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Communication 4.1 Layered Protocols

Layered Protocols

Low-level layers
Transport layer
Application layer
Middleware layer
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Communication 4.1 Layered Protocols

Basic networking model
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Drawbacks
Focus on message-passing only
Often unneeded or unwanted functionality
Violates access transparency
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Communication 4.1 Layered Protocols

Low-level layers

Recap
Physical layer: contains the specification and implementation of
bits, and their transmission between sender and receiver
Data link layer: prescribes the transmission of a series of bits into
a frame to allow for error and flow control
Network layer: describes how packets in a network of computers
are to be routed.

Observation
For many distributed systems, the lowest-level interface is that of the
network layer.
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Communication 4.1 Layered Protocols

Transport Layer

Important
The transport layer provides the actual communication facilities for
most distributed systems.

Standard Internet protocols
TCP: connection-oriented, reliable, stream-oriented
communication
UDP: unreliable (best-effort) datagram communication

Note
IP multicasting is often considered a standard available service (which
may be dangerous to assume).
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Communication 4.1 Layered Protocols

Middleware Layer

Observation
Middleware is invented to provide common services and protocols that
can be used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols, to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols...
such as?
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Communication 4.1 Layered Protocols

Types of communication

Client

Server




Synchronize after

processing by server

Synchronize at 

request delivery

Synchronize at

request submission

Request

Reply

Storage

facility

Transmission

interrupt

Time

Distinguish

Transient versus persistent communication
Asynchrounous versus synchronous communication
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Synchronize after

processing by server
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Transmission

interrupt

Time

Transient versus persistent

Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.
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Types of communication

Client

Server
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Places for synchronization

At request submission
At request delivery
After request processing
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Communication 4.1 Layered Protocols

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

Client and server have to be active at time of commun.
Client issues request and blocks until it receives reply
Server essentially waits only for incoming requests, and
subsequently processes them

Drawbacks synchronous communication
Client cannot do any other work while waiting for reply
Failures have to be handled immediately: the client is waiting
The model may simply not be appropriate (mail, news)
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Communication 4.1 Layered Protocols

Messaging

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

Processes send each other messages, which are queued
Sender need not wait for immediate reply, but can do other things
Middleware often ensures fault tolerance
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Communication 4.2 Remote Procedure Call

Remote Procedure Call (RPC)

Basic RPC operation
Parameter passing
Variations
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Communication 4.2 Remote Procedure Call

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on
separate machine

Conclusion
Communication between caller &
callee can be hidden by using
procedure-call mechanism.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result
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Communication 4.2 Remote Procedure Call

Basic RPC operation

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int:     val(i)
int:     val(j)

proc: "add"
int:     val(i)
int:     val(j)

proc: "add"
int:     val(i)
int:     val(j)

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters and calls

server.

6 Server makes local call and returns
result to stub.

7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result and

returns to the client.
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Communication 4.2 Remote Procedure Call

RPC: Parameter passing

Parameter marshaling
There’s more than just wrapping parameters into a message:

Client and server machines may have different data
representations (think of byte ordering)
Wrapping a parameter means transforming a value into a
sequence of bytes
Client and server have to agree on the same encoding:

How are basic data values represented (integers, floats, characters)
How are complex data values represented (arrays, unions)

Client and server need to properly interpret messages,
transforming them into machine-dependent representations.
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Communication 4.2 Remote Procedure Call

RPC: Parameter passing

RPC parameter passing: some assumptions

Copy in/copy out semantics: while procedure is executed, nothing can
be assumed about parameter values.
All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

Observation
A remote reference mechanism enhances access transparency:

Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs
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Communication 4.2 Remote Procedure Call

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client
continue without waiting for an answer from the server.

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)
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Communication 4.2 Remote Procedure Call

Deferred synchronous RPCs

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

Variation
Client can also do a (non)blocking poll at the server to see whether
results are available.
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Communication 4.2 Remote Procedure Call

RPC in practice

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

19 / 55



Communication 4.2 Remote Procedure Call

Client-to-server binding (DCE)

Issues
(1) Client must locate server machine, and (2) locate the server.

