolar(h) = HA, is irreducible. This set contains h := f>4 + x

[2]
3 x1 + x

[2]
4 x3. Since

Apolar (f>4) is a complete intersection, it follows from Example 6.42 that Spec Apolar (h) is
unobstructed. The claim follows from Lemma 6.27.

The following Theorem 6.61 generalizes numerous earlier smoothability results on stretched
(by Sally, see [Sal79]), 2-stretched (by Casnati and Notari, see [CN16]) and almost-stretched (by
Elias and Valla, see [EV11]) algebras. It is important to understand that, in contrast with the
mentioned papers, it avoids a full classification of algebras. In the course of the proof it gives some
partial classification. To the author’s knowledge, this is the strongest result on smoothability of
finite Gorenstein schemes, with no restrictions on the degree.

Theorem 6.61. Let char k 6= 2. Let (A,m, k) be a finite local Gorenstein algebra with Hilbert
function HA satisfying HA(2) 6 5 and HA(3) 6 2. Then A is smoothable.

Proof. Using Corollary 5.23 we assume k = k. We proceed by induction on degA, the case
degA = 1 being trivial. If A has socle degree three, then the result follows from Proposition 6.58.
Suppose that A has socle degree d > 4.

Let f be a dual generator of A in the standard form. If the symmetric decomposition of HA

has a term ∆d−2 = (0, q, 0) with q 6= 0, then Corollary 6.12 implies that SpecA is a limit of
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schemes of the form SpecBtSpeck, where B satisfies the assumptionsHB(2) 6 5 andHB(2) 6 2

on the Hilbert function. Then B is smoothable by induction, so also A is smoothable. Further
in the proof we assume that ∆A,d−2 = (0, 0, 0).

We now investigate the symmetric decomposition of the Hilbert function HA of the algebra A.
Macaulay’s Growth Theorem 2.21 asserts that HA = (1, n,m, 2, 2, . . . , 2, 1, . . . , 1), where the
number of “2” is possibly zero. If follows that the possible symmetric decompositions of the
Hilbert function are

1. (1, 2, 2, . . . , 2, 1) + (0, 0, 1, 0, 0) + (0, n− 3, n− 3, 0),

2. (1, 1, 1 . . . , 1, 1) + (0, 1, 1, . . . , 1, 0) + (0, 0, 1, 0, 0) + (0, n− 3, n− 3, 0),

3. (1, 1, 1 . . . , 1, 1) + (0, 1, 2, 1, 0) + (0, n− 3, n− 3, 0),

4. (1, . . . , 1) + (0, n− 1, n− 1, 0),

5. (1, 2, . . . , 2, 1) + (0, n− 2, n− 2, 0),

6. (1, . . . , 1) + (0, 1, . . . , 1, 0) + (0, n− 2, n− 2, 0),

and that the decomposition is uniquely determined by the Hilbert function. In all cases we have
HA(1) 6 HA(2) 6 5, so f ∈ kdp[x1, . . . , x5]. Let us analyse the first three cases. In each of them
we have HA(2) = HA(1) + 1. If HA(1) 6 3, then A is smoothable by Corollary 5.25. Suppose
HA(1) > 4. Since HA(2) 6 5, we have HA(2) = 5 and HA(1) = 4. In this case the result follows
from Lemma 6.60 above.

It remains to analyse the three remaining cases. The proof is similar to the proof of
Lemma 6.60, however here it essentially depends on induction. Let f>4 be the sum of homoge-
neous components of f that have degree at least four. Since f is in the standard form, we have
f>4 ∈ kdp[x1, x2]. By Proposition 3.43, the decomposition of the Hilbert function Apolar (f>4)

is one of the decompositions (1, . . . , 1), (1, 2 . . . , 2, 1), (1, . . . , 1) + (0, 1, . . . , 1, 0), depending on
the decomposition of the Hilbert function of Apolar (f).

Let us fix a vector ĥ = (1, 2, 2, 2, . . . , 2, 1, 1, . . . , 1) and take the sets

V1 :=
{
f ∈ k[x1, x2] | HApolar(f) = ĥ

}
and V2 := {f ∈ k[x1, . . . , xn] | f>4 ∈ V1} .

By Proposition 4.67 the set V1 is irreducible and thus V2 is also irreducible. The Hilbert function
of the apolar algebra of a general member of V2 is, by Example 6.46, equal to HA. It remains to
show that the apolar algebra of this general member is smoothable.

Proposition 4.67 implies that the general member of V2 has, after a nonlinear change of
coordinates, the form f = x

[d]
1 + x

[d2]
2 + g for some g of degree at most three. Using Lemma 3.76

we may assume, after another nonlinear change of coordinates, that α2
1 y g = 0.

Let B := Apolar
(
x

[d]
1 + x

[d2]
2 + g

)
. We will show that B is smoothable. Since d > 4 = 2 · 2

Proposition 6.11 shows that B is cleavable. Analysing the fibers of the resulting deformation,
as in Example 6.14, we see that they have the form Spec(B′ × k), where B′ = Apolar (h) and
h = λ−1x

[d−1]
1 + x

[d2]
2 + g. Then HB′(3) = HApolar(h>4)(3) 6 2. Moreover, h ∈ kdp[x1, . . . , x5],

so that HB′(1) 6 5. Now analysing the possible symmetric decompositions of HB′ , which are
listed above, we see that HB′(2) 6 HB′(1) = 5. It follows from induction on the degree that B′

is smoothable, thus B′ × k and B are smoothable.
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Proposition 6.62. Let char k 6= 2. Let (A,m,k) be a finite local Gorenstein algebra of socle
degree four satisfying degA 6 14. Then A is smoothable.

Proof. Using Corollary 5.23 we assume k = k. We proceed by induction on the degree of A. By
Proposition 6.58 we may assume that all algebras of socle degree at most four and degree less
than degA are smoothable.

