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1. Motivation and pioneers of the field
Let Ω be a bounded domain in RN (N > 2) with smooth boundary. If
u : Ω→ RN is the displacement and if Du is the N × N matrix of the
deformation gradient, John Ball proved that the total energy can be
represented by an integral of the type

I(u) =

∫
Ω

f (x,Du(x))dx. (1)

One of the simplest examples considered by Ball is given by

f (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are
nonnegative convex functions, which satisfy the growth conditions

g(ξ) > c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 > 0 and 1 < p < N. The condition p 6 N is necessary to
study the existence of equilibrium solutions with cavities, that is,
minima of the integral (1) that are discontinuous at one point where a
cavity forms; in fact, every u with finite energy belongs to the Sobolev
space W1,p(Ω,RN), hence it is a continuous if p > N.
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Next, Zhikov intended to provide models for strongly anisotropic
materials in the context of homogenisation. In particular, Zhikov
considered three different model functionals for this situation in
relation to the Lavrentiev phenomenon. These are

M(u) :=

∫
Ω

c(x)|Du|2dx, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=

∫
Ω
|Du|p(x)dx, 1 < p(x) <∞

Pp,q(u) :=

∫
Ω

(|Du|p + a(x)|Du|q)dx, 0 6 a(x) 6 L, 1 < p < q.

These functionals fall in the realm of the functionals of (p, q)–type,
according to Marcellini’s terminology. These are functionals of the
type in (1), where the energy density satisfies

|ξ|p 6 f (x, ξ) 6 |ξ|q + 1, 1 6 p 6 q.

Another model studied by Mingione et al. is given by

u 7→
∫

Ω
|Du|p log(1 + |Du|)dx, p > 1,

which is a logarithmic perturbation of the p-Dirichlet energy.
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As shown by Zhikov (1987), the smooth functions are in general not
dense in W1,p(x)(Ω).

If p is logarithmic Hölder continuous (notation:
p ∈ C0, 1

| log t| (Ω)), that is,

|p(x)− p(y)| 6 C
| log |x− y| |

∀ x, y ∈ Ω, |x− y| 6 1/2,

then the smooth functions are dense in W1,p(x)(Ω) and so the Sobolev
space W1,p(x)

0 (Ω) with zero boundary values is the closure of C∞0 (Ω)
under the norm ‖ · ‖. Edmunds and Rakosnik (1992) derived the
same conclusion under a local monotonicity condition on p.
Since Ω is bounded and p ∈ C+(Ω) is logarithmic Hölder continuous,
then

|u|p(x) 6 C |∇u|p(x) ∀ u ∈ W1,p(x)
0 (Ω) [Poincaré inequality],

where C = C(p, |Ω|, diam (Ω),N). Poincaré’s inequality holds under
a much weaker assumption on p than the Sobolev inequality and
embedding, namely if the exponent p is not too discontinuous.
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Remarks. 1. If Ω is bounded then

C0,1(Ω) ⊂ W1,q(Ω) (q > N) ⊂ C0, 1
| log t| (Ω).

2. If Ω is unbounded, p is said logarithmic Hölder continuous if

|p(x)− p(y)| 6 C
| log |x− y| |

∀ x, y ∈ Ω, |x− y| 6 1/2

and

|p(x)− p(y)| 6 C
log(e + |x|) |

∀ x, y ∈ Ω, |y| > |x|.

In such a case we cannot require p ∈ W1,q(Ω) (since∫
Ω |p(x)|qdx =∞).
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Let
W1,(∞,q(·))(Ω) := {u ∈ L∞(Ω); |∇u| ∈ Lq(·)(Ω)},

where N < q− 6 q+ <∞.

Conclusion. If Ω is unbounded then the hypotheses
(i) p ∈ C0,1(Ω);
(ii) p ∈ W1,(∞,q(·))(Ω) with N < q− 6 q+ <∞;

(iii) p ∈ C0, 1
| log t| (Ω)

are independent each other.

16 / 101



Let
W1,(∞,q(·))(Ω) := {u ∈ L∞(Ω); |∇u| ∈ Lq(·)(Ω)},

where N < q− 6 q+ <∞.

Conclusion. If Ω is unbounded then the hypotheses
(i) p ∈ C0,1(Ω);
(ii) p ∈ W1,(∞,q(·))(Ω) with N < q− 6 q+ <∞;

(iii) p ∈ C0, 1
| log t| (Ω)

are independent each other.

17 / 101



Features of spaces with variable exponent

The function spaces with variable exponent Lp(x)(Ω) and W1,p(x)(Ω)
have some curious properties, for instance:

(i) If 1 < p− 6 p+ <∞ and p : Ω→ [1,∞) is smooth, then the
formula

∫
Ω |u(x)|pdx = p

∫∞
0 tp−1 |{x ∈ Ω; |u(x)| > t}| dt has no

variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the “mean
continuity property". More precisely, if p is continuous and
nonconstant in an open ball B, then there exists a function
u ∈ Lp(x)(B) such that u(x + h) 6∈ Lp(x) for all h ∈ RN with arbitrary
small norm.
(iii) The function spaces with variable exponent are never translation
invariant. The use of convolution is also limited, for instance the
Young inequality |f ∗ g|p(x) 6 C |f |p(x) ‖g‖L1 holds if and only if p is
constant.
(iv) Generally, the space of smooth functions with compact support is
no longer dense in W1,p(x)(Ω).
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2. Double phase versus a discontinuity property of the spectrum
Consider the following nonlinear eigenvalue problem:{
−α∆pu(z)− β∆qu(z) = λ|u(z)|q−2u(z) in Ω,
u|∂Ω = 0, α > 0, β > 0, λ > 0, 1 < p, q <∞, p 6= q.

