{PRQN

Motivation The main idea

Reining in the Out liefs in
Map-Reduce Clusters using

Mantri

The setting

” - [} , 1oy B .
The scale of the problem The implementation

= A oy

Evaluation

Bl

Reining in the OUt lieTS in
Map-Reduce Clusters using

Mantri

Motivation

What are outliers? Why are outliers a problem?

+ A single outlier can postpone completion of a

+ A job - a single Map-Reduce i.axecution schgme. . whole Map-Reduce phase
: ita;k - a_chu nk of Cfﬂmlimatm"' rU"'UDr“ :ﬂsmgle machine - The bigger the claster, the more serious the
phase - a series of tasks run concurrently problem gets!
- I a task dies, the results used for its
An outlier - an abnormally long task computation may not be available any more

{for the purpase of this presentation: = 1.5 avg execution time) « (cascade recomputation!)

Qutliers inflate completion time of jobs by 34% {at median)

What causes outliers? What has been done about
Hardware Network the prob[em SO far?

- Disk failure « Transferring task data
+ CPU congestion + Moving data between racks . .
. Memaory congestion « Mostly restarting outlier tasks
S - Outlier detection at the end of each phase
oftware + Restarting tasks without examining the root cause

- Undivisable data chunks

+ Suboptimal implementation

- Scheduling an additional task has a price

- More task cause additional network transfer

What are outliers?

- A job - a single Map-Reduce execution scheme.
. A task - a chunk of computation run on a single machine
- A phase - a series of tasks run concurrently

An outlier - an abnormally long task

(for the purpose of this presentation: > 1.5 avg execution time)

{):Prez

What causes outliers?

Hardware Network
- Disk failure - Transferring task data
- CPU congestion - Moving data between racks
- Memory congestion
Software

- Undivisable data chunks

- Suboptimal implementation

- Scheduling an additional task has a price

- More task cause additional network transfer

@:Prezi

Why are outliers a problem?

- A single outlier can postpone completion of a
whole Map-Reduce phase

- The bigger the claster, the more serious the
problem gets!

- If a task dies, the results used for its

computation may not be available any more
- (cascade recomputation!)

0 .
Outliers inflate completion time of jobs by 34 /0 (at median)

What has been done about
the problem so far?

+ Mostly restarting outlier tasks
- Outlier detection at the end of each phase
- Restarting tasks without examining the root cause

The main idea

Margin for improvement The Mantri approach
- Restarting outliers is not always a good - Don't restart tasks that run long because
choice of large amount of data to process
- Detecting outliers early - Don't restart tasks that run long because
+ Use progress reports! of network congestion!*

- Network-aware task placement

.) . . *Unless there is potential for better network transfer
. Dupllcatlng resource-intensive results

- Place tasks in a network-aware way

The estimate function

We assume that task completion time can be
expressed as a function of the following
arguments:

f(data size, code, machine, network location)

We will try to build an estimate of this function
and we will use this estimate in our scheduler
algorithm

Margin for improvement

- Restarting outliers is not always a good
choice

- Detecting outliers early

- Use progress reports!

- Network-aware task placement

- Duplicating resource-intensive results

The Mantri approach

- Don't restart tasks that run long because
of large amount of data to process

- Don't restart tasks that run long because
of network congestion!*

*Unless there is potential for better network transfer

- Place tasks in a network-aware way

The estimate function

We assume that task completion time can be
expressed as a function of the following
arguments:

f(data size, code, machine, network location)

We will try to build an estimate of this function
and we will use this estimate in our scheduler
algorithm

The setting

Cosmos & Scope

- Cosmos - a commercial upgrade to Dryad

- Most of the jobs written in Scope language

» Mash-up: SQL + user code (C#)

- Compiler transforms programs
into DAGs of dependant tasks
- Compiler optimizes programs
for maximal concurrency.

The input data

- Log files from Cosmos scheduler

+ Log files from Scope compiler

« Begin and end times for each task

- Input / output data sizes for each task
- Task workflow graph

The Bing cluster

- Reading through network or from local disk
storage

« Writing (always!) to local disk storage

- Data stored on the same machines that
perform the computation

- By default Cosmos scheduler assigns tasks to
machines where the data is available (data
locality)

- Cross-rack traffic is costly

- Sum of data storage of the entire rack is
smaller than the outgoing bandwidth

Cosmos & Scope ,
Shcusas

- Cosmos - a commercial upgrade to Dryad (sl B
\J L/

- Most of the jobs written in Scope language .5 ¢ =~
- Mash-up: SQL + user code (C#)

KTRACT query
ROM “search.log
SING LogEx
ELECT qu T{*}
SELECT guery, COUNT{*) AS coun t ROM e
FROM “seard h.log" USING LogExtractar GROUP BY query;
GROUP BY query

HAVING count = 1000
ORDER BY count DESC;
OUTPUT TO "geountresult”;

- Compiler transforms programs g
into DAGs of dependant tasks

» Compiler optimizes programs N .
for maximal concurrency.

