
  

Pastry:
An example of a distributed flat naming system

Konrad Iwanicki
University of Warsaw

Supplement for Topic 05: Naming
Distributed Systems Course
University of Warsaw

Based on: A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and touting for large
peer-to-peer systems,” in Middleware 2000: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms, Heidelberg, Germany, November 2001, pp. 329-350.



  

Introduction
● Pastry provides a mechanism for resolving flat 

entity names into entity addresses:
● Each entity (e.g., file, object, service) is given a flat 

m-bit identifier – a key.
● Each entity is hosted by some node.
● Given

– a key of an entity and
– a transport-layer address of any node,

Pastry locates the transport-layer address of a node 
hosting the entity corresponding to the key.



  

Overview
● Each node is assigned a 

random, unique n-bit 
identifier: nodeID (n ≤ m, 
typically n = m = 128).

● NodeIDs constitute a 
numeric space ranging from 
0 to 2n – 1.

● A node hosts entities whose 
keys are numerically closest 
to its nodeID.
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Overview
● QUESTION: Why is it important that node 

identifiers be random?



  

Overview
● QUESTION: Why is it important that node 

identifiers be random?
● Assuming that keys are also uniformly random 

(e.g., generated by a cryptographic hash 
function), the entities will be well-balanced 
between nodes.



  

Overview
● QUESTION: What is the advantage of mapping 

each keys to the numerically closest nodeID 
when the population of nodes changes?



  

Overview
● QUESTION: What is the advantage of mapping 

each keys to the numerically closest nodeID 
when the population of nodes changes?

● Entity transfers are local: entities only from the 
two nodes with numerically closest nodeIDs are 
potentially affected.



  

Overview
● Pastry nodes form an overlay network, in which each node has 

links to selected other nodes.
● Those links are used to route a lookup message for a key from 

a source node to a destination node that hosts the entity with 
the key.

● This is overlay routing => at the application layer.
● Think of keys and nodeIDs as numbers with base 2b digits, 

where b is a configuration parameter (typically b = 4).

● Pastry can route a lookup message within ┌log2bN┐ hops over 
the overlay links, (N = the total number of nodes). 

● To this end, each node maintains a local state.



  

Node state
● Leaf set
● Routing table
● Neighborhood set



  

Leaf set
● Contains entries for L/2 

smaller and L/2 larger 
numerically closest active 
nodeIDs.

● L is a configuration 
parameter (typically 16 or 
32)

● An entry for a nodeID 
consists of, among others, 
the transport-layer address of 
the node with the nodeID.

SMALLER LARGER
10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

Leaf set for nodeID = 10233102
(b = 2, n = 16, #digits = n/b = 8, L = 8)



  

Routing
● If we used just leaf sets, routing could work as 

follows:
● forward the message to the node from the leaf set 

numerically closest to the key.
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Routing
● If we used just leaf sets, routing could work as 

follows:
● forward the message to the node from the leaf set 

numerically closest to the key.
● QUESTION: How many overlay hops would we 

need?
● (N / 2) / (L / 2) = N / L

● With N = 2128 and L = 32 this is poor => such routing 
does not scale in terms of the system size.



  

Routing table
● Organized into rows:

● 2b - 1  entries per row.
● Entries in row i, each 

refer to a node:
● whose nodeID equals 

the present node's 
nodeID in the first i 
digits

● And differs from the 
present node's 
nodeID in the i+1-st 
digit

Row 0 1 2 3
0 -0-2212102 1 -2-2301203 -3-1203102
1 0 1-1-301233 1-2-321333 1-3-120123
2 10-0-31203 10-1-32102 2 10-3-22312
3 102-0-0230 102-1-1231 102-2-0001 3
4 1023-0-011 1023-1-301 1023-2-022 3
5 10233-0-01 1 10233-2-31
6 0 102331-2-1
7 2

Routing table for nodeID = 10233102
(b = 2, n = 16, #digits = n/b = 8)



  

Routing
● If the key in a lookup message is within the range of the leaf set,

● forward the message to the node from the leaf set numerically 
closest to the key.

● Else if there exists in the routing table an entry whose nodeID shares 
one more digit with the key than the nodeID of the present node,

● forward the message to the node corresponding to the entry.
● Else we have to decide if the present node should accept the 

message:
● If some entry in the leaf set is numerically closer to the key than 

the present node:
– Forward the message to the node corresponding to the numerically 

closer entry from the leaf set.
● Else:

– Accept the message as the destination node responsible for the key.



