

A note on families of saturated ideals

Weronika Buczyńska Jarosław Buczyński

1st June 2021

Abstract

Under minor homogeneity assumptions we show that the set of saturated ideals in a flat family of multihomogeneous ideals is open. Moreover, we show that a general configuration of points in a smooth complete toric variety has the expected multigraded Hilbert function. We work over the base field \mathbb{k} of arbitrary characteristics. This is a part of the project on advanced border apolarity techniques. These working notes are provided as a temporary reference for other authors, while we are preparing the details of the complete paper.

addresses:

J. Buczyński, jabu@mimuw.edu.pl, Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
W. Buczyńska, wkrych@mimuw.edu.pl, Faculty of Mathematics, Computer Science and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

1 Introduction

Let \mathbb{k} be any base field (not necessarily algebraically closed). We work with a polynomial ring $S = \mathbb{k}[\alpha_1, \dots, \alpha_n]$. Suppose A is a finitely generated abelian group, that is $A \simeq \mathbb{Z}^q \oplus A^{\text{tor}}$, where $q \geq 0$, A^{tor} is a finite abelian group. An A -grading of S is a homomorphism (called the *degree*) from the semigroup of monomials in S to A . An A -grading is *positive* if the only monomial of degree 0 is $1 \in S$. An ideal $I \subset S$ is homogeneous (with respect to the A -grading) if I is generated by homogeneous elements, that is polynomials, whose all monomials are of the same degree. Whenever A and the degree map are clear from the context, we will simply say “homogeneous”.

Fix an A -grading of S . We consider a *flat family of homogeneous ideals* in $S = \mathbb{k}[\alpha_1, \dots, \alpha_n]$. That is, let U be a \mathbb{k} -scheme, and consider the free sheaf $S_U := \mathcal{O}_U \otimes_{\mathbb{k}} S$ of A -graded algebras. Let $\mathcal{I} \subset S_U$ be a homogeneous ideal sheaf flat over U . For each point $u \in U$ we consider the fibre ideal $\mathcal{I}_u \subset \kappa(u)[\alpha_1, \dots, \alpha_n] = \kappa(u) \otimes_{\mathbb{k}} S$. Let $J \subset S$ be a fixed homogeneous ideal, and for each u let $J_u := \kappa(u) \otimes_{\mathbb{k}} J \subset \kappa(u) \otimes_{\mathbb{k}} S$ be the extension of J to the coefficients in $\kappa(u)$. We say that an ideal $I \subset \kappa(u) \otimes_{\mathbb{k}} S$ is saturated with respect to J if $(I : J_u) = I$.

Our first claim is that (under some minor assumptions) the subset of those $u \in U$ that \mathcal{I}_u is saturated with respect to J is Zariski open in X .

think:
more is
true, it
makes
sense to
have it
as an
open
sub-
scheme.

Theorem 1.1. Suppose S is positively graded polynomial ring and \mathcal{I} is a flat family of homogeneous ideals in S parametrised by a locally Noetherian \mathbb{k} -scheme U . Let J be a fixed homogeneous ideal in S . Then the set

$$\{u \in U \mid \mathcal{I}_u \text{ is saturated with respect to } J\}$$

is an open subset of U .

The most relevant case of theorem is when U is the multigraded Hilbert scheme.

Corollary 1.2. Suppose that S is a positively graded polynomial ring and that $J \subset S$ is a homogeneous ideal. Let Hilb_S^h be the multigraded Hilbert scheme of S for some Hilbert function $h: A \rightarrow \mathbb{Z}_{\geq 0}$. Consider the subset $\text{Hilb}_S^{h, \text{sat } J} \subset \text{Hilb}_S^h$ consisting of the points representing ideals saturated with respect to J . Then $\text{Hilb}_S^{h, \text{sat } J}$ is Zariski open.

Now suppose X is a smooth complete toric variety over \mathbb{k} and let $S = S[X] = \bigoplus_{D \in \text{Pic}(X)} H^0(X, D)$ is its Cox ring graded by $\text{Pic}(X)$. Suppose $\mathbb{k} \subset \mathbb{K}$ is a field extension and $Z \subset X \times_{\mathbb{k}} \mathbb{K}$ is a subscheme. Denote by $\text{I}(Z) \subset S[X] \otimes_{\mathbb{k}} \mathbb{K}$ the homogeneous ideal of Z , that is the ideal generated by sections of line bundles on $X \times_{\mathbb{k}} \mathbb{K}$ that vanish on Z . The *Hilbert function* of Z is $h_Z: \text{Pic}(X) \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$h_Z(D) = \dim_{\mathbb{K}} ((S[X] \otimes_{\mathbb{k}} \mathbb{K}) / \text{I}(Z))_D.$$

Fix a Noetherian \mathbb{k} -scheme U as a base scheme and suppose $\mathcal{Z} \subset U \times X$ is a closed subscheme flat over U (that is, \mathcal{Z} is a flat family of subschemes of X). Then there are only finitely many possible Hilbert functions of fibres \mathcal{Z}_u and this determines a finite stratification of U by locally closed subsets.