If ∆A,d−2 = (0, q, 0) with q 6= 0, then by Corollary 6.12 the scheme SpecA is a limit of
schemes of the form SpecA′ t Speck, where A′ has socle degree four. Hence A is smoothable.
Therefore we assume q = 0. Then HA(1) 6 5 by Lemma 6.47. Moreover, we assume HA(1) > 4

since otherwise A is smoothable by Corollary 5.25.
The symmetric decomposition of HA is (1, n,m, n, 1) + (0, p, p, 0) for some n,m, p. Clearly,

n 6 5. A unimodality result by Stanley, see [Sta96, p. 67], asserts that n 6 m. Since degA 6 14,
we have n 6 4 and HA(2) 6 HA(1) 6 5. We have four cases: n = 1, 2, 3, 4 and five possible
shapes of Hilbert functions: HA = (1, ∗, ∗, 1, 1), HA = (1, ∗, ∗, 2, 1), HA = (1, 4, 4, 3, 1), HA =

(1, 4, 4, 4, 1), HA = (1, 4, 5, 3, 1).
The conclusion in the first two cases follows from Theorem 6.61. In the remaining cases we

first look for a suitable irreducible set of dual generators parameterizing algebras with prescribed
HA. We examine the case HA = (1, 4, 4, 3, 1). Consider the locus of f ∈ P = kdp[x1, x2, x3, x4]

in the standard form that are generators of algebras with Hilbert function HA. We claim that
this locus is irreducible. Since the leading form f4 of f from this locus has Hilbert function
(1, 3, 3, 3, 1), the locus of possible leading forms is irreducible by Proposition 4.68. Then the
irreducibility follows from Example 6.46. The irreducibility in the cases HA = (1, 4, 4, 4, 1) and
HA = (1, 4, 5, 3, 1) follows similarly from Proposition 4.69 together with Example 6.46. In the
first two cases we see that f4 is a sum of powers of variables, then Example 6.13 shows that the
apolar algebra A of a general f is cleavable. More precisely, SpecA is limit of schemes of the form
SpecA′ t Speck, where A′ has socle degree at most four (compare Example 6.14). Then SpecA

is smoothable. In the last case Example 6.35 gives an unobstructed algebra in this irreducible
set. By Lemma 6.28 this completes the proof.

Proof of Theorem 6.1. Let A = H0(R,OR). By Theorem 5.1 and Corollary 5.23 it is enough to
consider local algebras over k = k, each such algebra has residue field k. We do induction on the
degree of A. Let (A,m, k) be a local algebra of degree at most 14 and of socle degree d. By H
we denote the Hilbert function of A. By induction it is enough to prove that SpecA is cleavable.
Suppose it is not so. By Corollary 6.12 we have ∆A,d−2 = (0, 0, 0). Then by Lemma 6.47 we
see that either H = (1, 6, 6, 1) or H(1) 6 5. It is enough to consider H(1) 6 5. If d = 3 then
H(2) 6 H(1) 6 5, so by Proposition 6.58 we assume d > 3. By Proposition 6.62 it follows that
we may consider only d > 5.

If H(1) 6 3 then A is smoothable by Corollary 5.25, thus we assume H(1) > 4. By Lemma
6.48 we see that H(2) 6 5. Then by Theorem 6.61 we reduce to the case H(3) > 3. By
Macaulay’s Growth Theorem we have H(2) > 3. Then

∑
i>3H(i) 6 14− 11, so we are left with

several possibilities: H = (1, 4, 3, 3, 1, 1, 1), H = (1, 4, 3, 3, 2, 1) or H = (1, ∗, ∗, ∗, 1, 1). In the
first two cases it follows from the symmetric decomposition that ∆A,d−2 6= (0, 0, 0) which is a
contradiction. We examine the last case. By Lemma 6.49 there does not exist an algebra with
Hilbert function (1, 4, 3, 4, 1, 1). Thus the only possibilities are (1, 4, 3, 3, 1, 1), (1, 5, 3, 3, 1, 1) and
(1, 4, 4, 3, 1, 1). Once more, it is checked directly that in the first two cases ∆A,d−2 6= (0, 0, 0).
The last case is the content of Lemma 6.55.
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6.6 Proof of Theorem 6.3 — the nonsmoothable component (1,6,6,1)

In this section we make the following global assumption. This assumption is used only once,
when referring to the work of Iliev-Ranestad in Proposition 6.64.

Assumption 6.63. The field k has characteristic zero.

We take a six-dimensional k-vector space V and endow it with an affine space structure given
by H0(V,OV ) = SymV ∨. We prefer V to A6, since the proofs are more transparent when done
in a coordinate free manner. We endow SymV with a divided power polynomial ring structure,
as in Definition 3.5 and consider the action of SymV ∨ on SymV , as in Definition 3.1. The
symbol SymV is an abuse of notation — one would expect this to be a polynomial ring —
however the ring structure will be used only in Lemma 6.72, so we keep this intuitive notation.
In characteristic zero SymV , with its divided power structure, is isomorphic to a polynomial
ring, see Proposition 3.13.

We begin with constructing the subset of H = HilbGor14 (V ), which, as we prove later, is
the intersection Hgen ∩ H1661. The key ingredient is the Iliev-Ranestad divisor, introduced
in [IR01, IR07].

The Iliev-Ranestad divisor. The Grassmannian Gr(2, V ) ⊂ P(Λ2V ) is non-degenerate,
arithmetically Gorenstein and of degree 14. A general P5 = PW does not intersect it. For
such PW the cone

R = W ∩ cone(Gr(2, V )) ⊂ Λ2V

is a finite standard graded Gorenstein scheme R supported at the origin. For a general P6

containing general such PW , the intersection P6 ∩ Gr(2, V ) is a set of 14 points and R is a
hyperplane section of the cone over these points, thus R is smoothable. Since R spans V and is
of degree 14, one checks, using the symmetry of the Hilbert function, that R has Hilbert series
(1, 6, 6, 1). Therefore R = Apolar (F ) for a cubic F ∈ Sym3W ∗ ' Sym3 k6, unique up to scalars
and R gives a well defined element [FR] ∈ P

(
Sym3 V

)
//GL(V ). Denote by R the set of such [FR]

obtained from all admissible P5 = PW and by DIR ⊂ P
(
Sym3 V

)
the closure of the preimage of

R. The subvariety DIR it is called the Iliev-Ranestad divisor, see [RV13]. By Proposition 4.62
we obtain a map ϕ : DIR → H, whose image is set-theoretically contained in Hgen ∩Hgr1661.

Proposition 6.64. The closure of ϕ(DIR) ⊂ Hgr1661 has dimension 54, hence is a divisor in
Hgr1661.

