

Synchronization:
Physical clocks, logical clocks, algorithms

Konrad Iwanicki
University of Warsaw

Supplement for Topic 06: Synchronization
Distributed Systems Course
University of Warsaw

Based on various sources: see the last slide.

Introduction

● In a centralized (single-node) system time is
unambiguous:

● Process P
A
 asks for time and gets T

A
.

● Later, process P
B
 asks for time and gets T

B
.

● For sure, T
A
 ≤ T

B
.

● In other words, P
A
 and P

B
 always agree on the

current time.

● This fact is made use of in various cases:
● e.g., the make tool

Introduction

● Achieving agreement on time in a distributed
system is not trivial.

● In some cases, a lack of such an agreement
can have grave consequences.

Introduction

Introduction

● There are many cases in which agreeing on
time is important:
● Financial brokerage
● Security auditing
● Collaborative sensing

● In general, people analyze events wrt time.

Introduction

● There are many cases in which agreeing on
time is important:
● Financial brokerage
● Security auditing
● Collaborative sensing

● In general, people analyze events wrt time.

● Is it possible to synchronize all the clocks in a
distributed system?

Physical clocks

● Each computer has a so-called timer:
● A quartz oscillator with two registers.

● A counter register is decremented on each
oscillation.

● When it goes to zero,
● it is reloaded with the value from a holding register.
● a clock interrupt is generated => the clock ticks.

Physical clocks

● Each computer has a so-called timer:
● A quartz oscillator with two registers.

● A counter register is decremented on each
oscillation.

● When it goes to zero,
● it is reloaded with the value from a holding register.
● a clock interrupt is generated => the clock ticks.

● Effect: we can make the clock tick every
second to maintain time for our computer.

Physical clocks

● However, with multiple clocks the situation
changes.

● Timers are imperfect oscillators:
● N computers => N different oscillation frequencies

Physical clocks

● However, with multiple clocks the situation
changes.

● Timers are imperfect oscillators:
● N computers => N different oscillation frequencies

● How do we keep them in sync with each other?
● How do we keep them in sync with the external

world (the real time)?

Measuring time

● In the past, time was measured astronomically:
● Solar day = the period between two consecutive

appearances of the sun at the peek point in the sky
● Solar second = 1 / (24 * 60 * 60) of a solar day

Measuring time

● Solar day is not constant!
● Permanent changes in the Earth's rotation speed:

– Days are getting longer.
● Temporal variations.

Measuring time

● Atomic clocks can provide accurate time
● Idea: counting the number of transitions of the

cesium 133 atom (earlier also rubidium 87 and
thallium 205).

● 1 second = 9,192,631,770 transitions

● Several laboratories have atomic clocks
● Periodically, they inform the International Time

Bureau about the number of ticks
● The average is known as International Atomic

Time (TAI)

Measuring time

● TAI is highly stable.
● Solar day is getting longer.

● => 86,400 TAI seconds is now about 3 ms less
than a mean solar day

● Tolerating this discrepancy = bad idea.
● Solution: leap seconds.

Measuring time

● This correction is a base of Universal
Coordinated Time (UTC).

Obtaining UTC

● Most electric companies synchronize the timing
of their 60-Hz or 50-Hz clocks to UTC.

● Shortwave pulses at the start of every second:
● NIST, Fort Collins, CO, USA
● MSF, Rugby, England

Accuracy: ± 1 ms (broadcaster), ± 10 ms (recv)
● Earth satellites also offer UTC:

● GEOS

Accuracy: ± 0.5 ms

Global Positioning System

● Global Positioning System (GPS) offers time
synchronization as a by-product:
● 29 satelites
● At ~20,000 km

● Each satellite has up to 4 atomic clocks.
● The clocks are calibrated from stations on

Earth.
● Each satellite continuously broadcasts its

position and local time.

Global Positioning System

Global Positioning System

● Problem: Assuming that the clock's of satellites
are accurate and synchronized:

Global Positioning System

● Problem: Assuming that the clock's of satellites
are accurate and synchronized:
● It takes a while before a satellite's position reaches

a GPS receiver.

Global Positioning System

● Problem: Assuming that the clock's of satellites
are accurate and synchronized:
● It takes a while before a satellite's position reaches

a GPS receiver.
● The receiver's clock need not be in sync with the

satellite's clock.

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

● Real distance is:

● 4 satellites = 4 equations with 4 unknowns

d i=c Δ i−cΔ r=√((x i−x r)
2
+(y i−y r)

2
+(z i−z r)

2
)

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message

sent by satellite i

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

● Real distance is:
d i=c Δi−c Δr=√ ((x i−x r)

2+(y i−y r)
2+(z i−z r)

2)

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

● Real distance is:

● 4 satellites = 4 equations with 4 unknowns

d i=c Δi−c Δr=√ ((x i−x r)
2+(y i−y r)

2+(z i−z r)
2)

Global Positioning System

● The measurements are not accurate.
● GPS does not consider leap seconds.
● Atomic clocks of satellites are not in perfect sync.
● The position of a satellite is not known precisely.
● The receiver's clock has a finite accuracy.
● Signal propagation is not constant.
● Earth is not a perfect sphere.

● Computing a position and time is far from trivial.
● Nevertheless, GPS offers good accuracy:

● Professional receivers: 20-35 nanosecs.

