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Architectures 2.1 Architectural styles

Architectural styles

Basic idea
Organize into logically different components, and distribute those
components over the various machines.

Layer N

Layer N-1

Layer 1

Layer 2

Request
flow

Response
flow

(a) (b)

Object

Object

Object

Object

Object

Method call

(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems.
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Architectures 2.1 Architectural styles

Architectural Styles

Observation
Decoupling processes in space (“anonymous”) and also time
(“asynchronous”) has led to alternative styles.

(a) (b)

Component Component

Component

Event bus

Publish

PublishEvent delivery

Component Component

Data delivery

Shared (persistent) data space

(a) Publish/subscribe [decoupled in space]
(b) Shared dataspace [decoupled in space and time]

5 / 38



Architectures 2.2 System Architectures

Centralized Architectures

Basic Client–Server Model
Characteristics:

There are processes offering services (servers)
There are processes that use services (clients)
Clients and servers can be on different machines
Clients follow request/reply model wrt to using services

Client

Request Reply

Server
Provide service Time

Wait for result
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Architectures 2.2 System Architectures

Application Layering

Traditional three-layered view
User-interface layer contains units for an application’s user
interface
Processing layer contains the functions of an application, i.e.
without specific data
Data layer contains the data that a client wants to manipulate
through the application components

Observation
This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.
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Architectures 2.2 System Architectures

Application Layering

Database
with Web pages

Query
generator

Ranking
algorithm

HTML
generator

User interface

Keyword expression

Database queries

Web page titles
with meta-information

Ranked list
of page titles

HTML page
containing list

Processing
level

User-interface
level

Data level
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Architectures 2.2 System Architectures

Multi-Tiered Architectures

Single-tiered: dumb terminal/mainframe configuration
Two-tiered: client/single server configuration
Three-tiered: each layer on separate machine

Traditional two-tiered configurations:

User interface User interface User interface

Application

User interface

Application

User interface

Application

Database

ApplicationApplication Application

Database Database Database Database Database

User interface

(a) (b) (c) (d) (e)

Client machine

Server machine
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Architectures 2.2 System Architectures

Decentralized Architectures

Observation
In the last couple of years we have been seeing a tremendous growth
in peer-to-peer systems.

Structured P2P: nodes are organized following a specific
distributed data structure
Unstructured P2P: nodes have randomly selected neighbors
Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note
In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (cf. application-level
multicasting)
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Architectures 2.2 System Architectures

Structured P2P Systems

Basic idea
Organize the nodes in a structured overlay network such as a logical
ring, and make specific nodes responsible for services based only on
their ID.

0
15

214

313

412

8
79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated
data keys

Note
The system provides an operation
LOOKUP(key) that will efficiently
route the lookup request to the
associated node.
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Architectures 2.2 System Architectures

Structured P2P Systems

Other example
Organize nodes in a d-dimensional space and let every node take the
responsibility for data in a specific region. When a node joins⇒ split a
region.

(0.2,0.8)

(0.6,0.7)

(0.9,0.9)

(0.2,0.3)

(0.7,0.2)

(0.9,0.6)

(0,0)

Keys associated with
node at (0.6,0.7)

(0.2,0.8)

(0.6,0.7)

(0.9,0.9)

(0.2,0.45)

(0.7,0.2)

(0.9,0.6)

(0.2,0.15)

(1,0)

(0,1) (1,1)

Actual node

(a) (b)
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Architectures 2.2 System Architectures

Unstructured P2P Systems

Observation
Many unstructured P2P systems attempt to maintain a random graph.

Basic principle

Each node is required to contact a randomly selected other node:

Let each peer maintain a partial view of the network, consisting of c
other nodes
Each node P periodically selects a node Q from its partial view
P and Q exchange information and exchange members from their
respective partial views

Note
It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.
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Architectures 2.2 System Architectures

What is gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

selectPeer: Randomly select a neighbor from partial view.

selectToSend: Select s entries from local cache.

selectToKeep: (1) Add received entries to local cache. (2) Remove
repeated items. (3) Shrink cache to size c (according to
some strategy).
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Architectures 2.2 System Architectures

Foundation: Gossip-based peer sampling

Unify partial view and local cache⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

selectPeer: Randomly select a neighbor.

selectToSend: Select s references to neighbors.

selectToKeep: (1) Add received references to partial view. (2) Remove
repeated refs. (3) Shrink view to size c by randomly
removing sent refs (but never received ones).
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Architectures 2.2 System Architectures

Topology Management of Overlay Networks

Basic idea
Distinguish two layers: (1) maintain random partial views in lowest layer;
(2) be selective on who you keep in higher-layer partial view.