Proposition 1.3. Let X , U and S be as above. For a flat family $\mathcal{Z} \rightarrow U$ of subschemes of X consider a map from the set of points of U to the set of integer valued functions from $\text{Pic}(X)$ to $\mathbb{Z}_{\geq 0}$: $u \mapsto h_{\mathcal{Z}_u}$. This map takes only finitely many values h_1, \dots, h_k and the preimage of any function is a locally closed subset U_i of U . In particular, if U is irreducible with the generic point $\eta \in U$, then there is a Zariski open dense subset $U_i \subset U$ such that every fibre \mathcal{Z}_u for $u \in U_i$ has the same Hilbert function as the generic fibre $h_{\mathcal{Z}_\eta}$.

Another application concerns configurations of points on a smooth complete toric variety X . Fix an integer $r > 0$, and by $h_{r, X}: \text{Pic } X \rightarrow \mathbb{N}$ denote the *generic Hilbert function of r points on X* , that is $h_{r, X}(D) = \min(r, \dim_{\mathbb{k}} H^0(X, D))$. In [BB19, Lem. 3.9] we show that (over complex numbers) a very general configuration of r points in X has the Hilbert function $h_{r, X}$. Here we show that the same is actually true for a general configuration. Moreover, we extend the result to an arbitrary algebraically closed base field.

Theorem 1.4. Suppose the base field \mathbb{k} is algebraically closed, X is a smooth projective toric variety over \mathbb{k} , and let $S = S[X]$ be the Cox ring of X . Suppose that $Z := \{x_1, \dots, x_r\}$ is a general configuration of points on X (that is, $(x_1, \dots, x_r) \in X^{\times r}$ is a general point). Then the Hilbert function h_Z is equal to $h_{r, X}$. Moreover, the set of such r -tuples of points is open in $X^{\times r}$.

Q
Cartier
should
be
enough
or
 $\text{Cl}(X)$

2 Saturation is an open property

The proofs in this section are largely suggested by Joachim Jelisiejew (private communication).

Lemma 2.1. *Let $f \in S$ be a fixed homogeneous element of nonzero degree. Let U be a locally Noetherian \mathbb{k} -scheme and \mathcal{I} be a flat family of homogeneous ideals in S . Then the set*

$$\{u \in U \mid f \text{ is not a zero divisor in } (\kappa(u) \otimes_{\mathbb{k}} S)/\mathcal{I}_u\} \quad (2.2)$$

is an open subset of U .

Proof. This argument resembles one of the forms of the local criterion for flatness [Stac17, Tag 00ME], but in the graded setting.

Everything is local on U , so we assume $U = \text{Spec}(R)$ for a Noetherian \mathbb{k} -algebra R , \mathcal{I} is a homogeneous ideal in $R \otimes_{\mathbb{k}} S$ and let $B = R \otimes_{\mathbb{k}} S/\mathcal{I}$ be the quotient algebra. Pick a point $u \in U$ and let $\mathfrak{m} \subset R$ be the maximal ideal corresponding to u and $\kappa(u) = R/\mathfrak{m}$. Suppose that f is not a zero-divisor in $B/\mathfrak{m}B$. We will prove that f is not a zero-divisor in $B_{\mathfrak{m}}$. First, we show that f is not a zero-divisor in $B_{\mathfrak{m}}/\mathfrak{m}^d B_{\mathfrak{m}}$ for all positive d . We do this by induction. The case $d = 1$ is the assumption that f is not a zero-divisor in $B/\mathfrak{m}B$. For the induction step, consider the following diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & B_{\mathfrak{m}} \otimes_R \mathfrak{m}^d/\mathfrak{m}^{d+1} & \longrightarrow & B_{\mathfrak{m}}/\mathfrak{m}^{d+1} B_{\mathfrak{m}} & \longrightarrow & B_{\mathfrak{m}}/\mathfrak{m}^d B_{\mathfrak{m}} \longrightarrow 0 \\ & & \downarrow \cdot f & & \downarrow \cdot f & & \downarrow \cdot f \\ 0 & \longrightarrow & B_{\mathfrak{m}} \otimes_R \mathfrak{m}^d/\mathfrak{m}^{d+1} & \longrightarrow & B_{\mathfrak{m}}/\mathfrak{m}^{d+1} B_{\mathfrak{m}} & \longrightarrow & B_{\mathfrak{m}}/\mathfrak{m}^d B_{\mathfrak{m}} \longrightarrow 0 \end{array}$$

