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Motivation

What are outliers? Why are outliers a problem?

+ A single outlier can postpone completion of a

+ A job - a single Map-Reduce i.axecution schgme. . whole Map-Reduce phase
: ita;k - a_chu nk of Cfﬂmlimatm"' rU"'UDr“ :ﬂsmgle machine - The bigger the claster, the more serious the
phase - a series of tasks run concurrently problem gets!
- I a task dies, the results used for its
An outlier - an abnormally long task computation may not be available any more

{for the purpase of this presentation: = 1.5 avg execution time) « (cascade recomputation!)

Qutliers inflate completion time of jobs by 34% {at median)

What causes outliers? What has been done about
Hardware Network the prob[em SO far?

- Disk failure « Transferring task data
+ CPU congestion + Moving data between racks . .
. Memaory congestion « Mostly restarting outlier tasks
S - Outlier detection at the end of each phase
oftware + Restarting tasks without examining the root cause

- Undivisable data chunks

+ Suboptimal implementation

- Scheduling an additional task has a price

- More task cause additional network transfer




What are outliers?

- A job - a single Map-Reduce execution scheme.
. A task - a chunk of computation run on a single machine
- A phase - a series of tasks run concurrently

An outlier - an abnormally long task

(for the purpose of this presentation: > 1.5 avg execution time)
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What causes outliers?

Hardware Network
- Disk failure - Transferring task data
- CPU congestion - Moving data between racks
- Memory congestion
Software

- Undivisable data chunks

- Suboptimal implementation

- Scheduling an additional task has a price

- More task cause additional network transfer
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Why are outliers a problem?

- A single outlier can postpone completion of a
whole Map-Reduce phase

- The bigger the claster, the more serious the
problem gets!

- If a task dies, the results used for its

computation may not be available any more
- (cascade recomputation!)

0 .
Outliers inflate completion time of jobs by 34 /0 (at median)




What has been done about
the problem so far?

+ Mostly restarting outlier tasks
- Outlier detection at the end of each phase
- Restarting tasks without examining the root cause




The main idea

Margin for improvement The Mantri approach
- Restarting outliers is not always a good - Don't restart tasks that run long because
choice of large amount of data to process
- Detecting outliers early - Don't restart tasks that run long because
+ Use progress reports! of network congestion!*

- Network-aware task placement

. ) . . *Unless there is potential for better network transfer
. Dupllcatlng resource-intensive results

- Place tasks in a network-aware way

The estimate function

We assume that task completion time can be
expressed as a function of the following
arguments:

f(data size, code, machine, network location)

We will try to build an estimate of this function
and we will use this estimate in our scheduler
algorithm



Margin for improvement

- Restarting outliers is not always a good
choice

- Detecting outliers early

- Use progress reports!

- Network-aware task placement

- Duplicating resource-intensive results




The Mantri approach

- Don't restart tasks that run long because
of large amount of data to process

- Don't restart tasks that run long because
of network congestion!*

*Unless there is potential for better network transfer

- Place tasks in a network-aware way




The estimate function

We assume that task completion time can be
expressed as a function of the following
arguments:

f(data size, code, machine, network location)

We will try to build an estimate of this function
and we will use this estimate in our scheduler
algorithm




The setting

Cosmos & Scope

- Cosmos - a commercial upgrade to Dryad

- Most of the jobs written in Scope language

» Mash-up: SQL + user code (C#)

- Compiler transforms programs
into DAGs of dependant tasks
- Compiler optimizes programs
for maximal concurrency.

The input data

- Log files from Cosmos scheduler

+ Log files from Scope compiler

« Begin and end times for each task

- Input / output data sizes for each task
- Task workflow graph

The Bing cluster

- Reading through network or from local disk
storage

« Writing (always!) to local disk storage

- Data stored on the same machines that
perform the computation

- By default Cosmos scheduler assigns tasks to
machines where the data is available (data
locality)

- Cross-rack traffic is costly

- Sum of data storage of the entire rack is
smaller than the outgoing bandwidth



Cosmos & Scope ,
Shcusas

- Cosmos - a commercial upgrade to Dryad (sl B
\J L/

- Most of the jobs written in Scope language .5 ¢ =~
- Mash-up: SQL + user code (C#)

KTRACT query
ROM “search.log
SING LogEx
ELECT qu T{*}
SELECT guery, COUNT{*) AS coun t ROM e
FROM “seard h.log" USING LogExtractar GROUP BY query;
GROUP BY query

HAVING count = 1000
ORDER BY count DESC;
OUTPUT TO "geountresult”;

- Compiler transforms programs g
into DAGs of dependant tasks

» Compiler optimizes programs N .
for maximal concurrency.

