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Abstract

Under minor homogeneity assumptions we show that the set of saturated ide-
als in a flat family of multihomogeneous ideals is open. Moreover, we show that a
general configuration of points in a smooth complete toric variety has the expected
multigraded Hilbert function. We work over the base field k of arbitrary character-
istics. This is a part of the project on advanced border apolarity techniques. These
working notes are provided as a temporary reference for other authors, while we are
preparing the details of the complete paper.
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1 Introduction

Let k be any base field (not necessarily algebraically closed). We work with a polynomial
ring S = k[ay, ..., a,]. Suppose A is a finitely generated abelian group, that is A ~ Z7®
A" where ¢ > 0, A*™" is a finite abelian group. An A-grading of S is a homomorphism
(called the degree) from the semigroup of monomials in S to A. An A-grading is positive
if the only monomial of degree 0is 1 € S. An ideal I C S is homogeneous (with respect
to the A-grading) if I is generated by homogeneous elements, that is polynomials, whose
all monomials are of the same degree. Whenever A and the degree map are clear from
the context, we will simply say “homogeneous”.

Fix an A-grading of S. We consider a flat family of homogeneous ideals in S =
k[, ..., a,). That is, let U be a k-scheme, and consider the free sheaf Sy := Oy ® S of
A-graded algebras. Let Z C Sy be a homogeneous ideal sheaf flat over U. For each point
u € U we consider the fibre ideal Z,, C k(u)[a, ..., a,] = k(u) @y S. Let J C S be a fixed
homogeneous ideal, and for each u let J, := k(u) ®g J C k(u) ®x S be the extension of J
to the coefficients in x(u). We say that an ideal I C r(u) ®y S is saturated with respect
to Jif (1:J,) =1.

Our first claim is that (under some minor assumptions) the subset of those u € U
that Z, is saturated with respect to J is Zariski open in X.
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Theorem 1.1. Suppose S is positively graded polynomial ring and T is a flat family of
homogeneous ideals in S parametrised by a locally Noetherian k-scheme U. Let J be a
fized homogeneous ideal in S. Then the set

{u e U |Z, is saturated with respect to J}

s an open subset of U.
The most relevant case of theorem is when U is the multigraded Hilbert scheme.

Corollary 1.2. Suppose that S is a positively graded polynomial ring and that J C S is
a homogeneous ideal. Let Hilbg be the multigraded Hilbert scheme of S for some Hilbert
function h: A — Z=o. Consider the subset Hilbg’satj C Hilbg consisting of the points
representing ideals saturated with respect to J. Then Hilbg’sat‘] 15 Zariski open.

Now suppose X is a smoothcomplete toric variety over k and let S = S[X]| =
D pericx) H°(X, D) is its Cox ring graded by Pic(X). Suppose k C K is a field ex-
tension and Z C X X K is a subscheme. Denote by I(Z) C S[X] ®k K the homogeneous
ideal of Z, that is the ideal generated by sections of line bundles on X xj K that vanish
on Z. The Hilbert function of Z is hy: Pic(X) — Zsq defined by

hz(D) = dimg ((S[X] @k K) /1(Z)), -

Fix a Noetherian k-scheme U as a base scheme and suppose Z C U x X is a closed
subscheme flat over U (that is, Z is a flat family of subschemes of X). Then there are
only finitely many possible Hilbert functions of fibres Z, and this determines a finite
stratification of U by locally closed subsets.

Proposition 1.3. Let X, U and S be as above. For a flat family Z — U of subschemes
of X consider a map from the set of points of U to the set of integer valued functions
from Pic(X) to Zsg: u > hz,. This map takes only finitely many values hy, ..., hy and
the preimage of any function is a locally closed subset U; of U. In particular, if U is
wrreducible with the generic point n € U, then there is a Zariski open dense subset U; C U
such that every fibre Z, for u € U; has the same Hilbert function as the generic fibre hz, .

Another application concerns configurations of points on a smooth complete toric
variety X. I'ix an integer r > 0, and by h, x: PicX — N denote the generic Hilbert
function of r points on X, that is h, x (D) = min (r, dim; H°(X, D)). In [BB19, Lem. 3.9|
we show that (over complex numbers) a very general configuration of r points in X has
the Hilbert function h, x. Here we show that the same is actually true for a general

configuration. Moreover, we extend the result to an arbitrary algebraically closed base
field.

Theorem 1.4. Suppose the base field k is algebraically closed, X is a smooth pro-
jective toric variety over k, and let S = S[X]| be the Cox ring of X. Suppose that
Z = {x1,...,2,.} is a general configuration of points on X (that is, (x1,...,x.) € X*"
is a general point). Then the Hilbert function hyz is equal to h, x. Moreover, the set of
such r-tuples of points is open in X*".
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2 Saturation is an open property

The proofs in this section are largely suggested by Joachim Jelisiejew (private communi-
cation).

