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Introduction

● In a centralized (single-node) system time is 
unambiguous:

● Process P
A
 asks for time and gets T

A
.

● Later, process P
B
 asks for time and gets T

B
.

● For sure, T
A
 ≤ T

B
.

● In other words, P
A
 and P

B
 always agree on the 

current time.

● This fact is made use of in various cases:
● e.g., the make tool



  

Introduction

● Achieving agreement on time in a distributed 
system is not trivial.

● In some cases, a lack of such an agreement 
can have grave consequences.
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● There are many cases in which agreeing on 
time is important:
● Financial brokerage
● Security auditing
● Collaborative sensing

● In general, people analyze events wrt time.



  

Introduction

● There are many cases in which agreeing on 
time is important:
● Financial brokerage
● Security auditing
● Collaborative sensing

● In general, people analyze events wrt time.

● Is it possible to synchronize all the clocks in a 
distributed system?



  

Physical clocks

● Each computer has a so-called timer:
● A quartz oscillator with two registers.

● A counter register is decremented on each 
oscillation.

● When it goes to zero,
● it is reloaded with the value from a holding register.
● a clock interrupt is generated => the clock ticks.



  

Physical clocks

● Each computer has a so-called timer:
● A quartz oscillator with two registers.

● A counter register is decremented on each 
oscillation.

● When it goes to zero,
● it is reloaded with the value from a holding register.
● a clock interrupt is generated => the clock ticks.

● Effect: we can make the clock tick every 
second to maintain time for our computer.



  

Physical clocks

● However, with multiple clocks the situation 
changes.

● Timers are imperfect oscillators:
● N computers => N different oscillation frequencies



  

Physical clocks

● However, with multiple clocks the situation 
changes.

● Timers are imperfect oscillators:
● N computers => N different oscillation frequencies

● How do we keep them in sync with each other?
● How do we keep them in sync with the external 

world (the real time)?



  

Measuring time

● In the past, time was measured astronomically:
● Solar day = the period between two consecutive  

appearances of the sun at the peek point in the sky
● Solar second = 1 / (24 * 60 * 60) of a solar day



  

Measuring time

● Solar day is not constant!
● Permanent changes in the Earth's rotation speed:

– Days are getting longer.
● Temporal variations.



  

Measuring time

● Atomic clocks can provide accurate time
● Idea: counting the number of transitions of the 

cesium 133 atom (earlier also rubidium 87 and 
thallium 205).

● 1 second = 9,192,631,770 transitions

● Several laboratories have atomic clocks
● Periodically, they inform the International Time 

Bureau about the number of ticks
● The average is known as International Atomic 

Time (TAI)



  

Measuring time

● TAI is highly stable.
● Solar day is getting longer.

● => 86,400 TAI seconds is now about 3 ms less 
than a mean solar day

● Tolerating this discrepancy = bad idea.
● Solution: leap seconds.



  

Measuring time

● This correction is a base of Universal 
Coordinated Time (UTC).



  

Obtaining UTC

● Most electric companies synchronize the timing 
of their 60-Hz or 50-Hz clocks to UTC.

● Shortwave pulses at the start of every second:
● NIST, Fort Collins, CO, USA
● MSF, Rugby, England

Accuracy: ± 1 ms (broadcaster),  ± 10 ms (recv) 
● Earth satellites also offer UTC:

● GEOS

Accuracy: ± 0.5 ms



  

Global Positioning System

● Global Positioning System (GPS) offers time 
synchronization as a by-product:
● 29 satelites
● At ~20,000 km

● Each satellite has up to 4 atomic clocks.
● The clocks are calibrated from stations on 

Earth.
● Each satellite continuously broadcasts its 

position and local time.
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Global Positioning System

● Problem: Assuming that the clock's of satellites 
are accurate and synchronized:
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● It takes a while before a satellite's position reaches 
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Global Positioning System

● Problem: Assuming that the clock's of satellites 
are accurate and synchronized:
● It takes a while before a satellite's position reaches 

a GPS receiver.
● The receiver's clock need not be in sync with the 

satellite's clock.



  

Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message 

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

● Real distance is:

● 4 satellites = 4 equations with 4 unknowns

d i=c Δ i−cΔ r=√((x i−x r)
2
+( y i−y r)

2
+(z i−z r)

2
)
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Global Positioning System

● Principal operation:

● Δ
r
 : unknown deviation of the receiver's clock

● x
r
, y

r
, z

r
 : unknown coordinates of the receiver's clock

● T
i
 : timestamp on a message from satellite i

● Δ
i
 = (T

now
 – T

i
) + Δ

r
 : measured delay of the message 

sent by satellite i

● Δ
i
 x c : measured distance to satellite i

● Real distance is:

● 4 satellites = 4 equations with 4 unknowns

d i=c Δi−c Δr=√ ((x i−x r )
2+(y i−y r )

2+(z i−z r )
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Global Positioning System

● The measurements are not accurate.
● GPS does not consider leap seconds.
● Atomic clocks of satellites are not in perfect sync.
● The position of a satellite is not known precisely.
● The receiver's clock has a finite accuracy.
● Signal propagation is not constant.
● Earth is not a perfect sphere.

