Controlling User-Perceived Delays in Server-Based Mobile Applications

University of Warsaw | Faculty of Computer Science
Lecture: Distributed Systems
Lecturer: Dr. Konrad Iwanicki
Date: 25.11.2015
Publication Details

November 2013,
SOSP 2013 - The 24th ACM Symposium on Operating Systems Principles

Lenin Ravindranath
M.I.T. & Microsoft Research

Jitendra Padhye
Microsoft Research

Ratul Mahajan
Microsoft Research

Hari Balakrishnan
M.I.T.
Table of content

1. Introduction
2. Timecard Architecture
3. Tracking elapsed time
 1. Transaction Tracker
 1. Transaction context
 2. Collecting data to predict C_2/N_2
 3. Tracking transaction completion
 2. Time Synchronization
4. Predicting remaining time
5. Implementation
6. Evaluation
7. Limitations
Problem Scenario
Goals

Given the desired end-to-end delay, the idea is to allow the server to obtain answers to two questions:

1. *elapsed time*: How much time has elapsed since the initiation of the request?

2. *predicted remaining time*: How much time will it take for the client to receive an intended response over the network and then process it?

⇒ *work time*
Anatomy of a user transaction

- User request
- Send request
- App processing
- Request reaches server
- Work time
- Send response
- App
- Processing & Rendering
- Response reaches client
- Server
- Server delay
- Upstream delay
- Downstream delay
- User-perceived delay
Timecard API

1. GetElapsedTime()
 Any component on the processing path at the server can obtain the time elapsed since t0.

2. GetRemainingTime(bytesInResponse)
 At the server, a component can obtain an estimate of N2 + C2. Timecard provides this estimate as a function of the size of the intended response.

\[
\text{work time} \ < \ \text{desired user-perceived delay}
\]
 - GetRemainingTime(x)
 - GetElapsedTime()
Timecard Architecture

Information flow
Table of Content

1. **Introduction**

2. **Timecard Architecture**

3. **Tracking elapsed time**
 1. **Transaction Tracker**
 1. Transaction context
 2. Collecting data to predict C_2/N_2
 3. Tracking transaction completion
 2. **Time Synchronization**

4. **Predicting remaining time**

5. **Evaluation**

6. **Limitations**
Tracking elapsed time

- Identify each user transaction
- Maintain transaction context (TC) objects
- Synchronize time between client and server
Challenges

Example: Location-based App querying a server

Diagram showing the process flow including:
- User request
- Web Request
- GPS Start
- GPS fix Callback
- Background thread
- Server thread
- Request Handler
- Send response
- Spawn worker
- Response Callback
- UI dispatch
- UI Update
Transaction tracking

Timecard instruments client and server can collect information in transaction context objects (TC)

- TCs are available to every client and server thread working on transaction
- transaction information can be passed across client-server boundry
- extends ApplInsight framework
Transaction context

New UI event

- create a new TC (unique ID and timestamp t_0)
- maintain a reference to TC in thread's local storage

<table>
<thead>
<tr>
<th>Tracked information</th>
<th>Purpose</th>
<th>Set by</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Id</td>
<td>Unique application identifier</td>
<td>Client</td>
<td>Server and Predictor</td>
</tr>
<tr>
<td>Transaction Id</td>
<td>Unique transaction identifier</td>
<td>Client</td>
<td>Client and Server</td>
</tr>
<tr>
<td>Deadline</td>
<td>To calculate remaining time</td>
<td>Client</td>
<td>Server</td>
</tr>
<tr>
<td>t_3</td>
<td>To calculate N_2 for training data</td>
<td>Server</td>
<td>Predictor</td>
</tr>
<tr>
<td>t_4</td>
<td>To calculate N_2 and C_2 for training data</td>
<td>Client</td>
<td>Predictor</td>
</tr>
<tr>
<td>t_5</td>
<td>To calculate C_2 for training</td>
<td>Client</td>
<td>Predictor</td>
</tr>
<tr>
<td>Entry Point</td>
<td>To predict C_2, and to label training data</td>
<td>Client</td>
<td>Server and Predictor</td>
</tr>
<tr>
<td>RTT</td>
<td>To predict N_2, and to label training data</td>
<td>Client</td>
<td>Server and Predictor</td>
</tr>
<tr>
<td>Network type</td>
<td>To predict N_2 and to label training data</td>
<td>Client</td>
<td>Server and Predictor</td>
</tr>
<tr>
<td>Client type</td>
<td>To predict N_2 and to label training data</td>
<td>Client</td>
<td>Server and Predictor</td>
</tr>
<tr>
<td>Size of response from cloud service</td>
<td>To predict N_2 and to label training data</td>
<td>Server</td>
<td>Predictor</td>
</tr>
<tr>
<td>Pending threads and async calls</td>
<td>To determine when transaction ends</td>
<td>Client</td>
<td>Client</td>
</tr>
</tbody>
</table>
What happens with a TC?