Proof. For k = C it is proven in [IR01, Lemma 1.4] that R is a divisor in the moduli space of
cubic fourfolds, hence dimR = 19 and dimϕ(DIR) = dimDIR = 19 + 35 = 54. Since Hgr1661 has
dimension 55, the claim follows in the case k = C. The claim follows for k = Q and then for all
other fields of characteristic zero by base change, see [FGI+05, (5) pg. 112].

Remark 6.65. It is proven in [RV13, Lemma 2.7] for k = C that F lies in DIR if and only if it
is apolar to a quartic scroll.

Prerequisites. We will now rigorously prove several claims which together lead to the proof of
Theorem 6.3. Our approach is partially based on the natural method of [CEVV09]. Additional
(crucial) steps are proving that H \Hgen is smooth and that Hgen ∩H1661 is irreducible.

In the first two steps we use the following abstract observation.
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Lemma 6.66. Let X and Y be reduced, finite type schemes over k. Let X → Y , Y → X be
two morphisms, which are bijective on closed points. If the composition X → Y → X is equal to
identity, then X → Y is an isomorphism.

Proof. Denote the morphisms by i : X → Y and π : Y → X. The scheme-theoretical image of
i contains all closed points, hence is the whole Y . Therefore the pullback of functions via i is
injective. It is also surjective, since the pullback via composition π ◦ i is the identity. Hence i is
an isomorphism.

In our setting, X is a subset of the Hilbert scheme, Y a subspace of polynomials and the
maps are constructed using relative Macaulay’s inverse systems.

Below we precisely explain the freedom of choice of a dual generator of an algebra with
Hilbert function (1, n, n, 1).

Remark 6.67. Let F ∈ P be a polynomial of degree three such that HApolar(F ) = (1, n, n, 1)

where n = dimP1; in other words the Hilbert function is maximal. The ideal AnnF and hence
Apolar (F ) only partially depends on the lower homogeneous components of F . To see this, write
explicitly the S-module S yF .

S yF = 〈F, {αi yF | i}, {αiαj yF | i, j}, {αiαjαk yF | i, j, k}〉 =

= 〈F, {αi yF | i}〉 ⊕ P61 = 〈F3 + F2〉 ⊕ 〈αi yF3 | i〉 ⊕ P61.

Therefore S yF , as a submodule of P , is uniquely defined by giving F3 and the class [F2

mod 〈αi yF3 | i〉], up to multiplication by a constant.

Identification of Hgr1661 with an open subset of P
(
Sym3 V

)
.

Claim 6.68. The map ϕ : P
(
Sym3 V

)
1661
→ Hgr1661 is an isomorphism.

Proof. Let [R] ∈ Hgr1661. Each fiber of the universal family over Hgr1661 is k∗-invariant thus the
whole family is k∗-invariant. By Local Description of Families and especially Remark 4.54, near
[R] this family has the form Spec Apolar (F )→ SpecB for some F ∈ B⊗Sym3 V , so that [F ] gives
a morphism SpecB → P

(
Sym3 V

)
1661

which is locally an inverse to P
(
Sym3 V

)
1661
→ Hgr1661.

The claim follows from Lemma 6.66.

We will abuse the notation and speak about elements of P
(
Sym3 V

)
1661

being smoothable etc.
We will also identify DIR with ϕ(DIR ∩ P

(
Sym3 V

)
1661

). Note that the codimension of com-
plement of P

(
Sym3 V

)
1661

⊂ P
(
Sym3 V

)
is greater than one, so divisors on these spaces are

identified.

The bundle (H1661)red → H
gr
1661. We now show how the questions about H1661 reduce to

the questions about Hgr1661. Note that we will work on the reduced scheme (H1661)red, which
eventually turns out to be equal to H1661.

Claim 6.69. The scheme (H1661)red is a rank 21 vector bundle over Hgr1661 via a map

π : (H1661)red → H
gr
1661.

On the level of points π maps [R] to Spec grH0(R,OR) supported at the origin of V . The schemes
corresponding to points in the same fiber of π are isomorphic.
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Proof. First we recall the support map, as defined in [CEVV09, Section 5A]. Consider the uni-
versal family U → H, which is flat. The multiplication by V ∨ on OU is OH-linear. The relative
trace of such multiplication defines a map V ∨ → H0(H,OH), thus a morphism H → V . We
restrict this morphism to H1661 → V and compose it with multiplication by 1

14 on V to obtain a
map denoted supp. If [R] ∈ H1661 corresponds to a scheme supported at v ∈ V , then for every
v∗ ∈ V ∨ the multiplication by v∗− v∗(v) is nilpotent on R, hence traceless. Thus on R, we have
tr(v∗) = tr(v∗(v)) = 14v∗(v) and supp([R]) = v as expected.

The support morphism supp : H1661 → V is (V,+) equivariant, thus it is a trivial vector
bundle:

H1661 ' V × supp−1(0).

Restrict supp to (H1661)red and consider the fiber H0
1661 := supp−1(0). Since (H1661)red is re-

duced, also H0
1661 is reduced. We will now use this in an essential way. By Local Description 4.52,

the universal family over this scheme locally has the form πF : Spec Apolar (F ) → SpecB for
some F ∈ B ⊗ V . For every p ∈ SpecB we have degF (p) 6 3 and B is reduced, so degF 6 3.
Let F3 be the leading form. The fibers of grπF : Spec Apolar (F3)→ SpecB and πF are isomor-
phic. Since B is reduced, by Proposition 4.59 the family grπF is also flat and gives a morphism
SpecB → Hgr1661. These morphisms glue to give a morphism

gr : H0
1661 → Hgr1661.

Now we prove that gr makes H0
1661 a vector bundle over Hgr1661 of rank 15.