whose rows come from tensoring $0 \rightarrow \mathfrak{m}^d/\mathfrak{m}^{d+1} \rightarrow R_{\mathfrak{m}}/\mathfrak{m}^{d+1} \rightarrow R_{\mathfrak{m}}/\mathfrak{m}^d \rightarrow 0$ with the flat $R_{\mathfrak{m}}$ -module $B_{\mathfrak{m}}$. We have

$$B_{\mathfrak{m}} \otimes_A \mathfrak{m}^d/\mathfrak{m}^{d+1} = B_{\mathfrak{m}}/\mathfrak{m}B_{\mathfrak{m}} \otimes_{\kappa(u)} \mathfrak{m}^d/\mathfrak{m}^{d+1} \simeq (B/\mathfrak{m}B)^{\dim_{\kappa(u)} \mathfrak{m}^d/\mathfrak{m}^{d+1}}$$

as B -modules, so the multiplication by f is injective on this B -module. The multiplication by f on $B_{\mathfrak{m}}/\mathfrak{m}^d B_{\mathfrak{m}}$ is injective by the inductive assumption. Snake Lemma implies that also the multiplication by f on $B_{\mathfrak{m}}/\mathfrak{m}^{d+1} B_{\mathfrak{m}}$ is injective, which concludes the proof of induction step and of the induction claim.

Let $K \subset B$ be the kernel of the multiplication by f on B . Then $K_{\mathfrak{m}} \subset B_{\mathfrak{m}}$ is the kernel of the multiplication by f on $B_{\mathfrak{m}}$, so $K_{\mathfrak{m}} \subset \mathfrak{m}^d B_{\mathfrak{m}}$ for all d , hence $K_{\mathfrak{m}}$ is a subset of $\bigcap_d \mathfrak{m}^d B_{\mathfrak{m}}$. We claim that the latter module is zero. By assumption, the ring B is \mathbb{N} -graded and its degree r part is an image of S_r , so it is a finite R -module. The image of $R \setminus \mathfrak{m}$ in B consists of elements of degree zero, hence $B_{\mathfrak{m}}$ is \mathbb{N} -graded and its degree r part is a finite $R_{\mathfrak{m}}$ -module. Similarly, $\bigcap_d \mathfrak{m}^d B_{\mathfrak{m}}$ is \mathbb{N} -graded with degree r part equal to $\bigcap_d \mathfrak{m}^d (B_{\mathfrak{m}})_r$. But $(B_{\mathfrak{m}})_r$ is a finite module over the Noetherian local ring $R_{\mathfrak{m}}$, so by Krull Intersection Theorem [Eise95, Cor. 5.4], we have $\bigcap_d \mathfrak{m}^d (B_{\mathfrak{m}})_r = 0$. It follows that $\bigcap_d \mathfrak{m}^d B_{\mathfrak{m}} = 0$, so $K_{\mathfrak{m}} = 0$.

As B is Noetherian, the ideal $K \subset B$ is finitely generated, say by elements k_1, \dots, k_m . From $K_{\mathfrak{m}} = 0$ we see that there exist $s_1, \dots, s_m \in R \setminus \mathfrak{m}$ such that $s_i k_i = 0$ for all i . Let $s = \prod_{i=1}^m s_i$. Then $s k_i = 0$ for all i , so $sK = 0$ so $K_s = 0$. The ideal $K_s \subset B_s$ is the

kernel of the multiplication by f on B_s . As it is zero, the element f is not a zero-divisor in B_s . It follows that the open neighbourhood ($s \neq 0$) of u is contained in the set (2.2). This completes the proof. \square

Lemma 2.3. *Assume that S is \mathbb{Z} -graded, and that the degrees of all variables α_i have positive degree. Let $\mathbb{k} \subset \mathbb{K}$ be a field extension, let $S_{\mathbb{K}} = S \otimes_{\mathbb{k}} \mathbb{K}$ and let $B = S_{\mathbb{K}}/I$ for a homogeneous ideal $I \subset S_{\mathbb{K}}$. Let $J \subset S$ be a homogeneous ideal. Then I is saturated with respect to $J \cdot S_{\mathbb{K}}$ if and only if there exists a homogeneous element $f \in J$ which is not a zero-divisor in B .*

We stress that the homogeneous element f in the conclusion of the lemma should exist in J , not only in $J \cdot S_{\mathbb{K}}$.

