
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 08: Fault Tolerance

Version: November 24, 2011

Contents

Chapter
01: Introduction
02: Architectures
03: Processes
04: Communication
05: Naming
06: Synchronization
07: Consistency & Replication
08: Fault Tolerance
09: Security
10: Distributed Object-Based Systems
11: Distributed File Systems
12: Distributed Web-Based Systems
13: Distributed Coordination-Based Systems

2 / 65

Fault Tolerance

Introduction

Basic concepts
Process resilience
Reliable client-server communication
Reliable group communication
Distributed commit
Recovery

3 / 65

Fault Tolerance 8.1 Introduction

Dependability

Basics
A component provides services to clients. To provide services, the
component may require the services from other components⇒ a component
may depend on some other component.

Specifically

A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. Note: components are processes or
channels.

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

4 / 65

Fault Tolerance 8.1 Introduction

Terminology

Subtle differences

Failure: When a component is not living up to its specifications, a failure
occurs
Error: That part of a component’s state that can lead to a failure
Fault: The cause of an error

What to do about faults

Fault prevention: prevent the occurrence of a fault
Fault tolerance: build a component such that it can mask the presence of
faults
Fault removal: reduce presence, number, seriousness of faults
Fault forecasting: estimate present number, future incidence, and
consequences of faults

5 / 65

Fault Tolerance 8.1 Introduction

Failure models

Failure semantics

Crash failures: Component halts, but behaves correctly before halting
Omission failures: Component fails to respond
Timing failures: Output is correct, but lies outside a specified real-time
interval (performance failures: too slow)
Response failures: Output is incorrect (but can at least not be accounted
to another component)

Value failure: Wrong value is produced
State transition failure: Execution of component brings it into a
wrong state

Arbitrary failures: Component produces arbitrary output and be subject
to arbitrary timing failures

6 / 65

Fault Tolerance 8.1 Introduction

Crash failures

Problem
Clients cannot distinguish between a crashed component and one that is just
a bit slow

Consider a server from which a client is expecting output

Is the server perhaps exhibiting timing or omission failures?
Is the channel between client and server faulty?

Assumptions we can make

Fail-silent: The component exhibits omission or crash failures; clients
cannot tell what went wrong
Fail-stop: The component exhibits crash failures, but its failure can be
detected (either through announcement or timeouts)
Fail-safe: The component exhibits arbitrary, but benign failures (they
can’t do any harm)

7 / 65

Fault Tolerance 8.2 Process Resilience

Process resilience

Basic issue
Protect yourself against faulty processes by replicating and distributing
computations in a group.

Flat groups: Good for fault tolerance as information exchange
immediately occurs with all group members; however, may impose
more overhead as control is completely distributed (hard to
implement).

Hierarchical groups: All communication through a single coordinator
⇒ not really fault tolerant and scalable, but relatively easy to
implement.

8 / 65

Fault Tolerance 8.2 Process Resilience

Process resilience

(a) (b)

Flat group Hierarchical group Coordinator

Worker

9 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

K-fault tolerant group

When a group can mask any k concurrent member failures (k is called
degree of fault tolerance).

How large does a k -fault tolerant group need to be?

Assume crash/performance failure semantics⇒ a total of k +1
members are needed to survive k member failures.
Assume arbitrary failure semantics, and group output defined by voting
⇒ a total of 2k +1 members are needed to survive k member failures.

Assumption

All members are identical, and process all input in the same order⇒ only
then are we sure that they do exactly the same thing.

10 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

Scenario
Group members are not identical, i.e., we have a distributed
computation⇒ Nonfaulty group members should reach agreement on
the same value.

1 13

2 2

b b

a ab a

Process 2 tells
different things

Process 3 passes
a different value

3

(a) (b)

11 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

Scenario
Assuming arbitrary failure semantics, we need 3k +1 group members
to survive the attacks of k faulty members. This is also known as
Byzantine failures.

Essence
We are trying to reach a majority vote among the group of loyalists, in
the presence of k traitors⇒ need 2k +1 loyalists.