• Tracking a transaction across asynchronous calls
• Passing TC from client to server
• Tracking transaction at the server
• Handling server response and UI updates
Collecting data to predict C_2 and N_2

Transaction tracking also enables Timecard to collect the data to train the N_2 and C_2 predictors for subsequent transactions.

- logs t_3 just before it sends the response to the client
- records the number of bytes sent in the response
- client’s callback handler logs t_4 as t_5
Tracking transaction completion

Timecard maintains a list of currently active transactions

- Timecard keeps track of active threads and pending asynchronous calls
- List empty \Rightarrow application is „idle“

When a transaction is completed Timecard can remove the TC on the client (on the server the TC can be removed as soon as t_3 is recorded)
Synchronizing time

A timestamps in the TC are meaningful across the client-server boundary only if the client and the server clocks are synchronized.

Given the linearity of the drift and the symmetry assumption, client and server clocks can be synchronized using Paxson’s algorithm.
Paxson’s algorithm

1. At time τ_0 (client clock), send an RTT probe. The server responds, telling the client that it received the probe at time τ_1 (server clock). Suppose this response is received at time τ_2 (client clock).

2. Assuming symmetric delays, $\tau_1 = \tau_0 + (\tau_2 - \tau_0)/2 + \epsilon$, where ϵ is an error term consisting of a fixed offset, c, and a drift that increases at a constant rate, m.

3. Two or more probes produce information that allows the client to determine m and c. As probe results arrive, the client runs robust linear regression to estimate m and c.
Synchronizing time

RTTs of probes from an app to a server with Timecard, when the network is busy, and when the radio is either idle or busy.
Predicting Remaining Time

Timecard’s GetRemainingTime function returns estimates of N_2 and C_2 for a specified response size.

$$N_2 + C_2 = \text{total amount of time required to receive and render the response at the client}$$

The estimates are generated by decision tree algorithms that use models built from historical data.
Predicting N_2

Empirical data-driven model to predict N_2

1. The response size

2. Recent RTT between the client and server re-using the ping data collected by the TimeSync component

3. Number of bytes transmitted on the same connection before the current transfer
Predicting C_2

To understand the factors that affect the processing and rendering time on the client after the response is received:

- Analysis of third-party apps with 1653 types of transaction
- $C_2 \sim$ linear in response length

Prediction with empirical data-driven model similar to the one used for N_2
Table of Content

1. Introduction
2. Timecard Architecture
3. Tracking elapsed time
 1. Transaction Tracker
 1. Transaction context
 2. Collecting data to predict C_2 / N_2
 3. Tracking transaction completion
 2. Time Synchronization
4. Predicting remaining time
5. Implementation
6. Evaluation
7. Limitations
Implementation

- implemented in C#
- 18467 lines of code
- targeted for Windows Phone Apps and .NET services
Table of Content

1. Introduction
2. Timecard Architecture
3. Tracking elapsed time
 1. Transaction Tracker
 1. Transaction context
 2. Collecting data to predict C_2/N_2
 3. Tracking transaction completion
 2. Time Synchronization
4. Predicting remaining time
5. Implementation
6. Evaluation
7. Limitations
Is Timecard Useful?

1. How common is the single request-response transaction in mobile apps?
2. How variable are user-perceived delays?
3. How variable are the four components (C_1, C_2, N_1, N_2) of the user-perceived delay that Timecard must measure or predict?
End-to-End-Evaluation

- Incorporation of Timecard into two mobile services and their associated apps
- The apps were installed on the primary mobile phones of twenty users, configured to run in the background to collect detailed traces

![Graphs showing user-perceived delays for two apps. With Timecard, delays are tightly controlled around the desired value.](image)

Figure 10: User-perceived delays for two apps. With Timecard, delays are tightly controlled around the desired value.
Accuracy of predictions

- N_2 predictions more accurate for WiFi than for cellular networks
- C_2 predictions must take size of downloaded data into account
- C_2 predictions are more accurate for short transactions

Figure 14: Accuracy of N_2 and C_2 predictions
Table of Content

1. Introduction
2. Timecard Architecture
3. Tracking elapsed time
 1. Transaction Tracker
 1. Transaction context
 2. Collecting data to predict C_2 / N_2
 3. Tracking transaction completion
 2. Time Synchronization
4. Predicting remaining time
5. Implementation
6. Evaluation
7. Limitations
Limitations

- Limitations of N_2 predictor
- Complex transactions
- Privacy and Security
- Applicability to other platforms
Thank you for your attention

University of Warsaw | Faculty of Computer Science
Lecture: Distributed Systems
Lecturer: Dr. Konrad Iwanicki
Date: 25.11.2015