

Pastry:
An example of a distributed flat naming system

Konrad Iwanicki
University of Warsaw

Supplement for Topic 05: Naming
Distributed Systems Course
University of Warsaw

Based on: A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and touting for large
peer-to-peer systems,” in Middleware 2000: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms, Heidelberg, Germany, November 2001, pp. 329-350.

Introduction
● Pastry provides a mechanism for resolving flat

entity names into entity addresses:
● Each entity (e.g., file, object, service) is given a flat

m-bit identifier – a key.
● Each entity is hosted by some node.
● Given

– a key of an entity and
– a transport-layer address of any node,

Pastry locates the transport-layer address of a node
hosting the entity corresponding to the key.

Overview
● Each node is assigned a

random, unique n-bit
identifier: nodeID (n ≤ m,
typically n = m = 128).

● NodeIDs constitute a
numeric space ranging from
0 to 2n – 1.

● A node hosts entities whose
keys are numerically closest
to its nodeID.

nodeID = 0

nodeID = 3

nodeID = 7

nodeID = 8

nodeID = 12

Responsible
for keys: 14,
0, 1

Responsible
for keys: 2,
3, 4

Responsible
for keys: 5,
6, 7Responsible

for keys: 8,
9, 10

Responsible
for keys: 11,
12, 13, 14

n = m = 4

Overview
● QUESTION: Why is it important that node

identifiers be random?

Overview
● QUESTION: Why is it important that node

identifiers be random?
● Assuming that keys are also uniformly random

(e.g., generated by a cryptographic hash
function), the entities will be well-balanced
between nodes.

Overview
● QUESTION: What is the advantage of mapping

each keys to the numerically closest nodeID
when the population of nodes changes?

Overview
● QUESTION: What is the advantage of mapping

each keys to the numerically closest nodeID
when the population of nodes changes?

● Entity transfers are local: entities only from the
two nodes with numerically closest nodeIDs are
potentially affected.

Overview
● Pastry nodes form an overlay network, in which each node has

links to selected other nodes.
● Those links are used to route a lookup message for a key from

a source node to a destination node that hosts the entity with
the key.

● This is overlay routing => at the application layer.
● Think of keys and nodeIDs as numbers with base 2b digits,

where b is a configuration parameter (typically b = 4).

● Pastry can route a lookup message within ┌log2bN┐ hops over
the overlay links, (N = the total number of nodes).

● To this end, each node maintains a local state.

Node state
● Leaf set
● Routing table
● Neighborhood set

Leaf set
● Contains entries for L/2

smaller and L/2 larger
numerically closest active
nodeIDs.

● L is a configuration
parameter (typically 16 or
32)

● An entry for a nodeID
consists of, among others,
the transport-layer address of
the node with the nodeID.

SMALLER LARGER
10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

Leaf set for nodeID = 10233102
(b = 2, n = 16, #digits = n/b = 8, L = 8)

Routing
● If we used just leaf sets, routing could work as

follows:
● forward the message to the node from the leaf set

numerically closest to the key.

Routing
● If we used just leaf sets, routing could work as

follows:
● forward the message to the node from the leaf set

numerically closest to the key.
● QUESTION: How many overlay hops would we

need?

Routing
● If we used just leaf sets, routing could work as

follows:
● forward the message to the node from the leaf set

numerically closest to the key.
● QUESTION: How many overlay hops would we

need?
● (N / 2) / (L / 2) = N / L

● With N = 2128 and L = 32 this is poor => such routing
does not scale in terms of the system size.

Routing table
● Organized into rows:

● 2b - 1 entries per row.
● Entries in row i, each

refer to a node:
● whose nodeID equals

the present node's
nodeID in the first i
digits

● And differs from the
present node's
nodeID in the i+1-st
digit

Row 0 1 2 3
0 -0-2212102 1 -2-2301203 -3-1203102
1 0 1-1-301233 1-2-321333 1-3-120123
2 10-0-31203 10-1-32102 2 10-3-22312
3 102-0-0230 102-1-1231 102-2-0001 3
4 1023-0-011 1023-1-301 1023-2-022 3
5 10233-0-01 1 10233-2-31
6 0 102331-2-1
7 2

Routing table for nodeID = 10233102
(b = 2, n = 16, #digits = n/b = 8)

Routing
● If the key in a lookup message is within the range of the leaf set,

● forward the message to the node from the leaf set numerically
closest to the key.

● Else if there exists in the routing table an entry whose nodeID shares
one more digit with the key than the nodeID of the present node,

● forward the message to the node corresponding to the entry.
● Else we have to decide if the present node should accept the

message:
● If some entry in the leaf set is numerically closer to the key than

the present node:
– Forward the message to the node corresponding to the numerically

closer entry from the leaf set.
● Else:

– Accept the message as the destination node responsible for the key.