Endpoint
table

Server

DCE
daemon

Client
1. Register endpoint

2. Register service3. Look up server

4. Ask for endpoint

5. Do RPC

Directory
server

Server machineClient machine

Directory machine
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Communication 4.3 Message-Oriented Communication

Message-Oriented Communication

Transient Messaging
Message-Queuing System
Message Brokers
Example: IBM Websphere
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Communication 4.3 Message-Oriented Communication

Transient messaging: sockets

Berkeley socket interface

SOCKET Create a new communication endpoint
BIND Attach a local address to a socket
LISTEN Announce willingness to accept N connections
ACCEPT Block until request to establish a connection
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
CLOSE Release the connection
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Communication 4.3 Message-Oriented Communication

Transient messaging: sockets

connect

socket

socket

bind listen read

read

write

write

accept close

close

Server

Client

Synchronization point Communication
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Communication 4.3 Message-Oriented Communication

Sockets: Python code

Server
import socket
HOST = ’’
PORT = SERVERPORT
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.bind((HOST, PORT))
s.listen(N) # listen to max N queued connection
(conn, addr) = s.accept() # returns new socket + addr client
while 1: # forever
data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Client
import socket
HOST = ’distsys.cs.vu.nl’
PORT = SERVERPORT
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
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Communication 4.3 Message-Oriented Communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of
middleware-level queues. Queues correspond to buffers at
communication servers.

PUT Append a message to a specified queue
GET Block until the specified queue is nonempty, and re-

move the first message
POLL Check a specified queue for messages, and remove

the first. Never block
NOTIFY Install a handler to be called when a message is put

into the specified queue
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Communication 4.3 Message-Oriented Communication

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data
representation)

Message broker
Centralized component that takes care of application heterogeneity in
an MQ system:

Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities⇒ Enterprise
Application Integration
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Communication 4.3 Message-Oriented Communication

Message broker

Queuing
layer

Broker
program



Repository with

conversion rules

and programsSource client Destination client

OS OSOS

Message broker

Network
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Communication 4.3 Message-Oriented Communication

IBM’s WebSphere MQ

Basic concepts
Application-specific messages are put into, and removed from
queues
Queues reside under the regime of a queue manager
Processes can put messages only in local queues, or through an
RPC mechanism
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Communication 4.3 Message-Oriented Communication

IBM’s WebSphere MQ

Message transfer
Messages are transferred between queues
Message transfer between queues at different processes, requires
a channel
At each endpoint of channel is a message channel agent
Message channel agents are responsible for:

Setting up channels using lower-level network communication
facilities (e.g., TCP/IP)
(Un)wrapping messages from/in transport-level packets
Sending/receiving packets
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Communication 4.3 Message-Oriented Communication

IBM’s WebSphere MQ

MCA MCAMCA MCA

MQ Interface

Stub Stub
Server
stub

Server
stub

Send queue

Program Program
Queue
manager

Queue
manager

Routing table

Enterprise network
RPC
(synchronous)

Local network

Message passing
(asynchronous)

To other remote
queue managers

Client's receive
queueSending client Receiving client

Channels are inherently unidirectional
Automatically start MCAs when messages arrive
Any network of queue managers can be created
Routes are set up manually (system administration)
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Communication 4.3 Message-Oriented Communication

IBM’s WebSphere MQ

Routing

By using logical names, in combination with name resolution to local queues,
it is possible to put a message in a remote queue
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SQ1
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SQ1
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Routing table

Routing table Routing table

QMB

QMC

QMA
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LA2
LA2

LA2

QMC
QMA

QMA

QMD
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QMC

Alias table
Alias table

Alias table

QMD

SQ1

SQ2

SQ1
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Communication 4.4 Stream-Oriented Communication

Stream-oriented communication

Support for continuous media
Streams in distributed systems
Stream management
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Communication 4.4 Stream-Oriented Communication

Continuous media

Observation
All communication facilities discussed so far are essentially based on a
discrete, that is time-independent exchange of information