● Computing a position and time is far from trivial.
● Nevertheless, GPS offers good accuracy:

● Professional receivers: 20-35 nanosecs.



  

Time synchronization

● Suppose that one computer has a shortwave 
time pulse receiver.

● The goal is to synchronize other machines with 
the time provided by the receiver...



  

Time synchronization

● Suppose that one computer has a shortwave 
time pulse receiver.

● The goal is to synchronize other machines with 
the time provided by the receiver...

● … and then, to keep the machines in sync.



  

Time synchronization

● Assumptions:
● Each machine, P, has a timer that ticks H times per 

second.
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● The timer is used as a base of P's clock that ticks 
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clock at UTC time t as C

p
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Time synchronization

● Assumptions:
● Each machine, P, has a timer that ticks H times per 

second.
● The timer is used as a base of P's clock that ticks 

on each interrupt. Let's denote the value of this 
clock at UTC time t as C

p
(t).

● Ideally, we would like to have C
p
(t) = t, that is:

● dC / dt = 1.



  

Time synchronization

● Real timers do not interrupt exactly H times per 
second.
● In theory, with H = 60, we should have 216,000 

ticks per hour.
● In practice, with modern oscillators, the relative 

error is about 10-5:
– Between 215,998 and 216,002 ticks per hour.

● Clock skew = C
p
(t) - 1



  

Time synchronization



  

Time synchronization

● In practice, for a given clock, there exists a 
maximum drift rate, ρ:

1 – ρ ≤ dC / dt ≤ 1 + ρ
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● Goal: Never let two clocks drift more than δ 

time units.



  

Time synchronization

● In practice, for a given clock, there exists a 
maximum drift rate, ρ:

1 – ρ ≤ dC / dt ≤ 1 + ρ
● Goal: Never let two clocks drift more than δ 

time units.
● Solution: Resynchronize at least every δ / (2ρ) 

time units.



  

Time synchronization

● Approach I:
● Every machine asks a time server for the current 

time at least every δ / (2ρ) time units (Network Time 
Protocol – NTP).



  

Time synchronization

● Assuming dTreq = dTres = 0, A's offset from B:

● θ = TB(S) – TA(R)

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres
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Time synchronization

● Assuming dTreq = dTres = 0, A's offset from B:

● θ = TB(S) – TA(R)

● In practice, dTreq , dTres > 0

● Problem: How to estimate the offset?

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres



  

Time synchronization

● Round-trip delay:

δ = TA(R) – TA(S) – (TB(S) – TB(R))
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TA(S) TA(R)

TB(R) TB(S)

physical time
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● Round-trip delay:
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Time synchronization

● Round-trip delay:

δ = TA(R) – TA(S) – (TB(S) – TB(R))

● Assume dTreq = dTres

● Time offset: θ = TB(S) + ½ × δ – TA(R)

A

B

TA(S) TA(R)

TB(R) TB(S)

physical time

dTreq dTres



  

Time synchronization

● Assuming dTreq = dTres introduces errors.

● The reasons for errors:
● Network delays
● Interrupt handling
● OS delays
● Message processing



  

Time synchronization

● NTP:
● estimates errors using round trip delays.
● rejects samples that suffer from large errors.
● divides servers into strata:

– Stratum 0: an atomic clock
– Stratum 1: a machine with shortwave time pulse receiver
– Stratum i + 1: a machine that obtained its time from 

synchronizing with a stratum-i machine

● NTP's accuracy (world-wide): 1-50 ms
● Stratum-less synchronization: Gossiping Time 

Protocol (GTP).



  

Time synchronization

● Approach II:
● NTP provides external synchronization (to a 

stratum-0 clock).
● An alternative is internal synchronization:

– Machines synchronize with each other.
– Not necessarily with an external clock.



  

Time synchronization

● The Berkeley algorithm:
● Works in a local area network.
● A special process, time daemon is responsible for 

synchronizing clocks of different machines.



  

Time synchronization

The time daemon
periodically asks
other machines
for their local time.



  

Time synchronization

The machines
reply with their offsets.



  

Time synchronization

The time deamon
tells each machine
how to adjust its clock.



  

Time synchronization

● Approach III:
● Wireless sensor networks require tight time 

synchronization:
– e.g., seismic activity monitoring

● On the other hand, they are built of inexpensive 
hardware.

● Special algorithms are necessary.
– e.g., Reference Broadcast Synchronization (RBS)



  

Time synchronization

● Approach III:
● Wireless sensor networks require tight time 

synchronization:
– e.g., seismic activity monitoring

● On the other hand, they are built of inexpensive 
hardware.

● Special algorithms are necessary.
– e.g., Reference Broadcast Synchronization (RBS)

● Idea: To eliminate various delays that introduce 
synchronization errors.
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Time synchronization

● RBS:
● A node broadcasts a reference message. 



  

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception, 
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● Each node, p, records the local time of reception, 

tm

p
.

● Nodes exchange their recorded reception times.
● Each node can compute its offset to another node.

 



  

Time synchronization

● RBS:
● A node broadcasts a reference message.
● Each node, p, records the local time of reception, 

tm

p
.

● Nodes exchange their recorded reception times.
● Each node can compute its offset to another node.

● Extremely tight synchronization: 1.85 ± 2.57 μs 
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