
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 03: Processes

Version: October 17, 2011



Contents

Chapter
01: Introduction
02: Architectures
03: Processes
04: Communication
05: Naming
06: Synchronization
07: Consistency & Replication
08: Fault Tolerance
09: Security
10: Distributed Object-Based Systems
11: Distributed File Systems
12: Distributed Web-Based Systems
13: Distributed Coordination-Based Systems

2 / 38



Processes 3.1 Threads

Introduction to Threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies stopping
the current execution and saving all the data needed to continue the
execution at a later stage.

Process: A software processor in whose context one or more threads may be
executed. Executing a thread, means executing a series of instructions
in the context of that thread.

3 / 38



Processes 3.1 Threads

Context Switching

Contexts
Processor context: The minimal collection of values stored in the
registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program
counter).
Thread context: The minimal collection of values stored in
registers and memory, used for the execution of a series of
instructions (i.e., processor context, state).
Process context: The minimal collection of values stored in
registers and memory, used for the execution of a thread (i.e.,
thread context, but now also at least MMU register values).

4 / 38



Processes 3.1 Threads

Context Switching

Contexts
Processor context: The minimal collection of values stored in the
registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program
counter).
Thread context: The minimal collection of values stored in
registers and memory, used for the execution of a series of
instructions (i.e., processor context, state).
Process context: The minimal collection of values stored in
registers and memory, used for the execution of a thread (i.e.,
thread context, but now also at least MMU register values).

4 / 38



Processes 3.1 Threads

Context Switching

Contexts
Processor context: The minimal collection of values stored in the
registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program
counter).
Thread context: The minimal collection of values stored in
registers and memory, used for the execution of a series of
instructions (i.e., processor context, state).
Process context: The minimal collection of values stored in
registers and memory, used for the execution of a thread (i.e.,
thread context, but now also at least MMU register values).

4 / 38



Processes 3.1 Threads

Context Switching

Observations
1 Threads share the same address space. Thread context switching

can be done entirely independent of the operating system.
2 Process switching is generally more expensive as it involves

getting the OS in the loop, i.e., trapping to the kernel.
3 Creating and destroying threads is much cheaper than doing so

for processes.

5 / 38



Processes 3.1 Threads

Threads and Operating Systems

Main issue
Should an OS kernel provide threads, or should they be implemented as
user-level packages?

User-space solution

All operations can be completely handled within a single process⇒
implementations can be extremely efficient.
All services provided by the kernel are done on behalf of the process in
which a thread resides⇒ if the kernel decides to block a thread, the
entire process will be blocked.
Threads are used when there are lots of external events: threads block
on a per-event basis⇒ if the kernel can’t distinguish threads, how can it
support signaling events to them?

6 / 38



Processes 3.1 Threads

Threads and Operating Systems

Kernel solution
The whole idea is to have the kernel contain the implementation of a thread
package. This means that all operations return as system calls

Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.
Handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event.
The big problem is the loss of efficiency due to the fact that each thread
operation requires a trap to the kernel.

Conclusion
Try to mix user-level and kernel-level threads into a single concept.

7 / 38



Processes 3.1 Threads

Solaris Threads

Basic idea
Introduce a two-level threading approach: lightweight processes that
can execute user-level threads.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

8 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Solaris Threads

Principal operation

User-level thread does system call⇒ the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.
The kernel can schedule another LWP having a runnable thread bound
to it. Note: this thread can switch to any other runnable thread currently
in user space.
A thread calls a blocking user-level operation⇒ do context switch to a
runnable thread, (then bound to the same LWP).
When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Note
This concept has been virtually abandoned – it’s just either user-level or
kernel-level threads.

9 / 38



Processes 3.1 Threads

Threads and Distributed Systems

Multithreaded Web client
Hiding network latencies:

Web browser scans an incoming HTML page, and finds that more files
need to be fetched.
Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.
As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

A client does several calls at the same time, each one by a different
thread.
It then waits until all results have been returned.
Note: if calls are to different servers, we may have a linear speed-up.

