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Naming 5.1 Naming Entities

Naming Entities

Names, identifiers, and addresses
Name resolution
Name space implementation

3 / 38



Naming 5.1 Naming Entities

Naming

Essence
Names are used to denote entities in a distributed system. To operate
on an entity, we need to access it at an access point. Access points
are entities that are named by means of an address.

Note
A location-independent name for an entity E , is independent from the
addresses of the access points offered by E .
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Naming 5.1 Naming Entities

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure
names can be used for comparison only.

Identifier
A name having the following properties:

P1: Each identifier refers to at most one entity
P2: Each entity is referred to by at most one identifier
P3: An identifier always refers to the same entity (prohibits reusing
an identifier)

Observation
An identifier need not necessarily be a pure name, i.e., it may have
content.
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Naming 5.2 Flat Naming

Flat naming

Problem
Given an essentially unstructured name (e.g., an identifier), how can
we locate its associated access point?

Simple solutions (broadcasting)
Home-based approaches
Distributed Hash Tables (structured P2P)
Hierarchical location service
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Naming 5.2 Flat Naming

Simple solutions

Broadcasting

Broadcast the ID, requesting the entity to return its current address.

Can never scale beyond local-area networks
Requires all processes to listen to incoming location requests

Forwarding pointers

When an entity moves, it leaves behind a pointer to its next location

Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers
Update a client’s reference when present location is found
Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

Long chains are not fault tolerant
Increased network latency at dereferencing
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Naming 5.2 Flat Naming

Home-based approaches

Single-tiered scheme
Let a home keep track of where the entity is:

Entity’s home address registered at a naming service
The home registers the foreign address of the entity
Client contacts the home first, and then continues with foreign
location
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Naming 5.2 Flat Naming

Home-based approaches

Host's present location

Client's
location

1. Send packet to host at its home

2. Return address
of current location

3. Tunnel packet to
current location

4. Send successive packets
to current location

Host's home
location
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Naming 5.2 Flat Naming

Home-based approaches

Two-tiered scheme
Keep track of visiting entities:

Check local visitor register first
Fall back to home location if local lookup fails

Problems with home-based approaches
Home address has to be supported for entity’s lifetime
Home address is fixed⇒ unnecessary burden when the entity
permanently moves
Poor geographical scalability (entity may be next to client)

Question
How can we solve the “permanent move” problem?
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Naming 5.2 Flat Naming

Distributed Hash Tables (DHT)

Chord
Consider the organization of many nodes into a logical ring

Each node is assigned a random m-bit identifier.
Every entity is assigned a unique m-bit key.
Entity with key k falls under jurisdiction of node with smallest
id ≥ k (called its successor).

Nonsolution
Let node id keep track of succ(id) and start linear search along the
ring.
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Naming 5.2 Flat Naming

DHTs: Finger tables

Principle
Each node p maintains a finger table FTp[] with at most m entries:

FTp[i] = succ(p +2i−1)

Note: FTp[i] points to the first node succeeding p by at least 2i−1.
To look up a key k , node p forwards the request to node with index
j satisfying

q = FTp[j]≤ k < FTp[j +1]

If p < k < FTp[1], the request is also forwarded to FTp[1]
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Naming 5.2 Flat Naming

DHTs: Finger tables
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Naming 5.2 Flat Naming

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k +1) may be
very far apart.

Topology-aware node assignment: When assigning an ID to a node, make
sure that nodes close in the ID space are also close in the network. Can
be very difficult.

Proximity routing: Maintain more than one possible successor, and forward to
the closest.
Example: in Chord FTp[i] points to first node in
INT = [p +2i−1,p +2i −1]. Node p can also store pointers to other
nodes in INT .

Proximity neighbor selection: When there is a choice of selecting who your
neighbor will be (not in Chord), pick the closest one.
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Naming 5.2 Flat Naming

Hierarchical Location Services (HLS)

Basic idea
Build a large-scale search tree for which the underlying network is
divided into hierarchical domains. Each domain is represented by a
separate directory node.