Let U = Sym63
max V := Sym3

max V + Sym62 V be the space of degree three polynomials
with apolar algebras of degree 14. By Proposition 4.62 we have a morphism ϕ : U → H0

1661

which is a surjection on points. This surjection comes from a flatly embedded apolar family
Spec Apolar (F)→ U , where F ∈ Γ(U)⊗ Sym63

max V is a universal cubic. For a point u ∈ U , we
have gr ◦ϕ(F(u)) = [F3(u)], so U becomes a trivial vector bundle of rank 1 + 6 +

(
7
2

)
= 28 over

the cone Sym3
max V over P

(
Sym3 V

)
1661

.
We will prove that H0

1661 is a projectivisation of a quotient bundle of this bundle. Take a
subbundle K of U whose fiber over F3 ∈ Sym3

max V is (Sym>1 V ∨) yF3. The apolar algebra
depends only on class of element modulo K by Remark 6.67, so that the family Spec Apolar (F)

over U is pulled back from the quotient bundle U/K, which we denote by E . Hence also the
associated morphism U → H0

1661 factors as U → E → H0
1661. Finally we may projectivize these

bundles: we replace the polynomials in E by their classes, obtaining a bundle over P
(
Sym3 V

)
1661

which we denote, abusing notation, by PE . The morphism E → H0
1661 factors as E → PE → H0

1661

and we obtain
ϕ̄ : PE → H0

1661,

which is bijective on points.
By the Local Description 4.52, for every [R] ∈ H0

1661 we have a neighborhood U so that the
universal family is Spec Apolar (F )→ U for F ∈ H0(U,OU )⊗ Sym63

max V . Then F gives a map
U → Sym63

max V , thus U → PE . This is a local inverse of ϕ̄. Hence by Lemma 6.66 the variety
H0

1661 is isomorphic to the bundle PE over Hgr1661. To prove Claim 6.69 we define π to be the
composition of projection V ×H0

1661 → H0
1661 and gr. Since the former is a trivial vector bundle

and the latter is a vector bundle the composition is a vector bundle as well.
Finally note that π([R]) is isomorphic to the scheme Spec grH0(R,OR), which in turn is

(abstractly) isomorphic to R by Corollary 3.73. Hence all the schemes corresponding to points
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in the same fiber are isomorphic.

Corollary 6.70. The locus H1661∩Hgen ⊂ H1661 contains a divisor, which is equal to π−1(DIR),
where DIR ⊂ P

(
Sym3 V

)
1661

is the restriction of the Iliev-Ranestad divisor.

Proof. By its construction, the divisorDIR ⊂ P
(
Sym3 V

)
1661
' Hgr1661 parameterizes smoothable

schemes. By Claim 6.69 all schemes in π−1(DIR) are smoothable, hence π−1(DIR) is contained
in H1661 ∩Hgen. Again by Claim 6.69 this preimage is divisorial in H1661.

The scheme H1661 \Hgen is smooth, so H1661 is reduced. Let R ⊂ V be a finite irreducible
Gorenstein scheme with Hilbert function (1, 6, 6, 1). Let S := H0(V,OV ) = SymV ∗ and A =

H0(R,OR), then A = S/I. The tangent space to H at [R] is isomorphic to HomS/I

(
I/I2, S/I

)
.

Since R is Gorenstein, this space is dual to I/I2, see Example 4.12. Note that R is isomorphic
to R0 = Spec grA and [R0] ∈ Hgr1661.

Claim 6.71. H1661 ∩ SingH = H1661 ∩ Hgen = π−1(DIR) as sets. Therefore H1661 is reduced.
Moreover H1661 ∩Hgen ⊂ H1661 is a prime divisor.

Being a singular point of H and lying in Hgen are both independent of the embedding of a
finite scheme by Proposition 4.14 and Theorem 5.1 respectively. Hence all three sets appearing
in the equality of Claim 6.71 are preimages of their images in Hgr1661. Therefore it is enough to
prove the claim for elements of Hgr1661.

Take [R0] ∈ Hgr1661 with corresponding homogeneous ideal I. Take F ∈ Sym3 V so that
I = Ann(F ). The point [R0] is smooth if and only if dimS/I2 = 76 + 14 = 90. Consider the
Hilbert series H of S/I2. By degree reasons, I2 annihilates Sym63 V . We now show that it
annihilates also a 6-dimension space of quartics. Notabene, by Example 4.61, this space is the
tangent space to deformations of S/I obtained by moving its support in V .

Lemma 6.72. The ideal I2 annihilates the space V · F ⊂ Sym4 V .

Proof. Let α ∈ V ∨ and x ∈ V be linear forms. Then α acts on the divider power polynomial
ring SymV as a derivation, so that α y (xF ) = (α yx)F +x(α yF ) ≡ x(α yF ) mod S yF . Take
any element i ∈ I2 and write it as i =

∑
βiβj with βi linear. Then

i y (xF ) =
∑

βi y (βj yxF ) ≡
∑

x(βiβj yF ) = x(i yF ) = 0 mod (S yF ).

Therefore i y (xF ) ∈ S yF , hence is annihilated by I. This proves that I2I annihilates xF . Other
graded parts of I2 annihilate xF by degree reasons.

By Lemma 6.72 and the discussion above we have HS/I2 = (1, 6, 21, 56, r, ∗) with r > 6.
Therefore

∑
HS/I2 = 84 + r + ∗ and this equals 90 if and only if r = 6 and ∗ consists of zeros.

Now we show that if r = 6 then ∗ consists of zeros. For J ⊂ S a homogeneous ideal, by J⊥d we
denote the forms in Pd annihilated by J , so that dim J⊥d + dim Jd = dimSd.

Lemma 6.73. Let F ∈ Sym3 V and I = Ann(F ) ⊂ S be as above. Suppose that

dim Ann
(
I2
)⊥

4
= 6.

Then Sym5 V ∨ ⊂ I2. In particular HS/I2 = (1, 6, 21, 56, 6, 0), so that the tangent space to H at
[S/I] has dimension 76. As a corollary, [S/I] is singular if and only if dim

(
I2
)⊥

4
> 6.
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Proof. Suppose Sym5 V ∨ 6⊂ I2 and take non-zero G ∈ Sym5 V ∨ annihilated by this ideal. By
assumption dim

(
I2
)⊥

4
= 6 and by Lemma 6.72 the 6-dimensional space V F is perpendicular to

I2. Therefore
(
I2
)⊥

= V F and hence V ∨ yG ⊂ V F .
We first show that all linear forms are partials of G, in other words that V ⊂ S yG. Clearly

0 6= V ∨ yG ⊂ V F . Take a non-zero x ∈ V such that xF is a partial of G. LetW ∗ =
(
x⊥
)

1
⊂ V ∨

be the space perpendicular to x. Let xF = x[e+1]F̃ , where F̃ is not divisible by x. Then there
exists an element σ of SymW ∗ such that σ y (xF ) = x[e+1]. In particular x ∈ S y (xF ). Moreover
S3 y (xF ) ≡ S2 yF = V mod kx. Therefore, V ⊂ S yG, so V = S4 yG. By symmetry of the
Hilbert function, dimV ∨ yG = dimS4 yG = 6. Since V ∨ yG is annihilated by I2, by comparing
the dimensions we conclude that

V ∨ yG = V F.