Time synchronization

● Suppose that one computer has a shortwave
time pulse receiver.

● The goal is to synchronize other machines with
the time provided by the receiver...

Time synchronization

● Suppose that one computer has a shortwave
time pulse receiver.

● The goal is to synchronize other machines with
the time provided by the receiver...

● … and then, to keep the machines in sync.

Time synchronization

● Assumptions:
● Each machine, P, has a timer that ticks H times per

second.

Time synchronization

● Assumptions:
● Each machine, P, has a timer that ticks H times per

second.
● The timer is used as a base of P's clock that ticks

on each interrupt. Let's denote the value of this
clock at UTC time t as C

p
(t).

Time synchronization

● Assumptions:
● Each machine, P, has a timer that ticks H times per

second.
● The timer is used as a base of P's clock that ticks

on each interrupt. Let's denote the value of this
clock at UTC time t as C

p
(t).

● Ideally, we would like to have C
p
(t) = t, that is:

● dC / dt = 1.

Time synchronization

● Real timers do not interrupt exactly H times per
second.
● In theory, with H = 60, we should have 216,000

ticks per hour.
● In practice, with modern oscillators, the relative

error is about 10-5:
– Between 215,998 and 216,002 ticks per hour.

● Clock skew = C
p
(t) - 1

Time synchronization

Time synchronization

● In practice, for a given clock, there exists a
maximum drift rate, ρ:

1 – ρ ≤ dC / dt ≤ 1 + ρ

Time synchronization

● In practice, for a given clock, there exists a
maximum drift rate, ρ:

1 – ρ ≤ dC / dt ≤ 1 + ρ
● Goal: Never let two clocks drift more than δ

time units.

Time synchronization

● In practice, for a given clock, there exists a
maximum drift rate, ρ:

1 – ρ ≤ dC / dt ≤ 1 + ρ
● Goal: Never let two clocks drift more than δ

time units.
● Solution: Resynchronize at least every δ / (2ρ)

time units.

Time synchronization

● Approach I:
● Every machine asks a time server for the current

time at least every δ / (2ρ) time units (Network Time
Protocol – NTP).

Time synchronization

● Assuming dTreq = dTres = 0, A's offset from B:

● θ = TB(S) – TA(R)

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Assuming dTreq = dTres = 0, A's offset from B:

● θ = TB(S) – TA(R)

● In practice, dTreq , dTres > 0

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Assuming dTreq = dTres = 0, A's offset from B:

● θ = TB(S) – TA(R)

● In practice, dTreq , dTres > 0

● Problem: How to estimate the offset?

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Round-trip delay:

δ = TA(R) – TA(S) – (TB(S) – TB(R))

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Round-trip delay:

δ = TA(R) – TA(S) – (TB(S) – TB(R))

● Assume dTreq = dTres

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Round-trip delay:

δ = TA(R) – TA(S) – (TB(S) – TB(R))

● Assume dTreq = dTres

● Time offset: θ = TB(S) + ½ × δ – TA(R)

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres

Time synchronization

● Assuming dTreq = dTres introduces errors.

● The reasons for errors:
● Network delays
● Interrupt handling
● OS delays
● Message processing

Time synchronization

● NTP:
● estimates errors using round trip delays.
● rejects samples that suffer from large errors.
● divides servers into strata:

– Stratum 0: an atomic clock
– Stratum 1: a machine with shortwave time pulse receiver
– Stratum i + 1: a machine that obtained its time from

synchronizing with a stratum-i machine

● NTP's accuracy (world-wide): 1-50 ms
● Stratum-less synchronization: Gossiping Time

Protocol (GTP).

Time synchronization

● Approach II:
● NTP provides external synchronization (to a

stratum-0 clock).
● An alternative is internal synchronization:

– Machines synchronize with each other.
– Not necessarily with an external clock.

Time synchronization

● The Berkeley algorithm:
● Works in a local area network.
● A special process, time daemon is responsible for

synchronizing clocks of different machines.

Time synchronization

The time daemon
periodically asks
other machines
for their local time.

Time synchronization

The machines
reply with their offsets.

Time synchronization

The time deamon
tells each machine
how to adjust its clock.

Time synchronization

● Approach III:
● Wireless sensor networks require tight time

synchronization:
– e.g., seismic activity monitoring

● On the other hand, they are built of inexpensive
hardware.

● Special algorithms are necessary.
– e.g., Reference Broadcast Synchronization (RBS)

Time synchronization

● Approach III:
● Wireless sensor networks require tight time

synchronization:
– e.g., seismic activity monitoring

● On the other hand, they are built of inexpensive
hardware.

● Special algorithms are necessary.
– e.g., Reference Broadcast Synchronization (RBS)

● Idea: To eliminate various delays that introduce
synchronization errors.

Time synchronization

Time synchronization

Time synchronization

● RBS:
● A node broadcasts a reference message.

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception,

tm

p
.

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception,

tm

p
.

● Nodes exchange their recorded reception times.

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception,

tm

p
.

● Nodes exchange their recorded reception times.
● Each node can compute its offset to another node.

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception,

tm

p
.

● Nodes exchange their recorded reception times.
● Each node can compute its offset to another node.

● Extremely tight synchronization: 1.85 ± 2.57 μs

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63