Cluster Services

eeeeeeeeeeeeeeeeeeeeee

@:Prezi

Input files

Stage

X X X X X X
\Y M
1/ Vertices

Channefs

(processes)
Output files ; {

i
S
A):Prez
Pt

(flll“

sed, awk, grep, etc.

NS I NS \-‘I\-UUIIL-I\—JUIL

Machine

Learning
C#
legacy ‘:

code pPsalL Perl ‘CH- ‘Scc.-pe C# \Vectors

Distributed Shell (Nebula) DryadLINQ

Distributed Filesystem (Cosmos)

Cluster Services

Windows Windows
Server Server

{:Prezi
ST
‘fl [l I“‘

Windows
Server

w4
=
5515 =
' e
saL - [
| C++ ‘ server g
—
Q
-
o
-)
o
CIFS/NTFS
Windows

server

SELECT query, COUNT(*) AS count
FROM "search.log" USING LogExtractor
GROUP BY query

HAVING count > 1000

ORDER BY count DESC;

OUTPUT TO "gcount.result";

@:Prezi

e = EXTRACT query
FROM “search.log"
USING LogExtractor;

s1 = SELECT query, COUNT(*) as count
FROM e
GROUP BY query;

s2 = SELECT query, count
FROM s1
WHERE count > 1000;

s3 = SELECT query, count
FROM s2
ORDER BY count DESC;

OUTPUT s3 TO “gcount.result"

The input data

- Log files from Cosmos scheduler

- Log files from Scope compiler

- Begin and end times for each task

- Input / output data sizes for each task
- Task workflow graph

The Bing cluster

- Reading through network or from local disk
storage

- Writing (always!) to local disk storage

- Data stored on the same machines that
perform the computation

- By default Cosmos scheduler assigns tasks to
machines where the data is available (data
locality)

- Cross-rack traffic is costly

- Sum of data storage of the entire rack is
smaller than the outgoing bandwidth

The scale of the problem

Statistics Recomputes

3

H

H : g1 —"

3 H il ~ lm

H 2 2] T oumn 2 HE

£ H = & o | B

: g mi; :

H F H :

' B, s it :
LY n -

Figua 2w Inaian i wase e aphus am ouabers Finrs % e rrach brer 32 et i s rech X L}
[} 20 40 E0) 202 DX
Wazhnz1d

oW
Fraction of Cluster ()

- Recomputes appear locally
- Time locality
« Machine locality

Task phases .
P Characteristics The impact of outliers

AW o Extract 2% gl Partition UK gl Assregate 51K g g
System - Begin of reduce phase is usually a border

Barrier —a
fe1) Partial workflow with the number uf tasks in cuch phuse - Reduce phase is not associative (no way to E #
- . . L " No Straggla
j% 5 . T perform compytatlon on fu nctllons) § - e R s
gg osfl. B Aggragate - Reduce phase is not commutative Y
S 0Tl . i 3.
L - Recomputation affects a small percentage o F imama .
Es 05 i 0 20 40 &0 B0 100
EE o] s of tasks. Ideal Redn. {%) in Completion Time
i e T § o - The consequences of recomputation are
E BlP Seytf R e R e serious, . Data from a simulator (not a real life scenario)
= ¢ 04 9.2 0.3 0.4 05 - 70% of data transfer is caused by reduce + The simulation took 2 weeks to compute

Time {Mormatized by Job Lilstime)
tasks 2 types of neswork uhers

(b Time lapse of wsk excoution (B-Recomputes. B=Barrier).

@:Prezi

Task phases

File Extract 22K =4 Partition 13K Z&
System

me Aggregate >1¢ o

Barrier
(a) Partial workflow with the number of tasks in each phase

1

{ " Extract

pLLTTON

0

B
©
< 09 HH i "
©2 o8 | B Partition - - - -
%< || N Aggregate -
©x 077}
® I A
Ex> 05| o i S,
c QO v waiting for the
(=) 0.4 v end of partition H
g% o3 |\n e L
xF 02 N W,
! [Y
% 0.1 L : i R !ecomputation - T,
Z - =

0 0.1 0.2 0.3 0.4 0.5
Time (Normalized by Job Lifetime)

(b) Time lapse of task execution (R=Recomputes, B=Barrier).