Lemma 2.1. Let f € S be a fired homogeneous element of nonzero degree. Let U be a
locally Noetherian k-scheme and I be a flat family of homogeneous ideals in S. Then the
set

{u e U|fisnot a zero divisor in (k(u) @k S)/Z,} (2.2)

s an open subset of U.

Proof. This argument resembles one of the forms of the local criterion for flatness
[Stac17, Tag 0OME], but in the graded setting.

Everything is local on U, so we assume U = Spec(R) for a Noetherian k-algebra R,
7 is a homogeneous ideal in R ®y S and let B = R ®y S/Z be the quotient algebra. Pick
a point v € U and let m C R be the maximal ideal corresponding to v and x(u) = R/m.
Suppose that f is not a zero-divisor in B/mB. We will prove that f is not a zero-divisor
in By. First, we show that f is not a zero-divisor in By, /m¢B,, for all positive d. We
do this by induction. The case d = 1 is the assumption that f is not a zero-divisor in
B/mB. For the induction step, consider the following diagram

0 —— Bp®@zpm?/mitt —— B /m¢"'B, —— B,/m‘B, —— 0

b b

0 —— Bp®@gpmi/mi*t —— B /m™*'B, —— B,/m‘B, —— 0

whose rows come from tensoring 0 — m¢/mé*! — R /ma*t — R /m? — 0 with the flat
Rn-module B,. We have

By @ m? /m™! = By /mBy @y m? fm* = (B/mB)tmao m/m

as B-modules, so the multiplication by f is injective on this B-module. The multiplication
by f on By, /miBy, is injective by the inductive assumption. Snake Lemma implies that
also the multiplication by f on By,/m®!B, is injective, which concludes the proof of
induction step and of the induction claim.

Let K C B be the kernel of the multiplication by f on B. Then K, C By is the
kernel of the multiplication by f on By, so Ky, C m?B,, for all d, hence K, is a subset
of N, m?By. We claim that the latter module is zero. By assumption, the ring B is
N-graded and its degree r part is an image of S, so it is a finite R-module. The image
of R\ m in B consists of elements of degree zero, hence B, is N-graded and its degree
r part is a finite Rp-module. Similarly, (), m?By, is N-graded with degree r part equal
to ;Mm% (Bu),. But (By), is a finite module over the Noetherian local ring Ry, so by
Krull Intersection Theorem |Eise95, Cor. 5.4, we have (), m%(By), = 0. It follows that
N, mBn =0, so Ky = 0.

As B is Noetherian, the ideal K C B is finitely generated, say by elements ki, ..., k.
From K, = 0 we see that there exist si,...,s, € R\ m such that s;k; = 0 for all i. Let
s =[]~ s. Then sk; = 0 for all 4, so sK = 0 so K, = 0. The ideal K, C By is the
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kernel of the multiplication by f on B,. As it is zero, the element f is not a zero-divisor
in Bs. It follows that the open neighbourhood (s # 0) of w is contained in the set (2.2).
This completes the proof. O

Lemma 2.3. Assume that S is Z-graded, and that the degrees of all variables c; have
positive degree. Let k C K be a field extension, let Sx = S ®x K and let B = Sk/I for
a homogeneous ideal I C Sx. Let J C S be a homogeneneous ideal. Then I is saturated
with respect to J - Sk if and only if there exists a homogeneous element f € J which is
not a zero-divisor in B.

We stress that the homogeneous element f in the conclusion of the lemma should
exist in J, not only in J - Sk.

Proof. If J = S, then there is nothing to prove. Thus assume that J is generated by
homogeneous elements of positive degrees.

One implication is formal: if f € J is not a zero divisor in B, then consider g €
(I:J-Sk) and set g € B to be the class of g modulo I. Thus g-J C I and g-J = 0.
In particular, g - f = 0 and since f is not a zero divisor, g = 0, that is ¢ € I, and
(I:J-Sk)=1 as claimed.