Since I3 y (I2 yG) = 0 and I⊥3 = kF , we have I2 yG ⊂ kF , so dim (S2 yG+ kF ) 6 6 + 1 = 7.
For every linear α ∈ V ∨ and y ∈ V we have α y (yF ) = (α y y)F + y(α yF ) ≡ y(α yF ) mod kF .
Therefore we have

S2 yG = V ∨ y (V ∨ yG) = V ∨ y (V F ) ≡ V (V ∨ yF ) mod kF,

thus dimV (V ∨ yF ) 6 7. Take any two quadrics q1, q2 ∈ V ∨ yF . Then V q1 ∩ V q2 is non-zero,
so that q1 and q2 have a common factor. We conclude that V ∨ yF = yV for some y, but then
dimV (V ∨ yF ) = dim y Sym2 V > 7, a contradiction.

By Claim 6.68, the map [F ]→ Spec Apolar (F ) is an isomorphism P
(
Sym3 V

)
1661
→ Hgr1661.

For R0 = Spec Apolar (F ) consider the statements

• [R0] ∈ Hgen,

• [R0] is singular,

as conditions on the form F ∈ P
(
Sym3 V

)
1661

. For a family F of forms parameterized by
T = P

(
Sym3 V

)
1661

, constructed as in Proposition 4.62, we get a rank 120 bundle Sym2 I2 with
an evaluation morphism

ev : Sym2 I2 → (V F)⊥ ⊂ Sym4 V ∗ ⊗k OT . (6.74)

The condition (I2)⊥4 > 6 is equivalent to degeneration of ev on the fiber and thus it is divisorial
on P

(
Sym3 V

)
1661

. Let
E = (det ev = 0) = SingH1661 ∩Hgr1661.

Recall that divisors on P
(
Sym3 V

)
1661

and P
(
Sym3 V

)
are identified by restriction and closure.

Since P
(
Sym3 V

)
is proper, we speak about the degree of E as the degree of its closure in

P
(
Sym3 V

)
. We now check that E is prime of degree 10.

Lemma 6.75. Fix a basis x0, . . . , x5 of V and let F = x0x1x3−x0x
[2]
4 +x1x

[2]
2 +x2x4x5 +x3x

[2]
5 .

The line between F and x[3]
5 intersects the divisor E ⊂ P

(
Sym3 V

)
in a finite scheme of degree

10 supported at x[3]
5 .

Proof. First, we check that every linear form is a partial of F , so that F ∈ P
(
Sym3 V

)
1661

.
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Second, consider a 14-dimensional space

fixed := span(α2
0, α0α2, −α0α3 + α2

2, α0α4 + α2α5, α0α5, α
2
1, α1α2 − α4α5, α1α3 + α2

4,

α1α4, α1α5, α2α3, α2α4 − α3α5, α
2
3, α3α4).

Let F = uF + vx
[3]
5 . Then

fixed⊕ k
(
vα3α5 + uα0α1 − uα2

5

)
⊂ Ann(F)2

and the equality holds for a general choice of (u : v) ∈ P1. One verifies that the determinant of
ev restricted to this line is equal, up to unit, to u10. This can be conveniently checked near x[3]

5

by considering Sym2 I → Sym4 V ∗/V x
[3]
5 and near F by Sym2 I → Sym4 V ∗/V x3x

[2]
5 . We note

that the same equality holds in any characteristic other than 2, 3.

Proposition 6.76. The divisor E = SingH1661 ∩ Hgr1661 is prime of degree 10. We have E =

Hgen ∩Hgr1661 = DIR ∩ P
(
Sym3 V

)
1661

as sets.

Proof. Take two forms [F1], [F2] ∈ P
(
Sym3 V

)
and consider the intersection of E with the line `

spanned by them. By Lemma 6.75 the restriction to ` of the evaluation morphism from Equation
(6.74) is finite of degree 10. Hence also E is of degree 10.

Note that E is SL(V )-invariant. By a direct check, e.g. conducted with the help of computer
(e.g. [LiE]), we see that there are no SL(V )-invariant polynomials in Sym• Sym3 V ∗ of degree
less than ten. Therefore E is prime. Smoothable schemes are singular, hence we have

DIR ⊂ Hgr1661 ∩Hgen ⊂ E.

Since DIR is also a non-zero divisor, we have the equality of sets.

Remark 6.77. In the proof of Lemma 6.75 we can avoid calculating the precise degree of the
restriction of ev to `, provided that we prove that (det ev = 0)` is finite. Namely, let I ⊂ Sym• V ∗

be the relative apolar ideal sheaf on `. We look at I2. By the proof of Lemma 6.75 we have
I2 ' O14 ⊕ O(−1). Hence Sym2 I2 has determinant O(−16). Similarly V F ' O(−1)6, hence
(V F)⊥ = O114 ⊕ O(−1)6 and thus det ev|` : O(−16) → O(−6) is zero on a degree 10 divisor.
We conclude that E has degree 10.

Proof of Claim 6.71. Schemes corresponding to different elements in the fiber of π are abstractly
isomorphic. Therefore, we have SingH1661 = π−1π(SingH1661) and

Hgen ∩H1661 = π−1π(Hgen ∩H1661).

Hence the equality in Proposition 6.76 implies the equality in the Claim. The reducedness follows,
because the scheme was defined via the closure: H1661 = H1661 \ Hgen. The last claim follows
because DIR is prime and of codimension one thus its preimage under π is also such.