Characteristics

Begin of reduce phase is usually a border
- Reduce phase is not associative (no way to
perform computation on functions)

- Reduce phase is not commutative

- Recomputation affects a small percentage
of tasks.

The consequences of recomputation are
serious.

- 70% of data transfer is caused by reduce
tasks zuopes o nework outliers

- Non-local tasks
- Again: cross-rack transfer is the
bottleneck

g - The reduce network congestion problem
~5 PrezI « By default tasks are assigned to

wihirhmnr cacls har crara paachinas

2 types of network outliers

- Non-local tasks

- Again: cross-rack transfer is the
bottleneck

- The reduce network congestion problem

- By default tasks are assigned to
whichever rack has spare machines

Statistics

high runtime
recompute ------

Cumulative Fraction of Phase
OO0 000000
STRoWRED N =

0 01 02 03 04 05
Fraction of Outliers

Figure 2: What fraction of tasks in a phase are outliers?

w I

Zos gos .

=0.6 = 0.6 .

go.a 204 :

Zo02 £0.2 :

E U T T T T 1 E D T T T IT T 1
“ o 20 4 60 8 100 “ 0 20 40 60 80 100

% of tasks that have high

runtime but are explainable
(a)

% of tasks that are unexplainably
long, but not long per-se
(b)

Figure 4: Contribution of data size to task runtime (see §4.2)

0.8
2 :
® 0.6
3 * [high runtime
':E: 04 N rgecompute ------
© g2

0
012 - 6 8§ 10

Ratio of Straggler Duration to the
Duration of the Median Task

Figure 3: How much longer do outliers take to finish?

-
(=1
o

80
60
40
20

1(62.8%)

o

T T T

] 20 40 60 B0 100
Ideal Redn. (%) in Completion Time

1

CDF % Phase Time

Figure 5: For reduce phases, the reduction in comple-
tion time over the current placement by placing tasks in a
network-aware fashion.

Recomputes

1
=
[=]
o

?1‘4 300 model outllers - recomputes O
< L 80 ' e
S13 CPU Ratio S 7 250
= _ - F 60 ® 5 -
5 1.2 -Memory Ratio ‘_; = 200 x
:E; “~..—#Recomputes | 40 E E 150}
-------------- = 1
§1.1 [50 © g 100} .
- | 2
€ 14 . : 0 52 _ ; L N
0 10 20 30 0 200 400 600 800 100C

Fraction of Cluster (%) Machine Id
acnine

- Recomputes appear locally
- Time locality
- Machine locality

ipﬂem

The impact of outliers

E100 - g
= 80 - .
n ~
o 60 - ~ “+-*No Stragglers
¥ a0 |,/ .7 —NoRecomputes
B & “ 1 = Neither

20 { ;. -
O o 1

0 ¥ itaam

0 20 40 60 80 100
Ideal Redn. (%) in Completion Time

- Data from a simulator (not a real life scenario)
- The simulation took 2 weeks to compute

{:Prezi

The implementation

The concept Network aware task placement

Task Operations - Attempting to overcome the reduce network congestion
I o problem
Outlier - Analyzing every assignment of reduce tasks to racks
Causes of work for resources]| = Input becomes unavailable i i
e ——— + Required transfer bandwidths are known ahead of the
Solutions Start tasks that = duplicate metwork aware - replicate output ti
domore first = kill, restart placement * pre-compute Ime

- Restarts are network aware as well
Figure 9: The Outlier Problem: Causes and Solutions

| [

§. el ot e i .-c;imm:;.m:;::;;:;:i‘;m”"“ « Replicate results if they are small

p - Reschedule requires addicional time « Replicate when the result is costly to recompute
o :’.::: duplicate recently m"‘:"f,L « Replicate the tasks that take the longest to

i(' ot white o Horespenn arsumane progres® recompute

- TE Ao o R e o e » Budget cap on the amount of replicated data

. Consider kill & restart or duplication + Replication trottled through a system of tokens

- Keep number of running copies constant

- Duplicate if the expected amount of resources needed to
complete the task would decrease

- Kill tasks when duplicates exceed budget cap

111C 171}

The concept

.