12 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

1 2

3 4

1

2

2 4

z

4
1 x

1

4

y

2

1
2
3
4

Got(
Got(
Got(
Got(

1, 2, x, 4
1, 2, y, 4
1, 2, 3, 4
1, 2, z, 4

)
)
)
)

1 Got 2 Got 4 Got
(((
(((
(((

1, 1, 1,
a, e, 1,
1, 1, i,

2, 2, 2,
b, f, 2,
2, 2, j,

y, x, x,
c, g, y,
z, z, k,

4 4 4
d h 4
4 4 l

)))
)))
)))

(a)

(b) (c)

Faulty process

(a) what they send to each other
(b) what each one got from the

other
(c) what each one got in second

step

13 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

1

23

1
21

x

y

2

1
2
3

Got(
Got(
Got(

1, 2, x
1, 2, y
1, 2, 3

)
)
)

1 Got 2 Got
((
((
1, 1,
a, d,

2, 2,
b, e,

y x
c f

))
))

(a)

(b) (c)

Faulty process

(a) what they send to each other
(b) what each one got from the

other
(c) what each one got in second

step

14 / 65

Fault Tolerance 8.2 Process Resilience

Groups and failure masking

Issue
What are the necessary conditions for reaching agreement?

Synchronous

Asynchronous

OrderedUnordered

Bounded

Bounded

Unbounded

Unbounded

Unicast UnicastMulticast Multicast

X X

X

X

X

X

X

X

C
o

m
m

u
n

icatio
n

 d
elay

P
ro

ce
ss

 b
eh

av
io

r

Message ordering

Message transmission

Process: Synchronous⇒ operate in lockstep
Delays: Are delays on communication bounded?
Ordering: Are messages delivered in the order they were sent?
Transmission: Are messages sent one-by-one, or multicast?

15 / 65

Fault Tolerance 8.2 Process Resilience

Failure detection

Essence
We detect failures through timeout mechanisms

Setting timeouts properly is very difficult and application
dependent
You cannot distinguish process failures from network failures
We need to consider failure notification throughout the system:

Gossiping (i.e., proactively disseminate a failure detection)
On failure detection, pretend you failed as well

16 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable communication

So far
Concentrated on process resilience (by means of process groups).
What about reliable communication channels?

Error detection
Framing of packets to allow for bit error detection
Use of frame numbering to detect packet loss

Error correction
Add so much redundancy that corrupted packets can be
automatically corrected
Request retransmission of lost, or last N packets

17 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: What can go wrong?
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

RPC communication: Solutions
1: Relatively simple – just report back to client
2: Just resend message

18 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server crashes

3: Server crashes are harder as you don’t what it had already done:

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

19 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

Problem
We need to decide on what we expect from the server

At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what.
At-most-once-semantics: The server guarantees it will carry out
an operation at most once.

20 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server response is lost

4: Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has
carried out the operation
Solution: None, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to
be carried out before.

21 / 65

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Client crashes

5: Problem: The server is doing work and holding resources for
nothing (called doing an orphan computation).

Orphan is killed (or rolled back) by client when it reboots
Broadcast new epoch number when recovering⇒ servers kill
orphans
Require computations to complete in a T time units. Old ones are
simply removed.

Question
What’s the rolling back for?

22 / 65

Fault Tolerance 8.4 Reliable Group Communication

Reliable multicasting

Basic model
We have a multicast channel c with two (possibly overlapping) groups:

The sender group SND(c) of processes that submit messages to
channel c
The receiver group RCV(c) of processes that can receive
messages from channel c

Simple reliability: If process P ∈ RCV(c) at the time message m was
submitted to c, and P does not leave RCV(c), m should be
delivered to P

Atomic multicast: How can we ensure that a message m submitted to
channel c is delivered to process P ∈ RCV(c) only if m is
delivered to all members of RCV(c)

23 / 65

Fault Tolerance 8.4 Reliable Group Communication

Reliable multicasting

Observation
If we can stick to a local-area network, reliable multicasting is “easy”

Principle
Let the sender log messages submitted to channel c:

If P sends message m, m is stored in a history buffer
Each receiver acknowledges the receipt of m, or requests
retransmission at P when noticing message lost
Sender P removes m from history buffer when everyone has
acknowledged receipt

Question
Why doesn’t this scale?

24 / 65

Fault Tolerance 8.4 Reliable Group Communication

Scalable reliable multicasting: Feedback suppression

Basic idea
Let a process P suppress its own feedback when it notices another
process Q is already asking for a retransmission

Assumptions
All receivers listen to a common feedback channel to which
feedback messages are submitted
Process P schedules its own feedback message randomly, and
suppresses it when observing another feedback message

25 / 65

Fault Tolerance 8.4 Reliable Group Communication

Scalable reliable multicasting: Feedback suppression

NACK

NACK

NACK NACK NACK
T=3 T=4 T=1 T=2

Sender Receiver Receiver Receiver Receiver

Network

Receivers suppress their feedbackSender receives
only one NACK

Question
Why is the random schedule so important?