Routing

nodeID = 1023

Key = 31033102

nodeID = 3301

nodeID = 3100

nodeID = 3133

nodeID = 3102

m = 16, n = 8, b = 2

Routing
● If a key falls within the leaf set, just 1 hop is needed.
● Otherwise, at each hop, at least one base 2b digit is

resolved.
● At each hop, the number of candidate nodes that can

potentially host the key is thus reduced by a factor of 2b.
● In the end, the number of candidate nodes has to be

narrowed down to 1.
● The number of hops, h, that is necessary thus satisfies the

equation:
– N / (2b)h ≈ 1 => N ≈ (2b)h => h ≈ log2bN.

● Such routing scales well wrt. the system size, N.

Routing
● QUESTION: With such efficient routing, is there any

sense to have the leaf set bigger than just two entries,
that is, to have L / 2 > 1?

Routing
● QUESTION: With such efficient routing, is there any

sense to have the leaf set bigger than just two entries,
that is, to have L / 2 > 1?

● L / 2 > 1 is necessary for fault tolerance.
● The links corresponding to the leaf set build the ring:

– If L / 2 = 1 then each node has a pointer to its ring successor
and predecessor.

– If L / 2 = k then each node has a pointer to its k ring
successors and k predecessors.

● If k consecutive nodes fail concurrently, the ring is
broken.

● It thus makes sense to make k large: k – 1 concurrent
node failures can be tolerated.

Routing
● Pastry is scalable in network size.
● QUESTION: What about geographic

scalability?

Routing
● Pastry is scalable in network size.
● QUESTION: What about geographic

scalability?
● The design presented so far does not scale well

geographically.

Routing

nodeID = 1023, Warsaw

Key = 31033102

nodeID = 3301, San Francisco

nodeID = 3100, Beijing

nodeID = 3133, Zurich

nodeID = 3102, Boston

m = 16, n = 8, b = 2

4 wide-area hops
= poor latency

Routing
● A possible solution:

● Assign nodeIDs in a geographically aware manner:
nodes close on the ring are also close
geographically.

Routing
● A possible solution:

● Assign nodeIDs in a geographically aware manner:
nodes close on the ring are also close
geographically.

● QUESTION: Drawbacks?

Routing
● A possible solution:

● Assign nodeIDs in a geographically aware manner:
nodes close on the ring are also close
geographically.

● QUESTION: Drawbacks?
● Mapping a one-dimensional space to the Internet is

far from trivial.
● Correlated failures:

– When an enterprise network goes down, many
consecutive nodes go down.

– The ring can break.

Routing
● Pastry thus uses something else:

● proximity neighbor selection.
● The third element of a node's state – the

neighbor set – contains M entries for nodes
“close” to the present node (typically M = 32):
● “Close” in some proximity metric (e.g., latency), not

in the nodeID space.
● This set is used to construct a routing table that

has good locality.

Routing
● Idea: There is a lot of choice in

selecting entries for the routing
table.

● An entry for row 0 can be
selected from N / 2b nodes.

● A a close node with a matching
nodeID is likely to exist.

● An entry for row r can be
selected from N / (2b(r + 1)) nodes.

● In rows apart from the last few
ones, close nodes with matching
nodeIDs are likely to exist.

● Conclusion: for the links, we
can select entries close in the
proximity metric.

Row 0 1 2 3
0 -0-??????? 1 -2-??????? -3-???????
1 0 1-1-?????? 1-2-?????? 1-3-??????
2 10-0-????? 10-1-????? 2 10-3-?????
3 102-0-???? 102-1-???? 102-2-???? 3
4 1023-0-??? 1023-1-??? 1023-2-??? 3
5 10233-0-?? 1 10233-2-??
6 0 102331-2-?
7 2

Details in the paper.

Routing

NodeID = 1023, Warsaw

Key = 31033102

nodeID = 3301, San Francisco

nodeID = 3100, Beijing

nodeID = 3133, Zurich

nodeID = 3102, Boston

m = 16, n = 8, b = 2

1 wide-area hop
= reasonable latency

nodeID = 3231, Warsaw

nodeID = 3121, Warsaw

nodeID = 3133, Berlin

Other issues
● Node joining similar to Chord.
● Failure repair automatic.

● Pastry is self-managed.
● QUESTION: What about administrative

scalability?

Other issues
● Node joining similar to Chord.
● Failure repair automatic.

● Pastry is self-managed.
● QUESTION: What about administrative

scalability?
● Pastry assumes cooperating nodes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