10 / 38



Processes 3.1 Threads

Threads and Distributed Systems

Improve performance

Starting a thread is much cheaper than starting a new process.
Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.
As with clients: hide network latency by reacting to next request while
previous one is being replied.

Better structure

Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure.
Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control.

11 / 38



Processes 3.2 Virtualizaton

Virtualization

Observation
Virtualization is becoming increasingly important:

Hardware changes faster than software
Ease of portability and code migration
Isolation of failing or attacked components

Hardware/software system A

Interface A

Program




Interface A

Program




Implementation of 

mimicking A on B

Hardware/software system B

Interface B



(a) (b)

12 / 38



Processes 3.2 Virtualizaton

Architecture of VMs

Observation
Virtualization can take place at very different levels, strongly depending
on the interfaces as offered by various systems components:

Privileged

instructions

System calls

Library functions

General

instructions

Hardware

Operating system

Library

Application

13 / 38



Processes 3.2 Virtualizaton

Process VMs versus VM Monitors

Runtime system
Runtime system

Hardware

Operating system

Hardware

Operating system
Operating system

Operating system

Applications

Virtual machine monitor

(a) (b)

Runtime system

Application

Process VM: A program is compiled to intermediate (portable)
code, which is then executed by a runtime system (Example: Java
VM).
VM Monitor: A separate software layer mimics the instruction set
of hardware⇒ a complete operating system and its applications
can be supported (Example: VMware, VirtualBox).

14 / 38



Processes 3.2 Virtualizaton

VM Monitors on operating systems

Practice
We’re seeing VMMs run on top of existing operating systems.

Perform binary translation: while executing an application or
operating system, translate instructions to that of the underlying
machine.
Distinguish sensitive instructions: traps to the orginal kernel (think
of system calls, or privileged instructions).
Sensitive instructions are replaced with calls to the VMM.

15 / 38



Processes 3.3 Clients

Clients: User Interfaces

Essence
A major part of client-side software is focused on (graphical) user
interfaces.

X kernel

Device drivers

Application

Xlib

Xlib interface

X protocol

Terminal (includes display
keyboard, mouse, etc.)

Application serverApplication server User's terminal

Local OS

Window

manager

Xlib

Local OS

16 / 38



Processes 3.3 Clients

Clients: User Interfaces

Compound documents
User interface is application-aware⇒ interapplication communication:

drag-and-drop: move objects across the screen to invoke
interaction with other applications
in-place editing: integrate several applications at user-interface
level (word processing + drawing facilities)

17 / 38



Processes 3.3 Clients

Client-Side Software

Generally tailored for distribution transparency

access transparency: client-side stubs for RPCs
location/migration transparency: let client-side software keep track of
actual location
replication transparency: multiple invocations handled by client stub:



Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles

request replication

Client

appl.

Server

appl

Server

appl

Server

appl

failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).

18 / 38



Processes 3.4 Servers

Servers: General organization

Basic model
A server is a process that waits for incoming service requests at a
specific transport address. In practice, there is a one-to-one mapping
between a port and a service.

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet

24 any private mail system
smtp 25 Simple Mail Transfer
login 49 Login Host Protocol
sunrpc 111 SUN RPC (portmapper)
courier 530 Xerox RPC

19 / 38



Processes 3.4 Servers

Servers: General organization

Type of servers
Superservers: Servers that listen to several ports, i.e., provide several

independent services. In practice, when a service request comes
in, they start a subprocess to handle the request (UNIX inetd)

Iterative vs. concurrent servers: Iterative servers can handle only one
client at a time, in contrast to concurrent servers

20 / 38



Processes 3.4 Servers

Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1
Use a separate port for urgent data:

Server has a separate thread/process for urgent messages
Urgent message comes in⇒ associated request is put on hold
Note: we require OS supports priority-based scheduling