Remark 6.78. If [R] ∈ H1661 lies in Hgen, then the tangent space to H at [R] has dimension
at least 85 = 76 + 9. This is explained geometrically by an elegant argument of [IR01], which
we sketch below. Recall that we have an embedding R ⊂ A6 ∩ Λ2V . Define a rational map
ϕ : P(Λ2V ) 99K P(Λ2V ∨) as the composition Λ2V → Λ4V ' Λ2V ∗ where the first map is
w → w ∧ w and the second is an isomorphism coming from a choice of element of Λ6V . Then
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ϕ is defined by the 15 quadrics vanishing on Gr(2, V ) and it is birational with a natural inverse
given by quadrics vanishing on Gr(2, V ∗). The 15 quadrics in the ideal of R are the restrictions
of the 15 quadrics defining ϕ. Thus the map ϕ : R→ Λ2V ∨ is defined by 15 quadrics in the ideal
of R. Since ϕ−1(ϕ(R)) spans at most an A6 the coordinates of ϕ−1 give 15 − 6 = 9 quadratic
relations between those quadrics. Therefore dim I4 6 dim Sym2 I2−9 6 126−15 and r from the
discussion above Lemma 6.73 is at least 15 so that the tangent space dimension is at least 85.

Proof of Theorem 6.3. Item 2. By Claim 6.71 the component H1661 is reduced. Hence this part
follows by Claim 6.69. Item 3 is proved in Claim 6.68. Then, H1661 is smooth and connected,
being a vector bundle over P

(
Sym3 V

)
1661

, hence Item 1 follows. Finally, Item 4 is proved in
Claim 6.71.

Remark 6.79. The dimension of H1661 equal to 76 is smaller than the dimension of Hgen equal
to 14 · 6 = 84. This is the only known example of a component Z of the Gorenstein locus of
Hilbert scheme of d points on An such that dimZ 6 dn and points of Z correspond to irreducible
subschemes. It is an interesting question (a special case of Problem 1.23) whether other examples
exist.

115



Chapter 7

Small punctual Hilbert schemes

In this section we fix a k-rational point p ∈ An, for example the origin, and consider the locus

HilbPGorr (An, p) := {R ⊂ An | SuppR = {p}, R Gorenstein} ⊂ HilbGorr (An) (7.1)

As explained in Section 1.3, it is important for applications to give an upper bound for the
dimension of HilbPGorr (An, p). In Proposition 7.4 we prove a lower bound (r− 1)(n− 1) for this
dimension. Theorem 7.2 below implies that this lower bound is attained for small degrees and
char k = 0. We follow [BJJM17].

Theorem 7.2 (The Hilbert scheme has expected dimension). Let k be a field of characteristic
zero. For r 6 9 the dimension of HilbPGorr (An, p) is equal to (r − 1)(n− 1).

Before we prove Theorem 7.2, we explain the lower bound. For Hilbert schemes of points, we
strived to present each given algebra as a limit of smooth algebras. Inside HilbPGorr (An, p) we
do not have any smooth algebras (unless r = 1), so we need an equivalent. It is given by aligned
(curvilinear) schemes, studied for example in [Iar83].

Definition 7.3. A finite local algebra A is aligned (or curvilinear) if it is isomorphic to k[α]/αr

for some r. A finite local algebra A is alignable if it is a finite flat limit of aligned algebras, i.e.,
there exists a flat family of algebras with fiber A and general fiber aligned.

The following result gives a lower bound for dimHilbPGorr (An, p).

Proposition 7.4 (dimension of aligned schemes). The locus of points of HilbPGorr (An, p) corre-
sponding to aligned schemes has dimension (r− 1)(n− 1). Therefore, also the locus of alignable
schemes has dimension (r − 1)(n− 1).

We prove this proposition as a consequence of more general analysis of reembeddings. Let
Z ⊆ HilbPGorr (An, p). We say that Z is closed under isomorphisms if every subscheme from
HilbPGorr (An, p) isomorphic to a member of Z belongs to Z. In other words, if i, i′ : R ↪→ An

are two embeddings of a finite scheme R with support at p and i(R) is in the family Z, then also
i′(R) is in Z.

We now perform a dimension count to see, how does dimZ behave under change of ambient
from An to Am. While the underlying idea is easy, it is technically suitable to use advanced
devises: flag Hilbert schemes (see [ACG11, IX.7, p. 48] or [Ser06a, Section 4.5]) and multigraded
Hilbert schemes (see [HS04]). Note, that we only consider these constructions for a scheme finite
over k, a very special case where the existence is almost obvious, compare Proposition 4.39.
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Proposition 7.5 (invariance of codimension). Let m > n and Rn ⊆ HilbPGorr (An, p) be a
Zariski-constructible subset closed under isomorphisms. Consider the subsetRm ⊆ HilbPGorr (Am, p)
consisting of all schemes isomorphic to an element of Rn. Then the family Rm is a Zariski-
constructible subset of HilbPGorr (Am, p) and its dimension satisfies

(r − 1)m− dimRm = (r − 1)n− dimRn.

Proof. For technical reasons (to assure the existence of Hilbert flag schemes) we consider

Dn := Spec k[[α1, . . . , αn]]/(α1, . . . , αn)r

rather than Speck[[α1, . . . , αn]]. Let R be a finite scheme of degree r. To give an embedding
R ⊆ An with support p is the same as to give as to give an embedding R ⊆ Dn. Therefore
Hilbr (An, p) ' Hilbr (Dn) for every n and p.

Consider the multigraded flag Hilbert scheme HilbFlag parameterizing pairs of closed immer-
sions R ⊆ Dn ⊆ Dm. It has natural projections π1, π2, mapping R ⊆ Dn ⊆ Dm to Dn ⊆ Dm and
R ⊆ Dm respectively, see diagram below.

HilbFlag

Hilbr (Dn ⊆ Dm) Hilbr (Dm)

π1

π2

Note that πi are proper. We will now prove that Rm is Zariski-constructible. Consider the
automorphism group G of Dm. It acts naturally on Hilbr (Dn ⊆ Dm) and HilbFlag, making the
morphism π1 equivariant. The ideal of a Dn ⊆ Dm is given by m − n order one elements of
the power series ring, linearly independent modulo higher order operators. Therefore the action
of G on Hilbr (Dn ⊆ Dm) is transitive: for any two (m − n)-tuples as above there exists an
automorphism of Dm mapping elements of the first tuple to the elements of the other tuple.

Fix an embedding Dn ⊆ Dm, and hence an inclusion i : Rn ↪→ HilbFlag. LetRn,m = G·i(Rn),
then Rm = π2(Rn,m) and so it is Zariski-constructible. Note that Rn,m = π−1

2 (Rm).
It remains to compute the dimension of Rm. Let us redraw the previous diagram:

Rn,m

Hilbr (Dn ⊆ Dm) Rm
π1|Rn,m

π2|Rn,m

Note that π1|Rn,m is surjective because π1 is G-equivariant and G acts transitively on the scheme
Hilbr (Dn ⊆ Dm). Furthermore, π1|Rn,m has fibers isomorphic to Rn because Rn is closed under
isomorphisms. Thus we obtain

dimRn,m = dimRn + dimHilbr (Dn ⊆ Dm).