Continuous media
Characterized by the fact that values are time dependent:

Audio
Video
Animations
Sensor data (temperature, pressure, etc.)
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Communication 4.4 Stream-Oriented Communication

Continuous media

Transmission modes
Different timing guarantees with respect to data transfer:

Asynchronous: no restrictions with respect to when data is to be
delivered
Synchronous: define a maximum end-to-end delay for individual
data packets
Isochronous: define a maximum and minimum end-to-end delay
(jitter is bounded)

34 / 55



Communication 4.4 Stream-Oriented Communication

Stream

Definition
A (continuous) data stream is a connection-oriented communication
facility that supports isochronous data transmission.

Some common stream characteristics
Streams are unidirectional
There is generally a single source, and one or more sinks
Often, either the sink and/or source is a wrapper around hardware
(e.g., camera, CD device, TV monitor)
Simple stream: a single flow of data, e.g., audio or video
Complex stream: multiple data flows, e.g., stereo audio or
combination audio/video
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Communication 4.4 Stream-Oriented Communication

Streams and QoS

Essence
Streams are all about timely delivery of data. How do you specify this
Quality of Service (QoS)? Basics:

The required bit rate at which data should be transported.
The maximum delay until a session has been set up (i.e., when an
application can start sending data).
The maximum end-to-end delay (i.e., how long it will take until a
data unit makes it to a recipient).
The maximum delay variance, or jitter.
The maximum round-trip delay.
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

Observation
There are various network-level tools, such as differentiated services
by which certain packets can be prioritized.

Also
Use buffers to reduce jitter:

0 5

1 2 3 4 5 6 7 8

10
Time (sec)

Time in buffer

15 20

Gap in playback

Packet removed from buffer

1 2 3 4 5 6 7 8Packet arrives at buffer

1 2 3 4 5 6 7 8Packet departs source
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

Problem
How to reduce the effects of packet loss (when multiple samples are in
a single packet)?
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

1 2 3 4 5 6 7 8 9 10 11 12

1 5 9 13 2 6 10 14 3 7 11 15

13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 8 12 16

Lost packet

Lost packet

Gap of lost frames

Lost frames

(a)

(b)


 Sent

Delivered

Sent

Delivered
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Communication 4.4 Stream-Oriented Communication

Stream synchronization

Problem
Given a complex stream, how do you keep the different substreams in
synch?

Example
Think of playing out two channels, that together form stereo sound.
Difference should be less than 20–30 µsec!
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Communication 4.4 Stream-Oriented Communication

Stream synchronization

Network

Incoming stream

Application

Receiver's machine

Procedure that reads
two audio data units for
each video data unit

OS

Alternative
Multiplex all substreams into a single stream, and demultiplex at the
receiver. Synchronization is handled at multiplexing/demultiplexing
point (MPEG).
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Communication 4.5 Multicast Communication

Multicast communication

Application-level multicasting
Gossip-based data dissemination
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Communication 4.5 Multicast Communication

Application-level multicasting

Essence
Organize nodes of a distributed system into an overlay network and use that
network to disseminate data.

Chord-based tree building
1 Initiator generates a multicast identifier mid.
2 Lookup succ(mid), the node responsible for mid.
3 Request is routed to succ(mid), which will become the root.
4 If P wants to join, it sends a join request to the root.
5 When request arrives at Q:

Q has not seen a join request before⇒ it becomes forwarder; P
becomes child of Q. Join request continues to be forwarded.
Q knows about tree⇒ P becomes child of Q. No need to forward
join request anymore.
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Communication 4.5 Multicast Communication

ALM: Some costs

A

B
D

C

Ra

Rb
Rd

Rc

Internet

Router
End host

Overlay network

7
5

1

1

1

1

30

40

Re 20

Link stress: How often does an ALM message cross the same
physical link? Example: message from A to D needs to cross
〈Ra,Rb〉 twice.
Stretch: Ratio in delay between ALM-level path and network-level
path. Example: messages B to C follow path of length 71 at ALM,
but 47 at network level⇒ stretch = 71/47.
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Communication 4.5 Multicast Communication