Solution 2
Use out-of-band communication facilities of the transport layer:

Example: TCP allows for urgent messages in same connection
Urgent messages can be caught using OS signaling techniques

21 / 38



Processes 3.4 Servers

Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1
Use a separate port for urgent data:

Server has a separate thread/process for urgent messages
Urgent message comes in⇒ associated request is put on hold
Note: we require OS supports priority-based scheduling

Solution 2
Use out-of-band communication facilities of the transport layer:

Example: TCP allows for urgent messages in same connection
Urgent messages can be caught using OS signaling techniques

21 / 38



Processes 3.4 Servers

Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1
Use a separate port for urgent data:

Server has a separate thread/process for urgent messages
Urgent message comes in⇒ associated request is put on hold
Note: we require OS supports priority-based scheduling

Solution 2
Use out-of-band communication facilities of the transport layer:

Example: TCP allows for urgent messages in same connection
Urgent messages can be caught using OS signaling techniques

21 / 38



Processes 3.4 Servers

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

Don’t record whether a file has been opened (simply close it again after
access)
Don’t promise to invalidate a client’s cache
Don’t keep track of your clients

Consequences

Clients and servers are completely independent
State inconsistencies due to client or server crashes are reduced
Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)

22 / 38



Processes 3.4 Servers

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

Don’t record whether a file has been opened (simply close it again after
access)
Don’t promise to invalidate a client’s cache
Don’t keep track of your clients

Consequences

Clients and servers are completely independent
State inconsistencies due to client or server crashes are reduced
Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)

22 / 38



Processes 3.4 Servers

Servers and state

Question
Does connection-oriented communication fit into a stateless design?

23 / 38



Processes 3.4 Servers

Servers and state

Stateful servers
Keeps track of the status of its clients:

Record that a file has been opened, so that prefetching can be
done
Knows which data a client has cached, and allows clients to keep
local copies of shared data

Observation
The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is not
a major problem.

24 / 38



Processes 3.4 Servers

Servers and state

Stateful servers
Keeps track of the status of its clients:

Record that a file has been opened, so that prefetching can be
done
Knows which data a client has cached, and allows clients to keep
local copies of shared data

Observation
The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is not
a major problem.

24 / 38



Processes 3.4 Servers

Server clusters: three different tiers

Logical switch

(possibly multiple)

Application/compute servers Distributed

file/database


system

Client requests

Dispatched

request

First tier Second tier Third tier

Crucial element
The first tier is generally responsible for passing requests to an
appropriate server.

25 / 38



Processes 3.4 Servers

Request Handling

Observation
Having the first tier handle all communication from/to the cluster may
lead to a bottleneck.

Solution
Various, but one popular one is TCP-handoff

Switch
Client


 
Server


 

Server

Request
Request

(handed off)

Response
Logically a
single TCP
connection

26 / 38



Processes 3.4 Servers

Distributed servers with stable IPv6 address(es)

APP

TCP

MIPv6

IP

Believes it is

connected to X

Believes location

of X is CA1

Client 1

APP

TCP

MIPv6

IP

Believes it is

connected to X

Believes location

of X is CA2

Client 2

Server 1

Server 2

Internet

Knows that Cient 1

believes it is X

Knows that Cient 2

believes it is X

Distributed server XBelieves server

has address HA

Believes server

has address HA

Access point

with address CA1

Access point

with address CA2

27 / 38



Processes 3.4 Servers

Distributed servers: addressing details

Essence
Clients having MobileIPv6 can transparently set up a connection to any
peer:

Client C sets up connection to IPv6 home address HA
HA is maintained by a (network-level) home agent, which hands
off the connection to a registered care-of address CA.
C can then apply route optimization by directly forwarding packets
to address CA (i.e., without the handoff through the home agent).