Cluster Services

eeeeeeeeeeeeeeeeeeeeee
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Input files
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sed, awk, grep, etc.
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Machine

Learning
C#
legacy ‘:

code pPsalL  Perl ‘CH- ‘Scc.-pe C# \Vectors

Distributed Shell (Nebula) DryadLINQ

Distributed Filesystem (Cosmos)

Cluster Services

Windows Windows
Server Server

{:Prezi
ST
‘fl [l I“‘

Windows
Server

w4
=
5515 =
' e
saL - [
| C++ ‘ server g
—
Q
-
o
- )
o
CIFS/NTFS
Windows

server




SELECT query, COUNT(*) AS count
FROM "search.log" USING LogExtractor
GROUP BY query

HAVING count > 1000

ORDER BY count DESC;

OUTPUT TO "gcount.result";
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e = EXTRACT query
FROM “search.log"
USING LogExtractor;

s1 = SELECT query, COUNT(*) as count
FROM e
GROUP BY query;

s2 = SELECT query, count
FROM s1
WHERE count > 1000;

s3 = SELECT query, count
FROM s2
ORDER BY count DESC;

OUTPUT s3 TO “gcount.result"



The input data

- Log files from Cosmos scheduler

- Log files from Scope compiler

- Begin and end times for each task

- Input / output data sizes for each task
- Task workflow graph




The Bing cluster

- Reading through network or from local disk
storage

- Writing (always!) to local disk storage

- Data stored on the same machines that
perform the computation

- By default Cosmos scheduler assigns tasks to
machines where the data is available (data
locality)

- Cross-rack traffic is costly

- Sum of data storage of the entire rack is
smaller than the outgoing bandwidth



The scale of the problem

Statistics Recomputes
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- Recomputes appear locally
- Time locality
« Machine locality

Task phases .
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Task phases
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Characteristics

Begin of reduce phase is usually a border
- Reduce phase is not associative (no way to
perform computation on functions)

- Reduce phase is not commutative

- Recomputation affects a small percentage
of tasks.

The consequences of recomputation are
serious.

- 70% of data transfer is caused by reduce
tasks  zuopes o nework outliers

- Non-local tasks
- Again: cross-rack transfer is the
bottleneck

g - The reduce network congestion problem
~5 PrezI « By default tasks are assigned to

wihirhmnr cacls har crara paachinas




2 types of network outliers

- Non-local tasks

- Again: cross-rack transfer is the
bottleneck

- The reduce network congestion problem

- By default tasks are assigned to
whichever rack has spare machines




Statistics
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Figure 2: What fraction of tasks in a phase are outliers?
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Figure 4: Contribution of data size to task runtime (see §4.2)
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network-aware fashion.



Recomputes
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The impact of outliers
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- Data from a simulator (not a real life scenario)
- The simulation took 2 weeks to compute
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The implementation

The concept Network aware task placement

Task Operations - Attempting to overcome the reduce network congestion
I o problem
Outlier - Analyzing every assignment of reduce tasks to racks
Causes of work for resources ]| = Input becomes unavailable i i
e ——— + Required transfer bandwidths are known ahead of the
Solutions Start tasks that = duplicate  metwork aware - replicate output ti
domore first = kill, restart  placement * pre-compute Ime

- Restarts are network aware as well
Figure 9: The Outlier Problem: Causes and Solutions
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§. el ot e i .-c;imm:;.m:;::;;:;:i‘;m”"“ « Replicate results if they are small

p - Reschedule requires addicional time « Replicate when the result is costly to recompute
o :’.::: duplicate recently m"‘:"f,L « Replicate the tasks that take the longest to

i(' ot white o Horespenn arsumane progres® recompute

- TE Ao o R e o e » Budget cap on the amount of replicated data

. Consider kill & restart or duplication + Replication trottled through a system of tokens

- Keep number of running copies constant

- Duplicate if the expected amount of resources needed to
complete the task would decrease

- Kill tasks when duplicates exceed budget cap




111C 171}

The concept

.

Outlier
Causes

Solutions Start tasks that - dupllcate network aware * replicate output

do more first * kill, restart placement * pre-compute

Figure 9: The Outlier Problem: Causes and Solutions
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Resource-aware restart

I: let A = period of progress reports
2: let ¢ = number of copies of a task
3: periodically, for each running task, kill all but the fastest o copies after A time has passed since begin
4: while slots are available do .
5: if tasks are waiting for slots then : Typlca"y Delta e‘.:luals 10.S.EC .
6: kill, restart task if trem > E(tnew) + A, stopat y restarts  + Reschedule requires additional time
7: duplicate if P(trem > tnew ‘7: ) >4 . ' . .
8: start the waiting task that has the largest data to read Don't dupllcate recently dupllcatEd
9: else tasks b all tasks have begun
:fll: ] fi_uplicate iff E(tnew — trem) > pA - No response, assume no progress
: end i
12: end while
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Pseudocode 1: Algorithm for Resource-aware restarts (simplified).

- Consider kill & restart or duplication

- Keep number of running copies constant

- Duplicate if the expected amount of resources needed to
complete the task would decrease

- Kill tasks when duplicates exceed budget cap



Network aware task placement

- Attempting to overcome the reduce network congestion

problem

- Analyzing every assignment of reduce tasks to racks
- Required transfer bandwidths are known ahead of the

time

- Restarts are network aware as well
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- Rep
- Rep
- Rep

Task result duplication

icate results if they are small
icate when the result is costly to recompute
icate the tasks that take the longest to

recompute
- Budget cap on the amount of replicated data
- Replication trottled through a system of tokens
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Evaluation
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Data clusters
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- Baseline: an unmodified Cosmos
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- Comparison to Hadoop, Dryad,
MapReduce, LATE & modified LATE
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- Typical job speed-up: 25-28%

- 42% at 75-th percentile .- En
- 3.1x better improvement as :: f
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Data clusters

- Preproduction cluster & production
cluster

- Baseline: an unmodified Cosmos
scheduler

- Comparison to Hadoop, Dryad,
MapReduce, LATE & modified LATE



Results

- Typical job speed-up: 25-28%

- 42% at 75-th percentile

- 3.1Xx better improvement as
compared to the next best
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% Reduction in Completion Time

(a) Change in Completion Time
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