Now consider the oposite implication: suppose by contradiction that all homogeneous
elements of J are zero divisors on B. Primary decomposition implies that the set of zero
divisors of B is a set-theoretic union of prime ideals py,...,p, where p, = (0 : g;) for
some nonzero g; € B, see [AMG69, Prop. 4.7]. Moreover, all the ideals p, are homogeneous
by [Eise95, Prop. 3.12]. By the same proposition, g; can be chosen homogeneous. Let
p; C Sk be the preimage of p, and g; € Sk be a homogeneous preimage of g; € B. All
homogeneous elements of J are zero divisors on B, so are contained in (J;_, p;. As they
lie in S, they are even contained in [J;_,(p; N S). But J and p; N S are homogeneous
ideals of S, with p, NS prime, so J C p; NS for some index ¢ by homogeneous prime
avoidance [Eise95, Lem. 3.3|. It follows that Jg; = 0 and so g; € (I : J) \ I, so I is not
saturated with respect to J. O

Lemma 2.4. Suppose S is A-graded and the grading is positive. Then there exists a
homomorphism @: A — 7Z, such that the induced Z-grading on S has degrees of all
variables positive.

Proof. Consider Ag = A ®z R, the real vector space of A. The set of classes of deg(a;)
spans a rational convex polyhedral cone in Ag. This cone is strictly convex: indeed, if
there is a line contained in the cone, then there are two nontrivial monomials m; and mo
of opposite degree (up to torsion). Then deg ((mims2)?) = 0 for some d, contradciting
the positivity of the grading.

Thus there exists an integral hyperplane ¢ = 0 supporting the vertex 0 in the cone.
Then the integral form ¢ defining the hyperplane determines the desired homomorphism
A—Z. O

Proof of Theorem 1.1. By Lemma 2.4 we may assume that the grading group A is
equal to Z and that all the degrees of variables are positive. Both ideals Z and J are still
homogeneous with respect to the new grading.



Let u € U be a point such that Z, C S ® k(u) is saturated with respect to J. By
Lemma 2.3, there exists a homogeneous f € J which is not a zero divisor on (S®«(u))/Z,.
By Lemma 2.1, the same element f is not a zero divisor on an open set U’ C U of fibers
which contains u. By Lemma 2.3 every fiber in U’ corresponds to saturated ideal. This
concludes the proof. O

3 Families of schemes 1n toric varieties

Here we prove Proposition 1.3.

Let Irrely € S[X] be the irrelevant ideal of X. Throughout this subsection we fix
Irrelx as the denominator of the saturation, that is, we whenever we say an ideal is
saturated, we mean saturated with respect to Irrely.

Suppose Z C U x X is a flat family of subschemes of X. The statement of the
proposition is about points of U only, it does not take into account the scheme structure
of U. Thus we may assume U is reduced. Moreover, if U is reducible, then we argue for
each irreducible component separately. Thus we may assume U is integral.

Let n € U be the generic point. Consider the scheme theoretic closure Z Since
Z, C Z and Z is closed, we have Z C Z. By flatness of Z — U also its restrictions
to subschemes of U are flat [Hart77, Prop. 111.9.2(b)]. Thus by the flatness criterion
over the base of dimension 1 [Hart77, Prop. I11.9.8]|, we must also have Z C Z that
is Z = Z,. Therefore the saturated ideal I(Z,) determines the homogeneous ideal sheaf
Iz C Oy S[X]

By generic flatness there is an open dense subset U’ C U such that Zz is a flat family
of homogeneous ideals on U’. By Theorem 1.1 there is another open subset U; C U’ such
that for each u € U the ideal Zz, is saturated. That is Zz, = I(Z,) for u € U; and
dimy.(,) [(Z.)p = dimy) I(Z,)p for all D € Pic(X), and thus on U; the Hilbert function (=
is constant.

Now consider the complement of U7, and replace U with this complement and proceed
by induction. Since U is Noetherian, the induction will stop after finitely many steps.

By semicontinuity of Hilbert functions in a family, each stratum must be open its
closure, which concludes the proof of Proposition 1.3.
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4 Set of ideals of points with generic Hilbert function

Here we prove Theorem 1.4.

Let X™° C X*" denote the difference of the r-fold product of X and the big diagonal,
that is, the set of tuples in which at least two of the coordinates coincide. In other words,
X" is the ordered configuration space of X. Then X"° naturally determines a flat family
of subschemes of X, that is, Z C X"° x X, with Z,, . ={x,...,2,} C X.

By Proposition 1.3 the Hilbert function of a general configuration is equal to the
Hilbert function of the generic configuration Z,. Herenn € X™° and m = X"°. Moreover,
the set of those v € X™° which have the same Hilbert function as Z, is open in X™°, and
thus also in X*".



For each D € Pic(X) consider the set:
(XT’O)D = {u cX"° ‘ dlmn(u) ((HO(X, D) Xk li(u)) /I(Zu)p) < hr,X(D)} .

This is a closed subset of X™° and since k is algebraiclaly closed it is straightforward to
show that (X™°)p # X"°. Thus n € X"\ Upepiex)(X"°)p, that is, Z, has the generic
Hilbert function as claimed.
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