Outlier
Causes

Solutions Start tasks that - dupllcate network aware * replicate output

do more first * kill, restart placement * pre-compute

Figure 9: The Outlier Problem: Causes and Solutions

W:Prez

Resource-aware restart

I: let A = period of progress reports
2: let ¢ = number of copies of a task
3: periodically, for each running task, kill all but the fastest o copies after A time has passed since begin
4: while slots are available do .
5: if tasks are waiting for slots then : Typlca"y Delta e‘.:luals 10.S.EC .
6: kill, restart task if trem > E(tnew) + A, stopat y restarts + Reschedule requires additional time
7: duplicate if P(trem > tnew ‘7:) >4 . ' . .
8: start the waiting task that has the largest data to read Don't dupllcate recently dupllcatEd
9: else tasks b all tasks have begun
:fll:] fi_uplicate iff E(tnew — trem) > pA - No response, assume no progress
: end i
12: end while

@:Prezi

Pseudocode 1: Algorithm for Resource-aware restarts (simplified).

- Consider kill & restart or duplication

- Keep number of running copies constant

- Duplicate if the expected amount of resources needed to
complete the task would decrease

- Kill tasks when duplicates exceed budget cap

Network aware task placement

- Attempting to overcome the reduce network congestion

problem

- Analyzing every assignment of reduce tasks to racks
- Required transfer bandwidths are known ahead of the

time

- Restarts are network aware as well

@:Prezi

- Rep
- Rep
- Rep

Task result duplication

icate results if they are small
icate when the result is costly to recompute
icate the tasks that take the longest to

recompute
- Budget cap on the amount of replicated data
- Replication trottled through a system of tokens

@:Prezi

Evaluation

&

Data clusters

% Reduction in
lab Resources
= B

Werd Table” Group Grep Woed | Table” Gredp Grip

- Preproduction cluster & production o o s,
cluster

- Baseline: an unmodified Cosmos
scheduler

- Comparison to Hadoop, Dryad,
MapReduce, LATE & modified LATE

B Max = Min Average

s
=

w
1=}

b
=1

i
=)

HReduction in
Completion Time

o

Phase Job

Results

% Reduction i Coenpletion Time
a2 Thaigh 1 Codygetine Toist

- Typical job speed-up: 25-28%

- 42% at 75-th percentile .- En
- 3.1x better improvement as :: f

compared to the next best RN * i e sl

2 Commpletion Time

Data clusters

- Preproduction cluster & production
cluster

- Baseline: an unmodified Cosmos
scheduler

- Comparison to Hadoop, Dryad,
MapReduce, LATE & modified LATE

Results

- Typical job speed-up: 25-28%

- 42% at 75-th percentile

- 3.1Xx better improvement as
compared to the next best

50 - 40 -
wd0 -
S g 310 £ 301
c 1:30 i ' [=S
s = 26.2 S 5
T o 21.7 1.4 c 020
3 '520 - =i 13.4
T2 T x 9.5
< £10 | & 210 7.6 oy
e 3 w2 2.5
0 A r T T .
Word Table Group Grep 0 “Word Table " Group Grep
Count Join By Count Join Bv
(a) Completion Time (b) # Resource Usage

40 M Max = Min | Average
4.2

- g 3 31.5
g = 30
- c
T 220 19.2
2%
& 2-10
X g

“o

Job

% Reduction in Completion Time

(a) Change in Completion Time

£100 £100 -
O | eeeeeseeneseeid © .
. wn® L I:
‘g 80 4 g g g 80 + " --Dryad
860 ~-Drya a 60 - i Hadoop
v 3 Hadoop v ¥ LATE
v 4 b |
bl ! LATE & a0 ! -‘MapReduce
& 204 i **MapReduce 8 20 - 7. ~Mantri
f P —Mantri =S | eaeme
- w -

8 0 L T L] T L] 1 ﬂ U T L] T T T T 1

20 0 20 40 60 80 100 o -40 -20 0 20 40 60 80 100

% Reduction in Resource Usage

(b) Change 1n Resource Usage

100 - 100 -
Q

g 80 A E 80 A
= 60 - L 60 A
=L S
2 40 - N3 40 -

1 e
X 20 - : 8 20
o 1(14.3%) (&)
o 0 L T T T T 1

0 20 40 60 80 100 -50 -30 -10 10 30 50

%Reduction in Job Resources

% Reduction in Completion Time
(b) # Resource Usage

(a) Completion Time

Reining in the Out Iiefs in
Map-Reduce Clusters using

Mantri