26 / 65

Fault Tolerance 8.4 Reliable Group Communication

Scalable reliable multicasting: Hierarchical solutions

Basic solution
Construct a hierarchical feedback channel in which all submitted
messages are sent only to the root. Intermediate nodes aggregate
feedback messages before passing them on.

Observation
Intermediate nodes can easily be used for retransmission purposes

27 / 65

Fault Tolerance 8.4 Reliable Group Communication

Scalable reliable multicasting: Hierarchical solutions

C
C

S

(Long-haul) connection
Sender

Coordinator

Root
R

Receiver

Local-area network

Question
What’s the main problem with this solution?

28 / 65

Fault Tolerance 8.4 Reliable Group Communication

Atomic multicast

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Idea
Formulate reliable multicasting in the presence of process failures in
terms of process groups and changes to group membership.

29 / 65

Fault Tolerance 8.4 Reliable Group Communication

Atomic multicast

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Guarantee
A message is delivered only to the nonfaulty members of the current
group. All members should agree on the current group membership⇒
Virtually synchronous multicast.

30 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

Essence
We consider views V ⊆ RCV(c)∪SND(c)

Principle
Processes are added or deleted from a view V through view changes
to V ∗; a view change is to be executed locally by each P ∈ V ∩V ∗

(1) For each consistent state, there is a unique view on which all its
members agree. Note: implies that all nonfaulty processes see all
view changes in the same order

31 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

Principle (cnt’d)
(2) If message m is sent to V before a view change vc to V ∗, then

either all P ∈ V that execute vc receive m, or no processes P ∈ V
that execute vc receive m. Note: all nonfaulty members in the
same view get to see the same set of multicast messages.

(3) A message sent to view V can be delivered only to processes in
V , and is discarded by successive views

Definition
A reliable multicast algorithm satisfying (1)–(3) is virtually synchronous

32 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

How it works
A sender to a view V need not be member of V
If a sender S ∈ V crashes, its multicast message m is flushed
before S is removed from V : m will never be delivered after the
point that S 6∈ V
Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new view to
which S does not belong
If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V .
Alternatively, we may decide to deliver m to members in V −{P}

33 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

How it works
A sender to a view V need not be member of V
If a sender S ∈ V crashes, its multicast message m is flushed
before S is removed from V : m will never be delivered after the
point that S 6∈ V
Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new view to
which S does not belong
If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V .
Alternatively, we may decide to deliver m to members in V −{P}

33 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

How it works
A sender to a view V need not be member of V
If a sender S ∈ V crashes, its multicast message m is flushed
before S is removed from V : m will never be delivered after the
point that S 6∈ V
Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new view to
which S does not belong
If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V .
Alternatively, we may decide to deliver m to members in V −{P}

33 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

How it works
A sender to a view V need not be member of V
If a sender S ∈ V crashes, its multicast message m is flushed
before S is removed from V : m will never be delivered after the
point that S 6∈ V
Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new view to
which S does not belong
If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V .
Alternatively, we may decide to deliver m to members in V −{P}

33 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony

Observation
Virtually synchronous behavior can be seen independent from the
ordering of message delivery. The only issue is that messages are
delivered to an agreed upon group of receivers.

34 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Some gory details...
The current view is known at each P by means of a delivery list
dest[P]
If P ∈ dest[Q] then Q ∈ dest[P]
Messages received by P are queued in queue[P]
If P fails, the group view must change, but not before all messages
from P have been flushed
Each P attaches a (stepwise increasing) timestamp with each
message it sends
Assume FIFO-ordered delivery; the highest numbered message
from Q that has been received by P is recorded in rcvd[P][Q]
The vector rcvd[P][] is sent (as a control message) to all members
in dest[P]
Each P records rcvd[Q][] in remote[P][Q]

35 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Observation
remote[P][Q] shows what P knows about message arrival at Q

1 2 3 1 5
2 2 2 2 4
3 3 1 4 5
4 4 2 2 4
min 2 1 1 4

36 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Principle
A message is stable if it has been received by all Q ∈ dest[P]
(shown as the min vector)
Stable messages can be delivered to the next layer (which may
deal with ordering). Note: Causal message delivery comes for free
As soon as all messages from the faulty process have been
flushed, that process can be removed from the (local) views

37 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Remains
What if a sender P failed and not all its messages made it to the
nonfaulty members of the current view?

Solution
Select a coordinator which has all (unstable) messages from P, and
forward those to the other group members.

Note
Member failure is assumed to be detected and subsequently multicast
to the current view as a view change. That view change will not be
carried out before all messages in the current view have been
delivered.