Proof. If $J = S$, then there is nothing to prove. Thus assume that J is generated by homogeneous elements of positive degrees.

One implication is formal: if $f \in J$ is not a zero divisor in B , then consider $g \in (I: J \cdot S_{\mathbb{K}})$ and set $\bar{g} \in B$ to be the class of g modulo I . Thus $g \cdot J \subset I$ and $\bar{g} \cdot J = 0$. In particular, $\bar{g} \cdot f = 0$ and since f is not a zero divisor, $\bar{g} = 0$, that is $g \in I$, and $(I: J \cdot S_{\mathbb{K}}) = I$ as claimed.

Now consider the oposite implication: suppose by contradiction that all homogeneous elements of J are zero divisors on B . Primary decomposition implies that the set of zero divisors of B is a set-theoretic union of prime ideals $\bar{\mathfrak{p}}_1, \dots, \bar{\mathfrak{p}}_r$ where $\bar{\mathfrak{p}}_i = (0 : \bar{g}_i)$ for some nonzero $\bar{g}_i \in B$, see [AM69, Prop. 4.7]. Moreover, all the ideals $\bar{\mathfrak{p}}_i$ are homogeneous by [Eise95, Prop. 3.12]. By the same proposition, \bar{g}_i can be chosen homogeneous. Let $\mathfrak{p}_i \subset S_{\mathbb{K}}$ be the preimage of $\bar{\mathfrak{p}}_i$ and $g_i \in S_{\mathbb{K}}$ be a homogeneous preimage of $\bar{g}_i \in B$. All homogeneous elements of J are zero divisors on B , so are contained in $\bigcup_{i=1}^r \mathfrak{p}_i$. As they lie in S , they are even contained in $\bigcup_{i=1}^r (\mathfrak{p}_i \cap S)$. But J and $\mathfrak{p}_i \cap S$ are homogeneous ideals of S , with $\mathfrak{p}_i \cap S$ prime, so $J \subset \mathfrak{p}_i \cap S$ for some index i by homogeneous prime avoidance [Eise95, Lem. 3.3]. It follows that $J\bar{g}_i = 0$ and so $g_i \in (I : J) \setminus I$, so I is not saturated with respect to J . \square

Lemma 2.4. *Suppose S is A -graded and the grading is positive. Then there exists a homomorphism $\varphi: A \rightarrow \mathbb{Z}$, such that the induced \mathbb{Z} -grading on S has degrees of all variables positive.*

Proof. Consider $A_{\mathbb{R}} = A \otimes_{\mathbb{Z}} \mathbb{R}$, the real vector space of A . The set of classes of $\deg(\alpha_i)$ spans a rational convex polyhedral cone in $A_{\mathbb{R}}$. This cone is strictly convex: indeed, if there is a line contained in the cone, then there are two nontrivial monomials m_1 and m_2 of opposite degree (up to torsion). Then $\deg((m_1 m_2)^d) = 0$ for some d , contradicting the positivity of the grading.

Thus there exists an integral hyperplane $\phi = 0$ supporting the vertex 0 in the cone. Then the integral form ϕ defining the hyperplane determines the desired homomorphism $A \rightarrow \mathbb{Z}$. \square

Proof of Theorem 1.1. By Lemma 2.4 we may assume that the grading group A is equal to \mathbb{Z} and that all the degrees of variables are positive. Both ideals \mathcal{I} and J are still homogeneous with respect to the new grading.

Let $u \in U$ be a point such that $\mathcal{I}_u \subset S \otimes \kappa(u)$ is saturated with respect to J . By Lemma 2.3, there exists a homogeneous $f \in J$ which is not a zero divisor on $(S \otimes \kappa(u)) / \mathcal{I}_u$. By Lemma 2.1, the same element f is not a zero divisor on an open set $U' \subset U$ of fibers which contains u . By Lemma 2.3 every fiber in U' corresponds to saturated ideal. This concludes the proof. \square

3 Families of schemes in toric varieties

Here we prove Proposition 1.3.

Let $\text{Irrel}_X \subset S[X]$ be the irrelevant ideal of X . Throughout this subsection we fix Irrel_X as the denominator of the saturation, that is, we whenever we say an ideal is saturated, we mean saturated with respect to Irrel_X .