Epidemic Algorithms

General background
Update models
Removing objects
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Communication 4.5 Multicast Communication

Principles

Basic idea
Assume there are no write–write conflicts:

Update operations are performed at a single server
A replica passes updated state to only a few neighbors
Update propagation is lazy, i.e., not immediate
Eventually, each update should reach every replica

Two forms of epidemics

Anti-entropy: Each replica regularly chooses another replica at random,
and exchanges state differences, leading to identical states at both
afterwards
Gossiping: A replica which has just been updated (i.e., has been
contaminated), tells a number of other replicas about its update
(contaminating them as well).
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Communication 4.5 Multicast Communication

Anti-entropy

Principle operations
A node P selects another node Q from the system at random.
Push: P only sends its updates to Q
Pull: P only retrieves updates from Q
Push-Pull: P and Q exchange mutual updates (after which they
hold the same information).

Observation
For push-pull it takes O(log(N)) rounds to disseminate updates to all
N nodes (round = when every node as taken the initiative to start an
exchange).
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Communication 4.5 Multicast Communication

Anti-entropy: analysis (extra)

Basics
Consider a single source, propagating its update. Let pi be the
probability that a node has not received the update after the i-th cycle.

Analysis: staying ignorant

With pull, pi+1 = (pi )
2: the node was not updated during the i-th cycle

and should contact another ignorant node during the next cycle.
With push, pi+1 = pi (1− 1

N )N(1−pi ) ≈ pie−1 (for small pi and large N): the
node was ignorant during the i-th cycle and no updated node chooses to
contact it during the next cycle.
With push-pull: (pi )

2 · (pie−1)
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Communication 4.5 Multicast Communication

Anti-entropy performance
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Communication 4.5 Multicast Communication

Gossiping

Basic model
A server S having an update to report, contacts other servers. If a
server is contacted to which the update has already propagated, S
stops contacting other servers with probability 1/k .

Observation
If s is the fraction of ignorant servers (i.e., which are unaware of the
update), it can be shown that with many servers

s = e−(k+1)(1−s)
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Communication 4.5 Multicast Communication

Gossiping

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-15.0

-12.5

-10.0

-7.5

-5.0

-2.5

k

ln(s)

Consider 10,000 nodes
k s Ns
1 0.203188 2032
2 0.059520 595
3 0.019827 198
4 0.006977 70
5 0.002516 25
6 0.000918 9
7 0.000336 3

Note
If we really have to ensure that all servers are eventually updated,
gossiping alone is not enough
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Communication 4.5 Multicast Communication

Deleting values

Fundamental problem
We cannot remove an old value from a server and expect the removal
to propagate. Instead, mere removal will be undone in due time using
epidemic algorithms

Solution
Removal has to be registered as a special update by inserting a death
certificate
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Communication 4.5 Multicast Communication

Deleting values

Next problem

When to remove a death certificate (it is not allowed to stay for ever):

Run a global algorithm to detect whether the removal is known
everywhere, and then collect the death certificates (looks like garbage
collection)
Assume death certificates propagate in finite time, and associate a
maximum lifetime for a certificate (can be done at risk of not reaching all
servers)

Note
It is necessary that a removal actually reaches all servers.

Question
What’s the scalability problem here?
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Communication 4.5 Multicast Communication

Example applications

Typical apps
Data dissemination: Perhaps the most important one. Note that
there are many variants of dissemination.
Aggregation: Let every node i maintain a variable xi . When two
nodes gossip, they each reset their variable to

xi ,xj ← (xi + xj)/2

Result: in the end each node will have computed the average
x̄ = ∑i xi/N.
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Communication 4.5 Multicast Communication

Example application: aggregation

Aggregation (continued)
When two nodes gossip, they each reset their variable to

xi ,xj ← (xi + xj)/2

Result: in the end each node will have computed the average
x̄ = ∑i xi/N.

Question
What happens if initially xi = 1 and xj = 0, j 6= i?

Question
How can we start this computation without pre-assigning a node i to
start as only one with xi ← 1?
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