38 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Remains
What if a sender P failed and not all its messages made it to the
nonfaulty members of the current view?

Solution
Select a coordinator which has all (unstable) messages from P, and
forward those to the other group members.

Note
Member failure is assumed to be detected and subsequently multicast
to the current view as a view change. That view change will not be
carried out before all messages in the current view have been
delivered.

38 / 65

Fault Tolerance 8.4 Reliable Group Communication

Virtual synchrony implementation

Remains
What if a sender P failed and not all its messages made it to the
nonfaulty members of the current view?

Solution
Select a coordinator which has all (unstable) messages from P, and
forward those to the other group members.

Note
Member failure is assumed to be detected and subsequently multicast
to the current view as a view change. That view change will not be
carried out before all messages in the current view have been
delivered.

38 / 65

Fault Tolerance 8.5 Distributed Commit

Distributed commit

Two-phase commit
Three-phase commit

Essential issue
Given a computation distributed across a process group, how can we
ensure that either all processes commit to the final result, or none of
them do (atomicity)?

39 / 65

Fault Tolerance 8.5 Distributed Commit

Distributed commit

Two-phase commit
Three-phase commit

Essential issue
Given a computation distributed across a process group, how can we
ensure that either all processes commit to the final result, or none of
them do (atomicity)?

39 / 65

Fault Tolerance 8.5 Distributed Commit

Two-phase commit

Model
The client who initiated the computation acts as coordinator;
processes required to commit are the participants

Phase 1a: Coordinator sends vote-request to participants (also
called a pre-write)
Phase 1b: When participant receives vote-request it returns either
vote-commit or vote-abort to coordinator. If it sends vote-abort, it
aborts its local computation
Phase 2a: Coordinator collects all votes; if all are vote-commit, it
sends global-commit to all participants, otherwise it sends
global-abort
Phase 2b: Each participant waits for global-commit or global-abort
and handles accordingly.

40 / 65

Fault Tolerance 8.5 Distributed Commit

Two-phase commit

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

(a)

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Global-commit
ACK

(b)

Coordinator Participant

41 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

42 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

42 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

42 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

42 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

42 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
⇒ no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q Action by P
COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.

43 / 65

Fault Tolerance 8.5 Distributed Commit

2PC – Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision
may not be available for some time (or actually lost).

Alternative
Let a participant P in the READY state timeout when it hasn’t received
the coordinator’s decision; P tries to find out what other participants
know (as discussed).

Observation
Essence of the problem is that a recovering participant cannot make a
local decision: it is dependent on other (possibly failed) processes

44 / 65

Fault Tolerance 8.5 Distributed Commit

Three-phase commit

Model (Again: the client acts as coordinator)

Phase 1a: Coordinator sends vote-request to participants
Phase 1b: When participant receives vote-request it returns either
vote-commit or vote-abort to coordinator. If it sends vote-abort, it aborts
its local computation
Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and
halts
Phase 2b: Each participant waits for prepare-commit, or waits for
global-abort after which it halts
Phase 3a: (Prepare to commit) Coordinator waits until all participants
have sent ready-commit, and then sends global-commit to all
Phase 3b: (Prepare to commit) Participant waits for global-commit

45 / 65

Fault Tolerance 8.5 Distributed Commit

Three-phase commit

PRECOMMIT

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Prepare-commit

(a)

Ready-commit
Global-commit

PRECOMMIT

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Prepare-commit
Ready-commit

(b)

Global-commit
ACK

Coordinator Participant

46 / 65

Fault Tolerance 8.5 Distributed Commit

3PC – Failing participant

Basic issue
Can P find out what it should it do after crashing in the ready or pre-commit
state, even if other participants or the coordinator failed?

Reasoning

Essence: Coordinator and participants on their way to commit, never differ by
more than one state transition

Consequence: If a participant timeouts in ready state, it can find out at the
coordinator or other participants whether it should abort, or enter
pre-commit state

Observation: If a participant already made it to the pre-commit state, it can
always safely commit (but is not allowed to do so for the sake of failing
other processes)

Observation: We may need to elect another coordinator to send off the final
COMMIT

47 / 65

Fault Tolerance 8.6 Recovery

Recovery

Introduction
Checkpointing
Message Logging

48 / 65

Fault Tolerance 8.6 Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation
Backward error recovery: Bring the system back into a previous
error-free state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes
need to cooperate in identifying a consistent state from where to recover

49 / 65

Fault Tolerance 8.6 Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been
sent in the state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection

of checkpoints

Message sent
from P2 to P1

50 / 65

Fault Tolerance 8.6 Recovery

Consistent recovery state

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection

of checkpoints

Message sent
from P2 to P1

Observation
If and only if the system provides reliable communication, should sent
messages also be received in a consistent state.

