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Abstract

Under minor homogeneity assumptions we show that the set of saturated ide-

als in a �at family of multihomogeneous ideals is open. Moreover, we show that a

general con�guration of points in a smooth complete toric variety has the expected

multigraded Hilbert function. We work over the base �eld k of arbitrary character-

istics. This is a part of the project on advanced border apolarity techniques. These

working notes are provided as a temporary reference for other authors, while we are

preparing the details of the complete paper.
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1 Introduction

Let k be any base �eld (not necessarily algebraically closed). We work with a polynomial
ring S = k[α1, . . . , αn]. Suppose A is a �nitely generated abelian group, that is A ' Zq⊕
Ator, where q > 0, Ator is a �nite abelian group. An A-grading of S is a homomorphism
(called the degree) from the semigroup of monomials in S to A. An A-grading is positive
if the only monomial of degree 0 is 1 ∈ S. An ideal I ⊂ S is homogeneous (with respect
to the A-grading) if I is generated by homogeneous elements, that is polynomials, whose
all monomials are of the same degree. Whenever A and the degree map are clear from
the context, we will simply say �homogeneous�.

Fix an A-grading of S. We consider a �at family of homogeneous ideals in S =
k[α1, . . . , αn]. That is, let U be a k-scheme, and consider the free sheaf SU := OU ⊗k S of
A-graded algebras. Let I ⊂ SU be a homogeneous ideal sheaf �at over U . For each point
u ∈ U we consider the �bre ideal Iu ⊂ κ(u)[α1, . . . , αn] = κ(u)⊗kS. Let J ⊂ S be a �xed
homogeneous ideal, and for each u let Ju := κ(u)⊗k J ⊂ κ(u)⊗k S be the extension of J
to the coe�cients in κ(u). We say that an ideal I ⊂ κ(u)⊗k S is saturated with respect
to J if (I : Ju) = I.

Our �rst claim is that (under some minor assumptions) the subset of those u ∈ U
that Iu is saturated with respect to J is Zariski open in X. think:

more is
true, it
makes
sense to
have it
as an
open
sub-
scheme.

think:
more is
true, it
makes
sense to
have it
as an
open
sub-
scheme.
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Theorem 1.1. Suppose S is positively graded polynomial ring and I is a �at family of
homogeneous ideals in S parametrised by a locally Noetherian k-scheme U . Let J be a
�xed homogeneous ideal in S. Then the set

{u ∈ U | Iu is saturated with respect to J}

is an open subset of U .

The most relevant case of theorem is when U is the multigraded Hilbert scheme.

Corollary 1.2. Suppose that S is a positively graded polynomial ring and that J ⊂ S is
a homogeneous ideal. Let HilbhS be the multigraded Hilbert scheme of S for some Hilbert
function h : A → Z>0. Consider the subset Hilbh,sat JS ⊂ HilbhS consisting of the points
representing ideals saturated with respect to J . Then Hilbh,sat JS is Zariski open.

Now suppose X is a smoothcomplete toric variety over k and let S = S[X] = Q-
Cartier
should
be
enough

Q-
Cartier
should
be
enough

⊕
D∈Pic(X)H

0(X,D) is its Cox ring graded by Pic(X). Suppose k ⊂ K is a �eld ex-

or
Cl(X)
or
Cl(X)

tension and Z ⊂ X ×k K is a subscheme. Denote by I(Z) ⊂ S[X]⊗k K the homogeneous
ideal of Z, that is the ideal generated by sections of line bundles on X ×k K that vanish
on Z. The Hilbert function of Z is hZ : Pic(X)→ Z>0 de�ned by

hZ(D) = dimK ((S[X]⊗k K) / I(Z))D .

Fix a Noetherian k-scheme U as a base scheme and suppose Z ⊂ U × X is a closed
subscheme �at over U (that is, Z is a �at family of subschemes of X). Then there are
only �nitely many possible Hilbert functions of �bres Zu and this determines a �nite
strati�cation of U by locally closed subsets.

