Fast Crash Recovery in RAMCloud

Michał Gregorczyk

Based on "Fast Crash Recovery in RAMCloud" by D. Ongaro, S.M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum
What is RAMCloud?

- key-value distributed store
- log-structured storage
- data in DRAM
- replicas stored on disks
- high performance - latency of 5-10us
- high reliability - fast crash recovery
Data Model

- **key-value**
 - key - 64 bits
 - value - byte array up to 1 MB
 - version - 64 bits

- **operations**
 - read
 - write
 - replace if version is equal to
System Structure
System structure

- **master**
 - manages key-value pairs in DRAM

- **backup**
 - stores replicas of data from masters

- **coordinator**
 - stores configuration
 - mapping from key to master
- coordinator assigns objects to masters in tablets: key ranges within one table
- coordinator store mapping from tablets and storage servers
- client library caches this mapping
Log-Structured Storage

1. Process write request
2. Append object to log and update hash table
3. Replicate object to backups
4. Respond to write request
• master forwards new logs to backups
• backups buffers new logs in memory buffers
• when buffer is full, backup writes its content to disk

• hash table is used to keep pointers to newest values
- log is split into segments
- segment = 8 MB
- segment is an unit of buffering and disk IO

- log cleaner
 - cleaner selects one or more segments to clean
 - segment is scanned and live log entries (hash table) are rewritten at the head of the log
 - old segment is freed
Recovery

(a) Recovery Master

Datacenter Network

Backups

64 GB / 3 disks / 100 MB/s/disk = 3.5 minutes

(b) 64 GB / 10 Gbps = 1 minute

Datacenter Network

Backups

64 GB / 1000 disks / 100 MB/s/disk = 0.6 seconds

(c) Crashed Master

Datacenter Network

Backups

Recovery Masters
Recovery

● thousands of backups
● hundreds of recovery masters

Steps:
● scattering log segments
● failure detection
● recovery
Scattering Log Segments

• master and backups must reside in different racks
• segments must be distributed so that each backup uses the same amount of time to read data
• avoid overloads of backup servers
• storage servers are continuously entering and leaving
Scattering Log Segments

Master decides where to put replica:

- select random candidates
- pick best one
 - where are my segments
 - what is disk IO speed
- do not choose backup from the same rack
- allocate buffer on backup server
 - at this point backup server can reject the request
Failure Detection

- if master fails to respond to RAMCloud client
- RAMCloud servers periodically send random pings to each other

- coordinator is informed about problem
- coordinator checks if server is down and starts recovery if the answer is positive
Recovery Flow

1. Setup
2. Log Reply
3. Cleanup
Setup

- coordinator reconstructs information about replicas locations by querying all backups in cluster
- coordinator determines if every log segment can be read
 - log digest - list of all segments present at the moment of write
 - only one log segment is marked as active
- data is split according to dead master's will
 - will is periodically uploaded to the coordinator in case of failure
Setup

Recovery master receives (from coordinator) list of backups and list of tablets to recover
Reply

- data parallelism
- pipelining
 - logs do not have to be replayed in the same order - hash table and version
Will and Tablet Profiling
Coordinator Failures

For coordinator recovery RAMCloud uses ZooKeeper and stand by coordinators.
Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)</td>
</tr>
<tr>
<td>RAM</td>
<td>16 GB DDR3 at 1333 MHz</td>
</tr>
</tbody>
</table>
| Disk 1 | WD 2503ABYX (7200 RPM, 250 GB)
Effective read/write: 105/110 MB/s |
| Disk 2 | Seagate ST3500418AS (7200 RPM, 500 GB)
Effective read/write: 108/87 MB/s |
| Flash Disks| Crucial M4 CT128M4SSD2 (128GB)
Effective read/write: 269/182 MB/s |
| NIC | Mellanox ConnectX-2 Infiniband HCA |
| Switches | 5x 36-port Mellanox InfiniScale IV (4X QDR) |
Evaluation

The graph illustrates the recovery time (ms) for different object sizes (128 B, 256 B, and 1 KB) as a function of partition size (MB). The recovery time increases linearly with the partition size for all object sizes.
Any questions? No?
Thank you.