  

Routing

nodeID = 1023

Key = 31033102

nodeID = 3301

nodeID = 3100

nodeID = 3133

nodeID = 3102

m = 16, n = 8, b = 2



  

Routing
● If a key falls within the leaf set, just 1 hop is needed.
● Otherwise, at each hop, at least one base 2b digit is 

resolved.
● At each hop, the number of candidate nodes that can 

potentially host the key is thus reduced by a factor of 2b.
● In the end, the number of candidate nodes has to be 

narrowed down to 1.
● The number of hops, h, that is necessary thus satisfies the 

equation:
– N / (2b)h ≈ 1 => N ≈ (2b)h => h ≈ log2bN.

● Such routing scales well wrt. the system size, N.



  

Routing
● QUESTION: With such efficient routing, is there any 

sense to have the leaf set bigger than just two entries, 
that is, to have L / 2 > 1?



  

Routing
● QUESTION: With such efficient routing, is there any 

sense to have the leaf set bigger than just two entries, 
that is, to have L / 2 > 1?

● L / 2 > 1 is necessary for fault tolerance.
● The links corresponding to the leaf set build the ring:

– If L / 2 = 1 then each node has a pointer to its ring successor 
and predecessor.

– If L / 2 = k then each node has a pointer to its k ring 
successors and k predecessors.

● If k consecutive nodes fail concurrently, the ring is 
broken.

● It thus makes sense to make k large: k – 1 concurrent 
node failures can be tolerated.



  

Routing
● Pastry is scalable in network size.
● QUESTION: What about geographic 

scalability?



  

Routing
● Pastry is scalable in network size.
● QUESTION: What about geographic 

scalability?
● The design presented so far does not scale well 

geographically.



  

Routing

nodeID = 1023, Warsaw

Key = 31033102

nodeID = 3301, San Francisco

nodeID = 3100, Beijing

nodeID = 3133, Zurich

nodeID = 3102, Boston

m = 16, n = 8, b = 2

4 wide-area hops
= poor latency



  

Routing
● A possible solution:

● Assign nodeIDs in a geographically aware manner: 
nodes close on the ring are also close 
geographically.
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Routing
● A possible solution:

● Assign nodeIDs in a geographically aware manner: 
nodes close on the ring are also close 
geographically.

● QUESTION: Drawbacks?
● Mapping a one-dimensional space to the Internet is 

far from trivial.
● Correlated failures:

– When an enterprise network goes down, many 
consecutive nodes go down.

– The ring can break.



  

Routing
● Pastry thus uses something else:

● proximity neighbor selection.
● The third element of a node's state – the 

neighbor set – contains M entries for nodes 
“close” to the present node (typically M = 32):
● “Close” in some proximity metric (e.g., latency), not 

in the nodeID space.
● This set is used to construct a routing table that 

has good locality.



  

Routing
● Idea: There is a lot of choice in 

selecting entries for the routing 
table.

● An entry for row 0 can be 
selected from N / 2b nodes.

● A a close node with a matching 
nodeID is likely to exist.

● An entry for row r can be 
selected from N / (2b(r + 1)) nodes.

● In rows apart from the last few 
ones, close nodes with matching 
nodeIDs are likely to exist.

● Conclusion: for the links, we 
can select entries close in the 
proximity metric.

Row 0 1 2 3
0 -0-??????? 1 -2-??????? -3-???????
1 0 1-1-?????? 1-2-?????? 1-3-??????
2 10-0-????? 10-1-????? 2 10-3-?????
3 102-0-???? 102-1-???? 102-2-???? 3
4 1023-0-??? 1023-1-??? 1023-2-??? 3
5 10233-0-?? 1 10233-2-??
6 0 102331-2-?
7 2

Details in the paper.



  

Routing

NodeID = 1023, Warsaw

Key = 31033102

nodeID = 3301, San Francisco

nodeID = 3100, Beijing

nodeID = 3133, Zurich

nodeID = 3102, Boston

m = 16, n = 8, b = 2

1 wide-area hop
= reasonable latency

nodeID = 3231, Warsaw

nodeID = 3121, Warsaw

nodeID = 3133, Berlin



  

Other issues
● Node joining similar to Chord.
● Failure repair automatic.

● Pastry is self-managed.
● QUESTION: What about administrative 

scalability?



  

Other issues
● Node joining similar to Chord.
● Failure repair automatic.

● Pastry is self-managed.
● QUESTION: What about administrative 

scalability?
● Pastry assumes cooperating nodes.
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