It remains to calculate the dimensions of Hilbr (Dn ⊆ Dm) and the fiber of π2. An immersion
ϕ : Dn ⊆ Dm corresponds to a surjection

ϕ∗ : k[[α1, . . . , αm]]/(α1, . . . , αm)r → k[[β1, . . . , βn]]/(β1, . . . , βn)r.

117



Such surjective morphisms are parameterized by the images of generators ϕ∗(α1), . . . , ϕ∗(αm) in
the maximal ideal (β1, . . . , βn). In fact, a general choice of those images gives a surjection. Let
M = dimk(β1, . . . , βn) be the dimension of the ideal (β1, . . . , βn). Then we have mM parameters
for the choice of ϕ∗(α1), . . . , ϕ∗(αm). Two choices are equivalent if they have the same kernel, so
that they differ by an automorphism of k[[β1, . . . , βn]]/(β1, . . . , βn)r. This automorphisms group
is nM dimensional, thus dimHilbr (Dn ⊆ Dm) = mM − nM = (m− n)M .

Similarly, we may consider the fiber π−1
2 (R) over a point R ∈ Rm corresponding to a sub-

scheme R ⊆ Dm. As above, the possible Dn ⊆ Dm are parameterized by fixing the images of
ϕ∗(α1), . . . , ϕ∗(αm) in k[[β1, . . . , βn]]/(β1, . . . , βn)r. The difference is that we have to ensure R ⊆
Dn. Algebraically, the images ϕ∗(α1), . . . , ϕ∗(αm) need to lie in the ideal I(R) ⊆ (β1, . . . , βn).
Since dimk I(R) = M − (r − 1), the fiber has dimension (m− n)(M − r + 1).

In particular, π2 is equidimensional, so that the dimension of Rm is given by the formula:

dimRm = dimRn + (m− n)M − (m− n)(M − r + 1) = dimRn + (m− n)(r − 1).

Proof of Proposition 7.4. If n = 1, then there is a unique closed subscheme of An isomorphic to
Speck[α]/αr and supported at p, thus the dimension is 0 and the claim is satisfied.

Now let n be arbitrary. By Proposition 7.5 the dimension d from the statement satisfies
(r − 1)n− d = (r − 1), thus d = (r − 1)(n− 1).

Having proved the lower bound from Theorem 7.2, we proceed to prove that it is equal to
the upper bound for degree up to nine.

Definition 7.6. The expected dimension of HilbPGorr (An, p) is the dimension of the family of
alignable subschemes, i.e. (r − 1)(n− 1), see Proposition 7.4.

If a Zariski-constructible subset of the punctual Hilbert scheme has dimension less or equal
than (r − 1)(n − 1), then we call it negligible. In particular, the set of alignable subschemes is
negligible.

The name negligible was tailored for the purposes of [BJJM17] and it is not standard.

Remark 7.7. Let r, n be such that the Gorenstein punctual Hilbert scheme HilbPGorr (An, p)
has expected dimension. Fix any m > n. Then the set of Gorenstein schemes in Am of degree
r and embedding dimension at most n is negligible. Indeed, Proposition 7.5 implies that for
every m > n the set of schemes in HilbPGorr (Am, p) with embedding dimension n has dimension
(r − 1)m− (r − 1)n+ (r − 1)(n− 1) = (r − 1)(m− 1).

Remark 7.8. Gorenstein schemes of degree at most 9 are all (for char k 6= 2, 3) smoothable by
Theorem 6.1. Since ultimately we want to analyse those, we will not emphasise smoothability.
However, the reader should note that Definition 7.6 is reasonable only with the smoothability
assumption.

In general, there exist Gorenstein non-alignable subschemes and non-negligible families, see
Example 6.42 below. In the remaining part of this section we show that if the degree is small
enough, then all subschemes are negligible, thus HilbPGorr (An, p) has the expected dimension.

We begin with the following result of Briançon:

Theorem 7.9 ([Bri77, Theorem V.3.2, p. 87]). Let k = C and R ⊂ A2 be a finite local scheme
(not necessarily Gorenstein). Then R is alignable.
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Corollary 7.10. Let char k = 0. Let R ⊂ HilbPGorr (An, p) be the family of local schemes with
embedding dimension (see Section 2.2 for definition) at most two. Then R is negligible.

Proof. The schemes of embedding dimension at most two are precisely those embeddable in A2,
by Lemma 2.1. By Remark 7.7 it is enough to prove the claim for n = 2. For k = C the family
R is contained in the alignable locus and the claim follows from Theorem 7.9. For k = Q the
claim follows by base change, since the dimension is invariant under field extension (see, e.g.,
[Eis95, Chapter 8]) and

HilbPGorr (AnC, p) = HilbPGorr (AnQ, p)×SpecQ SpecC.

For k arbitrary of characteristic zero, the claim follows again by base change:

HilbPGorr (Ank , p) = HilbPGorr (AnQ, p)×SpecQ Speck.

Analogues of Briançon results are false for higher embedding dimensions, see [Iar83] and
Example 7.16. To analyse schemes of embedding dimension greater than two, we need a few
results from the theory of finite Gorenstein algebras proved in Part I, in particular Macaulay’s
Theorem for Gorenstein algebras, see Theorem 3.26.

Every finite local Gorenstein algebra A of socle degree one is an apolar algebra of a linear
form, thus it is aligned. Therefore the set of socle degree one algebras is negligible. In the
following Lemma 7.11 we extend this result to socle degree two.

Lemma 7.11. The set H ⊆ HilbPGorr (An, p) consisting of finite local Gorenstein algebras of
socle degree two is negligible.

Proof. All members of H have degree r and socle degree 2, hence their Hilbert function is equal
to (1, r − 2, 1). In particular, r − 2 ≤ n, so using Proposition 7.5 similarly as in Remark 7.7 we
may assume r − 2 = n. Algebras from H have degree n + 2 and are parameterized by a set of
dimension

(
n+2

2

)
− (n+ 2), compare 5.38. Therefore, H is negligible if(

n+ 2

2

)
− (n+ 2) 6 (n+ 1)(n− 1),

which is true for every n > 1.