51 / 65

Fault Tolerance 8.6 Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may
lie at system startup time⇒ cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm

52 / 65

Fault Tolerance 8.6 Recovery

Checkpointing: Stable storage

a
b c

d

e
fg

h

a
b c

d

e
fg

h

a
b c

d

e
fg

h

a
b c

d

e
fg

h

Bad
checksum

(a) (b) (c)

a
b c

d

e
fg

h

a
b c

d

e
fg

h

Sector has
different value

After a crash

If both disks are identical: you’re in good shape.
If one is bad, but the other is okay (checksums): choose the good one.
If both seem okay, but are different: choose the main disk.
If both aren’t good: you’re not in a good shape.

53 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

54 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

54 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

54 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

54 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

54 / 65

Fault Tolerance 8.6 Recovery

Independent checkpointing

Observation
If process Pi rolls back to CP[i](m−1), Pj must roll back to
CP[j](n−1).

Question
How can Pj find out where to roll back to?

55 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Question
What advantages are there to coordinated checkpointing?

56 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

57 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

57 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

57 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

57 / 65

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

57 / 65

Fault Tolerance 8.6 Recovery

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your
(communication) behavior from the most recent checkpoint⇒ store
messages in a log.

Assumption
We assume a piecewise deterministic execution model:

The execution of each process can be considered as a sequence
of state intervals
Each state interval starts with a nondeterministic event (e.g.,
message receipt)
Execution in a state interval is deterministic

58 / 65

Fault Tolerance 8.6 Recovery

Message logging

Conclusion
If we record nondeterministic events (to replay them later), we obtain a
deterministic execution model that will allow us to do a complete replay.

Question
Why is logging only messages not enough?

Question
Is logging only nondeterministic events enough?

59 / 65

Fault Tolerance 8.6 Recovery

Message logging and consistency

When should we actually log messages?

Issue: Avoid orphans:

Process Q has just received and subsequently delivered messages m1
and m2

Assume that m2 is never logged.
After delivering m1 and m2, Q sends message m3 to process R
Process R receives and subsequently delivers m3

P

Q

R

Q crashes and recovers

Unlogged message
Logged message

m1

m2 m2 m3m3

m1 m2 is never replayed,
so neither will m3

Time

60 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Notations
HDR[m]: The header of message m containing its source, destination,

sequence number, and delivery number
The header contains all information for resending a message and
delivering it in the correct order (assume data is reproduced by the
application)
A message m is stable if HDR[m] cannot be lost (e.g., because it
has been written to stable storage)

DEP[m]: The set of processes to which message m has been
delivered, as well as any message that causally depends on
delivery of m

COPY[m]: The set of processes that have a copy of HDR[m] in their
volatile memory

61 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Characterization
If C is a collection of crashed processes, then Q 6∈ C is an orphan if
there is a message m such that Q ∈ DEP[m] and COPY[m]⊆ C

62 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Note
We want ∀m∀C :: COPY[m]⊆ C⇒ DEP[m]⊆ C. This is the same as
saying that ∀m :: DEP[m]⊆ COPY[m].

Goal
No orphans means that for each message m,

DEP[m]⊆ COPY[m]

63 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Note
We want ∀m∀C :: COPY[m]⊆ C⇒ DEP[m]⊆ C. This is the same as
saying that ∀m :: DEP[m]⊆ COPY[m].

Goal
No orphans means that for each message m,

DEP[m]⊆ COPY[m]

63 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Pessimistic protocol
For each nonstable message m, there is at most one process
dependent on m, that is |DEP[m]| ≤ 1.

Consequence
An unstable message in a pessimistic protocol must be made stable
before sending a next message.

64 / 65

Fault Tolerance 8.6 Recovery

Message-logging schemes

Optimistic protocol
For each unstable message m, we ensure that if COPY[m]⊆ C, then
eventually also DEP[m]⊆ C, where C denotes a set of processes that
have been marked as faulty

Consequence
To guarantee that DEP[m]⊆ C, we generally rollback each orphan
process Q until Q 6∈ DEP[m]

65 / 65

	Fault Tolerance
	8.1 Introduction
	8.2 Process Resilience
	8.3 Reliable Communication
	8.4 Reliable Group Communication
	8.5 Distributed Commit
	8.6 Recovery