Protocol for
randomized

view

Protocol for
specific
overlay

Random peer

Links to randomly
chosen other nodes

Links to topology-
specific other nodes

Random
overlay

Structured
overlay

Note
Lower layer feeds upper layer with random nodes; upper layer is selective
when it comes to keeping references.
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Architectures 2.2 System Architectures

Topology Management of Overlay Networks

Constructing a torus

Consider a N×N grid. Keep only references to nearest neighbors:

‖ (a1,a2)− (b1,b2) ‖= d1 +d2

di = min{N−|ai −bi |, |ai −bi |}

Time
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Architectures 2.2 System Architectures

Example: Clustering nodes

Basics: Every node i is assigned a group identifier GID(i) ∈ N. Our
goal is to partition the overlay into disjoint components (clusters) such
that

dist(i , j) =
{

1 if i and j are in the same group [GID(i) = GID(j)]
0 otherwise
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Architectures 2.2 System Architectures

Superpeers

Observation
Sometimes it helps to select a few nodes to do specific work:
superpeer.

Superpeer

Regular peer

Superpeer
network

Examples

Peers maintaining an
index (for search)
Peers monitoring the
state of the network
Peers being able to setup
connections
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Architectures 2.2 System Architectures

Hybrid Architectures: Client-server combined with P2P

Example
Edge-server architectures, which are often used for Content Delivery
Networks

Edge server

Core Internet

Enterprise network

ISP
ISP

Client Content provider
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Hybrid Architectures: C/S with P2P – BitTorrent

Node 1

Node 2

Node N

.torrent file
for F

A  BitTorrent
Web page

List of nodes
storing F

Web server File server Tracker

Client node
K out of N nodes

Lookup(F)

Ref. to
file

server

Ref. to
tracker

Basic idea
Once a node has identified where to download a file from, it joins a
swarm of downloaders who in parallel get file chunks from the source,
but also distribute these chunks amongst each other.
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Architectures 2.3 Architectures versus Middleware

Architectures versus Middleware

Problem
In many cases, distributed systems/applications are developed
according to a specific architectural style. The chosen style may not be
optimal in all cases⇒ need to (dynamically) adapt the behavior of the
middleware.

Interceptors
Intercept the usual flow of control when invoking a remote object.
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Architectures 2.3 Architectures versus Middleware

Interceptors

Client application

B.do_something(value)

invoke(B, &do_something, value)

send([B, "do_something", value])

Request-level interceptor

Message-level interceptor

Object middleware

Local OS

Application stub

To object B

Nonintercepted call

Intercepted call
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Architectures 2.3 Architectures versus Middleware

Adaptive Middleware

Separation of concerns: Try to separate extra functionalities and later
weave them together into a single implementation⇒ only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and
adapt/change its settings dynamically if necessary⇒ mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through
components that can be dynamically replaced when needed⇒
highly complex, also many intercomponent dependencies.

Fundamental question
Do we need adaptive software at all, or is the issue adaptive systems?

25 / 38



Architectures 2.3 Architectures versus Middleware

Adaptive Middleware

Separation of concerns: Try to separate extra functionalities and later
weave them together into a single implementation⇒ only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and
adapt/change its settings dynamically if necessary⇒ mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through
components that can be dynamically replaced when needed⇒
highly complex, also many intercomponent dependencies.

Fundamental question
Do we need adaptive software at all, or is the issue adaptive systems?
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Architectures 2.4 Self-management in Distributed Systems

Self-managing Distributed Systems

Observation
Distinction between system and software architectures blurs when
automatic adaptivity needs to be taken into account:

Self-configuration
Self-managing
Self-healing
Self-optimizing
Self-*

Warning
There is a lot of hype going on in this field of autonomic computing.
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Architectures 2.4 Self-management in Distributed Systems

Feedback Control Model

Observation
In many cases, self-* systems are organized as a feedback control
system.