Proposition 1.3. Let X, U and S be as above. For a �at family Z → U of subschemes
of X consider a map from the set of points of U to the set of integer valued functions
from Pic(X) to Z>0: u 7→ hZu. This map takes only �nitely many values h1, . . . , hk and
the preimage of any function is a locally closed subset Ui of U . In particular, if U is
irreducible with the generic point η ∈ U , then there is a Zariski open dense subset Ui ⊂ U
such that every �bre Zu for u ∈ Ui has the same Hilbert function as the generic �bre hZη .

Another application concerns con�gurations of points on a smooth complete toric
variety X. Fix an integer r > 0, and by hr,X : PicX → N denote the generic Hilbert
function of r points on X, that is hr,X(D) = min (r, dimkH

0(X,D)). In [BB19, Lem. 3.9]
we show that (over complex numbers) a very general con�guration of r points in X has
the Hilbert function hr,X . Here we show that the same is actually true for a general
con�guration. Moreover, we extend the result to an arbitrary algebraically closed base
�eld.

Theorem 1.4. Suppose the base �eld k is algebraically closed, X is a smooth pro-
jective toric variety over k, and let S = S[X] be the Cox ring of X. Suppose that
Z := {x1, . . . , xr} is a general con�guration of points on X (that is, (x1, . . . , xr) ∈ X×r
is a general point). Then the Hilbert function hZ is equal to hr,X . Moreover, the set of
such r-tuples of points is open in X×r.
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2 Saturation is an open property

The proofs in this section are largely suggested by Joachim Jelisiejew (private communi-
cation).

Lemma 2.1. Let f ∈ S be a �xed homogeneous element of nonzero degree. Let U be a
locally Noetherian k-scheme and I be a �at family of homogeneous ideals in S. Then the
set

{u ∈ U | f is not a zero divisor in (κ(u)⊗k S)/Iu} (2.2)

is an open subset of U .

Proof. This argument resembles one of the forms of the local criterion for �atness
[Stac17, Tag 00ME], but in the graded setting.

Everything is local on U , so we assume U = Spec(R) for a Noetherian k-algebra R,
I is a homogeneous ideal in R⊗k S and let B = R⊗k S/I be the quotient algebra. Pick
a point u ∈ U and let m ⊂ R be the maximal ideal corresponding to u and κ(u) = R/m.
Suppose that f is not a zero-divisor in B/mB. We will prove that f is not a zero-divisor
in Bm. First, we show that f is not a zero-divisor in Bm/m

dBm for all positive d. We
do this by induction. The case d = 1 is the assumption that f is not a zero-divisor in
B/mB. For the induction step, consider the following diagram

0 Bm ⊗R md/md+1 Bm/m
d+1Bm Bm/m

dBm 0

0 Bm ⊗R md/md+1 Bm/m
d+1Bm Bm/m

dBm 0

·f ·f ·f

whose rows come from tensoring 0→ md/md+1 → Rm/m
d+1 → Rm/m

d → 0 with the �at
Rm-module Bm. We have

Bm ⊗A md/md+1 = Bm/mBm ⊗κ(u) md/md+1 ' (B/mB)dimκ(u) m
d/md+1

as B-modules, so the multiplication by f is injective on this B-module. The multiplication
by f on Bm/m

dBm is injective by the inductive assumption. Snake Lemma implies that
also the multiplication by f on Bm/m

d+1Bm is injective, which concludes the proof of
induction step and of the induction claim.