A leaf domain, contained in S

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
(S is contained in T)

Top-level
domain T

The root directory
node dir(T)
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Naming 5.2 Flat Naming

HLS: Tree organization

Invariants

Address of entity E is stored in a leaf or intermediate node
Intermediate nodes contain a pointer to a child iff the subtree rooted at
the child stores an address of the entity
The root knows about all entities

Domain D2
Domain D1

M

Field with no data

Location record
with only one field,
containing an address

Field for domain
dom(N) with
pointer to N

Location record
for E at node M

N
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Naming 5.2 Flat Naming

HLS: Lookup operation

Basic principles

Start lookup at local leaf node
Node knows about E ⇒ follow downward pointer, else go up
Upward lookup always stops at root

Domain D

M

Node has no
record for E, so
that request is
forwarded to
parent

Look-up
request

Node knows
about E, so request
is forwarded to child
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Naming 5.2 Flat Naming

HLS: Insert operation

Domain D

M

Node has no
record for E,
so request is
forwarded
to parent

Insert
request

Node knows
about E, so request
is no longer forwarded

(a)

M

Node creates record
and stores pointer

Node creates
record and
stores address

(b)

18 / 38



Naming 5.3 Structured Naming

Name space

Essence
A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

elke

.twmrc mbox

steen

home keys

"/home/steen/mbox"

"/keys"
"/home/steen/keys"

Data stored in n1

Directory node

Leaf node

n2: "elke"
n3: "max"
n4: "steen"

max

keys

n1

n2

n5

n0

n3 n4

Note
A directory node contains a (directory) table of (edge label, node identifier)
pairs.
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Naming 5.3 Structured Naming

Name space

Observation
We can easily store all kinds of attributes in a node, describing aspects
of the entity the node represents:

Type of the entity
An identifier for that entity
Address of the entity’s location
Nicknames
...

Note
Directory nodes can also have attributes, besides just storing a
directory table with (edge label, node identifier) pairs.
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Naming 5.3 Structured Naming

Name resolution

Problem
To resolve a name we need a directory node. How do we actually find that
(initial) node?

Closure mechanism
The mechanism to select the implicit context from which to start name
resolution:

www.cs.vu.nl: start at a DNS name server
/home/steen/mbox: start at the local NFS file server (possible recursive
search)
0031204447784: dial a phone number
130.37.24.8: route to the VU’s Web server

Question
Why are closure mechanisms always implicit?
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Naming 5.3 Structured Naming

Name linking

Hard link
What we have described so far as a path name: a name that is
resolved by following a specific path in a naming graph from one node
to another.
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Naming 5.3 Structured Naming

Name linking

Soft link
Allow a node O to contain a name of another node:

First resolve O’s name (leading to O)
Read the content of O, yielding name
Name resolution continues with name

Observations
The name resolution process determines that we read the content
of a node, in particular, the name in the other node that we need
to go to.
One way or the other, we know where and how to start name
resolution given name
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Naming 5.3 Structured Naming

Name linking

.twmrc

"/home/steen/keys"

"/keys"n1

n2

n5

n0

n3

n6

mbox "/keys"

Data stored in n6n4

elke steen

home keys
Data stored in n1

Directory node

Leaf node

n2: "elke"
n3: "max"
n4: "steen"

max

keys

Observation
Node n5 has only one name
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Naming 5.3 Structured Naming

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations
Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.
Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.
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Naming 5.3 Structured Naming

Name-space implementation

org net
jp us

nl

sun

eng

yale

eng

ai linda

robot

acm

jack jill

ieee

keio

cs

cs

pc24

co

nec

csl

oce vu

cs

ftp www

ac

com edu
gov mil

pub

globe

index.txt

Mana-
gerial
layer

Adminis-
trational

layer

Global
layer

Zone
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Naming 5.3 Structured Naming

Name-space implementation

Item Global Administrational Managerial
1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate
4 Lazy Immediate Immediate
5 Many None or few None
6 Yes Yes Sometimes

1: Geographical scale 4: Update propagation
2: # Nodes 5: # Replicas
3: Responsiveness 6: Client-side caching?
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Naming 5.3 Structured Naming

Iterative name resolution

1 resolve(dir,[name1,...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir,name1)→ dir1, returning the identification

(address) of Server1, which stores dir1.
3 Client sends resolve(dir1,[name2,...,nameK]) to Server1, etc.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. <nl,vu,cs,ftp>

2. #<nl>, <vu,cs,ftp>

3. <vu,cs,ftp>

4. #<vu>, <cs,ftp>

5. <cs,ftp>

6. #<cs>, <ftp>

ftp

cs

vu

nl

Nodes are
managed by
the same server

7. <ftp>

8. #<ftp>

#<nl,vu,cs,ftp><nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Recursive name resolution

1 resolve(dir,[name1,...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir,name1)→ dir1, and sends

resolve(dir1,[name2,...,nameK]) to Server1, which stores dir1.
3 Server0 waits for result from Server1, and returns it to client.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. <nl,vu,cs,ftp>

2. <vu,cs,ftp>

7. #<vu,cs,ftp>
3. <cs,ftp>

6. #<cs,ftp>
4. <ftp>

5. #<ftp>

#<nl,vu,cs,ftp>

8. #<nl,vu,cs,ftp>

<nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Caching in recursive name resolution

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester

cs <ftp> #<ftp> — — #<ftp>

vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>

#<cs, ftp>

nl <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>

#<cs,ftp> #<vu,cs>

#<vu,cs,ftp>

root <nl,vu,cs,ftp> #<nl> <vu,cs,ftp> #<vu> #<nl>
#<vu,cs> #<nl,vu>

#<vu,cs,ftp> #<nl,vu,cs>

#<nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit⇒ high-level servers are in big trouble.