Suppose $\mathcal{Z} \subset U \times X$ is a flat family of subschemes of X . The statement of the proposition is about points of U only, it does not take into account the scheme structure of U . Thus we may assume U is reduced. Moreover, if U is reducible, then we argue for each irreducible component separately. Thus we may assume U is integral.

Let $\eta \in U$ be the generic point. Consider the scheme theoretic closure $\overline{\mathcal{Z}_\eta}$. Since $\mathcal{Z}_\eta \subset \mathcal{Z}$ and \mathcal{Z} is closed, we have $\overline{\mathcal{Z}_\eta} \subset \mathcal{Z}$. By flatness of $\mathcal{Z} \rightarrow U$ also its restrictions to subschemes of U are flat [Hart77, Prop. III.9.2(b)]. Thus by the flatness criterion over the base of dimension 1 [Hart77, Prop. III.9.8], we must also have $\mathcal{Z} \subset \overline{\mathcal{Z}_\eta}$, that is $\mathcal{Z} = \overline{\mathcal{Z}_\eta}$. Therefore the saturated ideal $I(\mathcal{Z}_\eta)$ determines the homogeneous ideal sheaf $\mathcal{I}_{\mathcal{Z}} \subset \mathcal{O}_U \otimes_{\mathbb{k}} S[X]$.

By generic flatness there is an open dense subset $U' \subset U$ such that $\mathcal{I}_{\mathcal{Z}}$ is a flat family of homogeneous ideals on U' . By Theorem 1.1 there is another open subset $U_1 \subset U'$ such that for each $u \in U_1$ the ideal $\mathcal{I}_{\mathcal{Z},u}$ is saturated. That is $\mathcal{I}_{\mathcal{Z},u} = I(\mathcal{Z}_u)$ for $u \in U_1$ and $\dim_{\kappa(u)} I(\mathcal{Z}_u)_D = \dim_{\kappa(\eta)} I(\mathcal{Z}_\eta)_D$ for all $D \in \text{Pic}(X)$, and thus on U_1 the Hilbert function is constant.

Now consider the complement of U_1 , and replace U with this complement and proceed by induction. Since U is Noetherian, the induction will stop after finitely many steps.

By semicontinuity of Hilbert functions in a family, each stratum must be open in its closure, which concludes the proof of Proposition 1.3.

4 Set of ideals of points with generic Hilbert function

Here we prove Theorem 1.4.

Let $X^{r,\circ} \subset X^{\times r}$ denote the difference of the r -fold product of X and the big diagonal, that is, the set of tuples in which at least two of the coordinates coincide. In other words, $X^{r,\circ}$ is the *ordered configuration space* of X . Then $X^{r,\circ}$ naturally determines a flat family of subschemes of X , that is, $\mathcal{Z} \subset X^{r,\circ} \times X$, with $\mathcal{Z}_{(x_1, \dots, x_r)} = \{x_1, \dots, x_r\} \subset X$.

By Proposition 1.3 the Hilbert function of a general configuration is equal to the Hilbert function of the generic configuration \mathcal{Z}_η . Here $\eta \in X^{r,\circ}$ and $\overline{\{\eta\}} = X^{r,\circ}$. Moreover, the set of those $u \in X^{r,\circ}$ which have the same Hilbert function as \mathcal{Z}_η is open in $X^{r,\circ}$, and thus also in $X^{\times r}$.

find better, non-projective reference
ref

ref

ref

For each $D \in \text{Pic}(X)$ consider the set:

$$(X^{r,\circ})_D = \{u \in X^{r,\circ} \mid \dim_{\kappa(u)} ((H^0(X, D) \otimes_{\mathbb{k}} \kappa(u)) / I(\mathcal{Z}_u)_D) < h_{r,X}(D)\}.$$

This is a closed subset of $X^{r,\circ}$ and since \mathbb{k} is algebraically closed it is straightforward to show that $(X^{r,\circ})_D \neq X^{r,\circ}$. Thus $\eta \in X^{r,\circ} \setminus \bigcup_{D \in \text{Pic}(X)} (X^{r,\circ})_D$, that is, \mathcal{Z}_η has the generic Hilbert function as claimed.

References

- [AM69] M. F. Atiyah and I. G. Macdonald. *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [BB19] Weronika Buczyńska and Jarosław Buczyński. Apolarity, border rank and multi-graded hilbert scheme. arXiv: 1910.01944; to appear in Duke Mathematical Journal, 2019.
- [Eise95] David Eisenbud. *Commutative algebra*, volume 150 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
- [Hart77] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
- [Stac17] The Stacks Project Authors. *Stacks Project*. <http://stacks.math.columbia.edu>, 2017.