Let K ⊂ B be the kernel of the multiplication by f on B. Then Km ⊂ Bm is the
kernel of the multiplication by f on Bm, so Km ⊂ mdBm for all d, hence Km is a subset
of
⋂
dm

dBm. We claim that the latter module is zero. By assumption, the ring B is
N-graded and its degree r part is an image of Sr, so it is a �nite R-module. The image
of R \ m in B consists of elements of degree zero, hence Bm is N-graded and its degree
r part is a �nite Rm-module. Similarly,

⋂
dm

dBm is N-graded with degree r part equal
to
⋂
dm

d(Bm)r. But (Bm)r is a �nite module over the Noetherian local ring Rm, so by
Krull Intersection Theorem [Eise95, Cor. 5.4], we have

⋂
dm

d(Bm)r = 0. It follows that⋂
dm

dBm = 0, so Km = 0.
As B is Noetherian, the ideal K ⊂ B is �nitely generated, say by elements k1, . . . , km.

From Km = 0 we see that there exist s1, . . . , sm ∈ R \m such that siki = 0 for all i. Let
s =

∏m
i=1 si. Then ski = 0 for all i, so sK = 0 so Ks = 0. The ideal Ks ⊂ Bs is the
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kernel of the multiplication by f on Bs. As it is zero, the element f is not a zero-divisor
in Bs. It follows that the open neighbourhood (s 6= 0) of u is contained in the set (2.2).
This completes the proof.

Lemma 2.3. Assume that S is Z-graded, and that the degrees of all variables αi have
positive degree. Let k ⊂ K be a �eld extension, let SK = S ⊗k K and let B = SK/I for
a homogeneous ideal I ⊂ SK. Let J ⊂ S be a homogeneneous ideal. Then I is saturated
with respect to J · SK if and only if there exists a homogeneous element f ∈ J which is
not a zero-divisor in B.

We stress that the homogeneous element f in the conclusion of the lemma should
exist in J , not only in J · SK.

Proof. If J = S, then there is nothing to prove. Thus assume that J is generated by
homogeneous elements of positive degrees.

One implication is formal: if f ∈ J is not a zero divisor in B, then consider g ∈
(I : J · SK) and set ḡ ∈ B to be the class of g modulo I. Thus g · J ⊂ I and ḡ · J = 0.
In particular, ḡ · f = 0 and since f is not a zero divisor, ḡ = 0, that is g ∈ I, and
(I : J · SK) = I as claimed.

Now consider the oposite implication: suppose by contradiction that all homogeneous
elements of J are zero divisors on B. Primary decomposition implies that the set of zero
divisors of B is a set-theoretic union of prime ideals p1, . . . , pr where pi = (0 : ḡi) for
some nonzero ḡi ∈ B, see [AM69, Prop. 4.7]. Moreover, all the ideals pi are homogeneous
by [Eise95, Prop. 3.12]. By the same proposition, ḡi can be chosen homogeneous. Let
pi ⊂ SK be the preimage of pi and gi ∈ SK be a homogeneous preimage of ḡi ∈ B. All
homogeneous elements of J are zero divisors on B, so are contained in

⋃r
i=1 pi. As they

lie in S, they are even contained in
⋃r
i=1(pi ∩ S). But J and pi ∩ S are homogeneous

ideals of S, with pi ∩ S prime, so J ⊂ pi ∩ S for some index i by homogeneous prime
avoidance [Eise95, Lem. 3.3]. It follows that Jḡi = 0 and so gi ∈ (I : J) \ I, so I is not
saturated with respect to J .

Lemma 2.4. Suppose S is A-graded and the grading is positive. Then there exists a
homomorphism ϕ : A → Z, such that the induced Z-grading on S has degrees of all
variables positive.

Proof. Consider AR = A ⊗Z R, the real vector space of A. The set of classes of deg(αi)
spans a rational convex polyhedral cone in AR. This cone is strictly convex: indeed, if
there is a line contained in the cone, then there are two nontrivial monomials m1 and m2

of opposite degree (up to torsion). Then deg
(
(m1m2)

d
)

= 0 for some d, contradciting
the positivity of the grading.

Thus there exists an integral hyperplane φ = 0 supporting the vertex 0 in the cone.
Then the integral form φ de�ning the hyperplane determines the desired homomorphism
A→ Z.