Collaborative CDNs
Origin server maintains a home address, but hands off connections to
address of collaborating peer⇒ Origin server and peer appear as one
server.

28 / 38



Processes 3.4 Servers

Distributed servers: addressing details

Essence
Clients having MobileIPv6 can transparently set up a connection to any
peer:

Client C sets up connection to IPv6 home address HA
HA is maintained by a (network-level) home agent, which hands
off the connection to a registered care-of address CA.
C can then apply route optimization by directly forwarding packets
to address CA (i.e., without the handoff through the home agent).

Collaborative CDNs
Origin server maintains a home address, but hands off connections to
address of collaborating peer⇒ Origin server and peer appear as one
server.

28 / 38



Processes 3.4 Servers

Example: PlanetLab

Essence
Different organizations contribute machines, which they subsequently
share for various experiments.

Problem
We need to ensure that different distributed applications do not get into
each other’s way⇒ virtualization

29 / 38



Processes 3.4 Servers

Example: PlanetLab

Hardware

Linux enhanced operating system

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

Vserver
P

rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

User-assigned

virtual machines

Priviliged management

virtual machines

Vserver: Independent and protected environment with its own libraries,
server versions, and so on. Distributed applications are assigned a
collection of vservers distributed across multiple machines (slice).

30 / 38



Processes 3.5 Code Migration

Code Migration

Approaches to code migration
Migration and local resources
Migration in heterogeneous systems

31 / 38



Processes 3.5 Code Migration

Code Migration: Some Context
Before execution After execution

Client Server Client Server

CS

code

state

resource

code

state*

resource

REV

code

→ state

resource

→

code

state*

resource

CoD state

resource

←

code code

state*

resource

←

MA

code

state

resource

→

resource resource

→

code

state*

resource

32 / 38



Processes 3.5 Code Migration

Strong and weak mobility

Object components
Code segment: contains the actual code
Data segment: contains the state
Execution state: contains context of thread executing the object’s
code

33 / 38



Processes 3.5 Code Migration

Strong and weak mobility

Weak mobility
Move only code and data segment (and reboot execution):

Relatively simple, especially if code is portable
Distinguish code shipping (push) from code fetching (pull)

Strong mobility
Move component, including execution state

Migration: move entire object from one machine to the other
Cloning: start a clone, and set it in the same execution state.

34 / 38



Processes 3.5 Code Migration

Managing local resources

Problem
An object uses local resources that may or may not be available at the
target site.

Resource types
Fixed: the resource cannot be migrated, such as local hardware
Fastened: the resource can, in principle, be migrated but only at
high cost
Unattached: the resource can easily be moved along with the
object (e.g. a cache)

35 / 38



Processes 3.5 Code Migration

Managing local resources

Object-to-resource binding
By identifier: the object requires a specific instance of a resource
(e.g. a specific database)
By value: the object requires the value of a resource (e.g. the set
of cache entries)
By type: the object requires that only a type of resource is
available (e.g. a color monitor)

36 / 38



Processes 3.5 Code Migration

Managing Local Resources (2/2)

Unattached Fastened Fixed
ID MV (or GR) GR (or MV) GR
Value CP (or MV, GR) GR (or CP) GR
Type RB (or MV, GR) RB (or GR, CP) RB (or GR)

GR = Establish global systemwide reference

MV = Move the resource

CP = Copy the value of the resource

RB = Re-bind to a locally available resource

37 / 38



Processes 3.5 Code Migration

Migration in heterogenous systems

Main problem
The target machine may not be suitable to execute the migrated
code
The definition of process/thread/processor context is highly
dependent on local hardware, operating system and runtime
system

Only solution
Make use of an abstract machine that is implemented on different
platforms:

Interpreted languages, effectively having their own VM
Virtual VM (as discussed previously)

38 / 38


	Processes
	3.1 Threads
	3.2 Virtualizaton
	3.3 Clients
	3.4 Servers
	3.5 Code Migration