Let A be an algebra of socle degree d > 3. Recall from Section 2.3 the symmetric decom-
position ∆A of the Hilbert function of A. In particular ∆A (d− 2) = (0, q, 0), for some q where
∆A. In the following we investigate the case when q > 0; we perform a remove-the-quadric-part
trick, already used e.g. in Corollary 6.12.

Lemma 7.12. Let char k 6= 2. Consider the set H(q) ⊆ HilbGorr (An) consisting of finite local
Gorenstein algebras of any socle degree d > 3 satisfying ∆d−2 = (0, q, 0). If all Gorenstein
schemes of degree d−q and embedding dimension at most n are negligible, then H(q) is negligible.

Proof. We argue by induction on q. In the base case q = 0 there is nothing to prove. By a base
change (Proposition 2.14), we assume k = k.

Take any scheme SpecA ∈ H(q). By Proposition 3.78 the algebra A is isomorphic to the
apolar algebra of f+x

[2]
1 +. . .+x

[2]
q , where f is a polynomial in variables different from x1, . . . , xq.

By Corollary 6.12 this algebra is an embedded limit of algebras of the form B × k, where B has
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the same socle degree as A and satisfies ∆B,d−2 = (0, q − 1, 0). By induction, the set of schemes
corresponding to such B is negligible, i.e. has dimension at most ((r−1)−1)(n−1). Therefore the
set of schemes corresponding to B×k has dimension at most (r−2)(n−1)+n = (r−1)(n−1)+1.
Since H(q) lies on the border of this set, dimH(q) 6 (r− 1)(n− 1) + 1− 1 = (r− 1)(n− 1).

Lemma 7.13. Let char k = 0 and r 6 10. Let R ⊆ HilbPGorr (An, p) be the subset of schemes
corresponding to finite local Gorenstein algebras of socle degree at most four. Then R is negligible.

Proof. By base change (Proposition 2.14), we reduce to the case k = k. The family Z divides
into finitely many families according to the Hilbert function and its symmetric decomposition.
Therefore we may assume these are fixed in Z. Thus we may speak about the Hilbert function,
the socle degree etc.

We begin with a series of reductions. By induction and Remark 7.7, we may assume that
the claim is true for schemes with embedding dimension less that n. Let d be the socle degree
of any member of Z. By Lemma 7.11 we may assume that d > 3. By Lemma 7.12, we may
assume that ∆d−2 = (0, 0, 0). If d = 3, elements of Z are parameterized by a set of dimension(
n+3

3

)
− (2n+ 2), compare Example 5.38, and 10 > r = 2n+ 2 by Example 2.40, so n 6 4. Then

we need to check that (r − 1)(n− 1) = (2n+ 1)(n− 1) >
(
n+3

3

)
− (2n+ 2) for all n 6 4.

Similarly, if d = 4, then the Hilbert function has decomposition of the form (1, a, b, a, 1) +

(0, c, c, 0), where a, b > 0. We see that r = 2 + 2a + 2c + b 6 10, n = H(1) = a + c. Moreover
b 6

(
a+1

2

)
and from the Macaulay’s Growth Theorem 2.21 and Lemma 2.41 it follows that either

b > 2 or a = b = 1 or a = b = 2.
Such algebras are parameterized by

• the choice of a quartic in a variables, which gives at most dimension
(
a+3

4

)
,

• the choice of these a variables out of the linear space of a+ c variables, which gives at most
ac,

• and a choice of polynomial of degree 3 in a+ c variables:
(
a+c+3

3

)
,

• minus the degree: 2 + 2a+ 2c+ b, see Proposition 4.66.

Finally we get a parameter set of dimension at most(
a+ 3

4

)
+ ac+

(
a+ c+ 3

3

)
− (2 + 2a+ 2c+ b) (7.14)

Now one needs to the check that for all a, b, c such that 2 + 2a + 2c + b 6 10 satisfying the
constraints above, the number (7.14) is not higher than (r − 1)(n− 1).

Lemma 7.15. Let char k = 0 and r 6 9. Then the whole Gorenstein punctual Hilbert scheme

HilbPGorr (An, p)

is negligible.

Proof. Let Z := HilbPGorr (An, p). As before, we may fix a Hilbert function H with symmetric
decomposition ∆, and a socle degree d. By Corollary 7.10 we may assume that the embedding
dimension is at least three. By Lemma 7.12 we may assume that ∆d−2 = (0, 0, 0). By Lemma 7.13
we may assume d > 4.
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We will prove that no decomposition ∆ satisfying all above constrains exists.
Let ei := ∆A,i(1). Then H(1) =

∑
ei. Note that ∆0 = (1, e1, . . . , e1, 1) is a vector of degree

d+1 > 6, thus its sum is at least 4+2e1. Note that by symmetry of ∆i we have ei = ∆i(d−i−1)

and since s− i− 1 > 1, we have
∑

j ∆i(j) > 2ei. Summing up

r =
∑

H =
∑
i

∑
j

∆i(j) > 4 + 2
∑
i

ei > 4 + 2 · 3 = 10.

This contradicts the assumption r 6 9.

We now conclude the proof of our main theorem.

Proof of Theorem 7.2. The lower bound follows from Proposition 7.4 and the upper bound from
Lemma 7.15.

Example 7.16. The dimension of the locus of alignable subschemes in HilbPGor12 (A5, p) is
(12 − 1)(5 − 1) = 44. This locus is Zariski-irreducible and its general member is, by defini-
tion, isomorphic to Speck[α]/α12. The subset Z of HilbPGor12 (A5, p) parameterizing subschemes
with Hilbert function (1, 5, 5, 1) has dimension

(
5+3

3

)
− 12 = 44, see Example 5.38, thus Z is

not contained in the locus of alignable algebras, i.e. a general subscheme with Hilbert function
(1, 5, 5, 1) is not alignable. The subschemes in Z are smoothable by Theorem 6.1.

Example 7.17. As in Example 7.16, by dimension count we see that a general irreducible sub-
scheme of A7 with Hilbert function (1, 7, 7, 1) is non-alignable. Such subschemes are smoothable,
see Remark 5.40.
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