Proof of Theorem 1.1. By Lemma 2.4 we may assume that the grading group A is
equal to Z and that all the degrees of variables are positive. Both ideals I and J are still
homogeneous with respect to the new grading.
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Let u ∈ U be a point such that Iu ⊂ S ⊗ κ(u) is saturated with respect to J . By
Lemma 2.3, there exists a homogeneous f ∈ J which is not a zero divisor on (S⊗κ(u))/Iu.
By Lemma 2.1, the same element f is not a zero divisor on an open set U ′ ⊂ U of �bers
which contains u. By Lemma 2.3 every �ber in U ′ corresponds to saturated ideal. This
concludes the proof.

3 Families of schemes in toric varieties

Here we prove Proposition 1.3.
Let IrrelX ⊂ S[X] be the irrelevant ideal of X. Throughout this subsection we �x

IrrelX as the denominator of the saturation, that is, we whenever we say an ideal is
saturated, we mean saturated with respect to IrrelX .

Suppose Z ⊂ U × X is a �at family of subschemes of X. The statement of the
proposition is about points of U only, it does not take into account the scheme structure
of U . Thus we may assume U is reduced. Moreover, if U is reducible, then we argue for
each irreducible component separately. Thus we may assume U is integral.

Let η ∈ U be the generic point. Consider the scheme theoretic closure Zη. Since
Zη ⊂ Z and Z is closed, we have Zη ⊂ Z. By �atness of Z → U also its restrictions
to subschemes of U are �at [Hart77, Prop. III.9.2(b)]. Thus by the �atness criterion
over the base of dimension 1 [Hart77, Prop. III.9.8], we must also have Z ⊂ Zη, that �nd

better,
non-
projective
refer-
ence

�nd
better,
non-
projective
refer-
ence

is Z = Zη. Therefore the saturated ideal I(Zη) determines the homogeneous ideal sheaf
IZ ⊂ OU ⊗k S[X].

By generic �atness there is an open dense subset U ′ ⊂ U such that IZ is a �at family
refref

of homogeneous ideals on U ′. By Theorem 1.1 there is another open subset U1 ⊂ U ′ such
that for each u ∈ U1 the ideal IZ,u is saturated. That is IZ,u = I(Zu) for u ∈ U1 and
dimκ(u) I(Zu)D = dimκ(η) I(Zη)D for all D ∈ Pic(X), and thus on U1 the Hilbert function refref

is constant.
Now consider the complement of U1, and replace U with this complement and proceed

by induction. Since U is Noetherian, the induction will stop after �nitely many steps.
By semicontinuity of Hilbert functions in a family, each stratum must be open its

closure, which concludes the proof of Proposition 1.3.

4 Set of ideals of points with generic Hilbert function

Here we prove Theorem 1.4.
Let Xr,◦ ⊂ X×r denote the di�erence of the r-fold product of X and the big diagonal,

that is, the set of tuples in which at least two of the coordinates coincide. In other words,
Xr,◦ is the ordered con�guration space of X. Then Xr,◦ naturally determines a �at family
of subschemes of X, that is, Z ⊂ Xr,◦ ×X, with Z(x1,...,xr) = {x1, . . . , xr} ⊂ X.

By Proposition 1.3 the Hilbert function of a general con�guration is equal to the
Hilbert function of the generic con�guration Zη. Here η ∈ Xr,◦ and {η} = Xr,◦. Moreover,
the set of those u ∈ Xr,◦ which have the same Hilbert function as Zη is open in Xr,◦, and
thus also in X×r.
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For each D ∈ Pic(X) consider the set:

(Xr,◦)D =
{
u ∈ Xr,◦ | dimκ(u)

((
H0(X,D)⊗k κ(u)

)
/I(Zu)D

)
< hr,X(D)

}
.

This is a closed subset of Xr,◦ and since k is algebraiclaly closed it is straightforward to
show that (Xr,◦)D 6= Xr,◦. Thus η ∈ Xr,◦ \

⋃
D∈Pic(X)(X

r,◦)D, that is, Zη has the generic
Hilbert function as claimed.
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