Solution
Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping
nodes to multiple servers, and start name resolution at the nearest server.

Observation
An important attribute of many nodes is the address where the represented
entity can be contacted. Replicating nodes makes large-scale traditional
name servers unsuitable for locating mobile entities.
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Naming 5.3 Structured Naming

Scalability issues

Geographical scalability

We need to ensure that the name resolution process scales across large
geographical distances.

Name server
nl node

Name server
vu node

Name server
cs node

Client

Long-distance communication

Recursive name resolution

Iterative name resolution

I1

I2

I3

R1

R2

R3

Problem
By mapping nodes to servers that can be located anywhere, we introduce an
implicit location dependency.
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Naming 5.3 Structured Naming

Example: Decentralized DNS

Basic idea
Take a full DNS name, hash into a key k , and use a DHT-based system to
allow for key lookups. Main drawback: You can’t ask for all nodes in a
subdomain (but very few people were doing this anyway).

Information in a node

SOA Zone Holds info on the represented zone
A Host IP addr. of host this node represents
MX Domain Mail server to handle mail for this node
SRV Domain Server handling a specific service
NS Zone Name server for the represented zone
CNAME Node Symbolic link
PTR Host Canonical name of a host
HINFO Host Info on this host
TXT Any kind Any info considered useful
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Naming 5.3 Structured Naming

DNS on Pastry

Pastry

DHT-based system that works with prefixes of keys. Consider a system in
which keys come from a 4-digit number space. A node with ID 3210 keeps
track of the following nodes

nk prefix of ID(nk ) nk prefix of ID(nk )
n0 0 n1 1
n2 2 n30 30
n31 31 n33 33
n320 320 n322 322
n323 323

Note
Node 3210 is responsible for handling keys with prefix 321. If it receives a
request for key 3012, it will forward the request to node n30. For DNS: A node
responsible for key k stores DNS records of names with hash value k .

34 / 38



Naming 5.3 Structured Naming

Replication of records

Definition
Replicated at level i – record is replicated to all nodes with i matching
prefixes. Note: # hops for looking up record at level i is generally i .

Observation
Let xi denote the fraction of most popular DNS names of which the
records should be replicated at level i , then:

xi =

[
d i(logN−C)

1+d + · · ·+d logN−1

]1/(1−α)

with N is the total number of nodes, d = b(1−α)/α and α ≈ 1, assuming
that popularity follows a Zipf distribution:
The frequency of the n-th ranked item is proportional to 1/nα
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Naming 5.3 Structured Naming

Replication of records

Meaning
If you want to reach an average of C = 1 hops when looking up a DNS
record, then with b = 4, α = 0.9, N = 10,000 and 1,000,000 records
that

61 most popular records should be
replicated at level 0

284 next most popular records at level 1
1323 next most popular records at level 2
6177 next most popular records at level 3

28826 next most popular records at level 4
134505 next most popular records at level 5
the rest should not be replicated
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Naming 5.4 Attribute-Based Naming

Attribute-based naming

Observation
In many cases, it is much more convenient to name, and look up
entities by means of their attributes⇒ traditional directory services
(aka yellow pages).

Problem
Lookup operations can be extremely expensive, as they require to
match requested attribute values, against actual attribute values⇒
inspect all entities (in principle).

Solution
Implement basic directory service as database, and combine with
traditional structured naming system.
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Example: LDAP

C = NL

O = Vrije Universiteit

OU = Comp. Sc.

Host_Name = star Host_Name = zephyr

CN = Main server

N

Attribute Value Attribute Value

Country NL Country NL

Locality Amsterdam Locality Amsterdam

Organization Vrije Universiteit Organization Vrije Universiteit

OrganizationalUnit Comp. Sc. OrganizationalUnit Comp. Sc.

CommonName Main server CommonName Main server

Host Name star Host Name zephyr

Host Address 192.31.231.42 Host Address 137.37.20.10

answer =
search("&(C = NL) (O = Vrije Universiteit) (OU = *) (CN = Main server)")

38 / 38


	Naming
	5.1 Naming Entities
	5.2 Flat Naming
	5.3 Structured Naming
	5.4 Attribute-Based Naming