Core of distributed system

Metric
estimation

Analysis

Adjustment
measures

+/-
+/-

+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections
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Architectures 2.4 Self-management in Distributed Systems

Example: Globule

Globule
Collaborative CDN that analyzes traces to decide where replicas of
Web content should be placed. Decisions are driven by a general cost
model:

cost = (w1×m1)+(w2×m2)+ · · ·+(wn×mn)
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Architectures 2.4 Self-management in Distributed Systems

Example: Globule

Replica server

Core Internet

Enterprise network

ISP
ISP

Client

Origin server

Client Client

Globule origin server collects traces and does what-if analysis by
checking what would have happened if page P would have been
placed at edge server S.
Many strategies are evaluated, and the best one is chosen.
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Architectures Strategy evaluation in Globule

An experiment

Research question
Does it make sense to distribute each Web page according to its own
best strategy, instead of applying a single, overall distribution strategy
to all Web pages?

Edge

server
Edge
server

Edge
server

Origin
server

Client Client

Client

ClientClient Client

Client

ClientClient

Client

Client

Client

Client

Client

Client

Clients in an
unknown AS

AS 1 AS 2 AS 3

AS of document’s
origin server
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Architectures Strategy evaluation in Globule

An experiment

We collected traces on requests and updates for all Web pages
from two different servers (in Amsterdam and Erlangen)
For each request, we checked:

From which autonomous system it came
What the average delay was to that client
What the average bandwidth was to the client’s AS (randomly
taking 5 clients from that AS)

Pages that were requested less than 10 times were removed from
the experiment.
We replayed the trace file for many different system
configurations, and many different distribution scenarios.
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Architectures Strategy evaluation in Globule

An experiment

Issue Site 1 Site 2
Start date 13/9/1999 20/3/2000
End date 18/12/1999 11/9/2000
Duration (days) 96 175
Number of documents 33,266 22,637
Number of requests 4,858,369 1,599,777
Number of updates 11,612 3338
Number of ASes 2567 1480
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Architectures Strategy evaluation in Globule

Distinguished strategies: Caching

Abbr. Name Description
NR No replication No replication or caching takes place. All

clients forward their requests directly to the
origin server.

CV Verification Edge servers cache documents. At each
subsequent request, the origin server is
contacted for revalidation.

CLV Limited validity Edge servers cache documents. A cached
document has an associated expire time
before it becomes invalid and is removed from
the cache.

CDV Delayed
verification

Edge servers cache documents. A cached
document has an associated expire time after
which the origin server is contacted for
revalidation.
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Architectures Strategy evaluation in Globule

Distinguished strategies: Replication

Abbr. Name Description
SI Server

invalidation
Edge servers cache documents, but the origin
server invalidates cached copies when the
document is updated.

SUx Server updates The origin server maintains copies at the x
most relevant edge servers; x = 10, 25 or 50

SU50 +
CLV

Hybrid SU50 &
CLV

The origin server maintains copies at the 50
most relevant edge servers; the other
intermediate servers follow the CLV strategy.

SU50 +
CDV

Hybrid SU50 &
CDV

The origin server maintains copies at the 50
most relevant edge servers; the other edge
servers follow the CDV strategy.
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Architectures Strategy evaluation in Globule

Trace results: One global strategy

Turnaround time (TaT) and bandwidth (BW) in relative measures; stale documents as fraction of

total requested documents.

Site 1 Site 2
Strategy TaT Stale docs BW TaT Stale docs BW
NR 203 0 118 183 0 115
CV 227 0 113 190 0 100
CLV 182 0.0061 113 142 0.0060 100
CDV 182 0.0059 113 142 0.0057 100
SI 182 0 113 141 0 100
SU10 128 0 100 160 0 114
SU25 114 0 123 132 0 119
SU50 102 0 165 114 0 132
SU50+CLV 100 0.0011 165 100 0.0019 125
SU50+CDV 100 0.0011 165 100 0.0017 125

Conclusion: No single global strategy is best
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Architectures Strategy evaluation in Globule

Assigning an optimal strategy per document: Site 1

Ideal
arrangement

SU50+CLV

SU50+CDV SU50

SU25

CLV

SI

CDV

Cost function
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Total turnaround time
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Architectures Strategy evaluation in Globule

Assigning an optimal strategy per document: Site 2

Ideal arrangement

SU50+CLV

SU50+CDV
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Architectures Strategy evaluation in Globule

Useful strategies

Fraction of documents to which a strategy is assigned.

Strategy Site 1 Site 2
NR 0.0973 0.0597
CV 0.0001 0.0000
CLV 0.0131 0.0029
CDV 0.0000 0.0000
SI 0.0089 0.0061
SU10 0.1321 0.6087
SU25 0.1615 0.1433
SU50 0.4620 0.1490
SU50+CLV 0.1232 0.0301
SU50+CDV 0.0017 0.0002

Conclusion: It makes sense to differentiate strategies
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