}
(Pλ)

Particular case: α = 1− β, β ∈ (0, 1). Let Lβ = −(1− β)∆p − β∆q and
let σ̂(β) be the spectrum of Lβ . We obtain that

σ̂(β) = (βλ̂1(q),+∞).

The multivalued map β 7→ σ̂(β) is Hausdorff and Vietoris continuous on
(0, 1), but at β = 1, it exhibits a discontinuity since

σ̂(1) = the spectrum of (−∆q,W
1,q
0 (Ω))

and λ̂1(q) > 0 is isolated and so σ̂(1) 6= (λ̂1(q),+∞).
This is more emphatically illustrated when q = 2. Then

σ̂(β) = (βλ̂1(2),+∞) for all β ∈ (0, 1)

but at β = 1, we have σ̂(1) = {λ̂k(2)}k>1 (discrete spectrum).
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Consider the nonlinear eigenvalue problem

−∆ru(z) = λ̂|u(z)|r−2u(z) in Ω, u|∂Ω = 0. (2)

We say that λ̂ is an eigenvalue of (−∆r,W
1,r
0 (Ω)) if problem (2)

admits a nontrivial solution û ∈ W1,r
0 (Ω), known as an eigenfunction

corresponding to the eigenvalue λ̂. Then
û ∈ C1

0(Ω) =
{

u ∈ C1(Ω) : u|∂Ω = 0
}

and there is a smallest
eigenvalue λ̂1(r) such that:

I λ̂1(r) is isolated (that is, there exists ε > 0 such that the interval
(λ̂1(r), λ̂1(r) + ε) contains no eigenvalue of (−∆r,W

1,r
0 (Ω))).

I λ̂1(r) is simple (that is, if û, v̂ are eigenfunction corresponding to
λ̂1(r), then û = µv̂ with µ ∈ R\{0}).

I λ̂1(r) > 0 and admits the following variational characterization

λ̂1(r) = inf
{
||Du||rr
||u||rr

: u ∈ W1,r
0 (Ω), u 6= 0

}
(3)
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Let r = max{p, q} and λ > 0. The energy (Euler) functional for
problem (Pλ) is defined by

ϕλ(u) =
α

p
||Du||pp +

β

q
||Du||qq −

λ

q
||u||qq for all u ∈ W1,r

0 (Ω).

The Nehari manifold for the functional ϕλ is the set

Nλ = {u ∈ W1,r
0 (Ω) :

〈
ϕ′λ(u), u

〉
= 0, u 6= 0}.

We denote by σ̂(α, β) the spectrum of

u→ −α∆pu− β∆qu for all u ∈ W1,r
0 (Ω).

So, λ ∈ σ̂(α, β) if and only if problem (Pλ) has a nontrivial solution
û ∈ C1

0(Ω). This solution is an eigenvector for the eigenvalue λ.
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||u||qq for all u ∈ W1,r

0 (Ω).

The Nehari manifold for the functional ϕλ is the set

Nλ = {u ∈ W1,r
0 (Ω) :

〈
ϕ′λ(u), u

〉
= 0, u 6= 0}.

We denote by σ̂(α, β) the spectrum of

u→ −α∆pu− β∆qu for all u ∈ W1,r
0 (Ω).

So, λ ∈ σ̂(α, β) if and only if problem (Pλ) has a nontrivial solution
û ∈ C1

0(Ω). This solution is an eigenvector for the eigenvalue λ.
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Theorem (Papageorgiou, R., Repovš). If λ > βλ̂1(q) then λ is an
eigenvalue of problem (Pλ) with eigenfunction λ̂ ∈ C1

0(Ω).

Case 1 (easy): 1 < q < p. Then ϕλ(·) is coercive and we use the
direct method of the calculus of variations.
Case 2: 1 < p < q. Then the energy functional is no longer coercive.
We minimize ϕλ on the Nehari manifold Nλ.
Lemma 1. λ > βλ̂1(q) if and only if Nλ 6= ∅.
We define

mλ = inf{ϕλ(u) : u ∈ Nλ}. (4)

For u ∈ Nλ, we have

α||Du||pp + β||Du||qq = λ||u||qq. (5)

Therefore

ϕλ(u) =
α

p
||Du||pp +

β

q
||Du||qq −

1
q

[α||Du||pp + β||Du||qq]

= α

[
1
p
− 1

q

]
||Du||pp ⇒ mλ > 0. (6)
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From (6) we infer that ϕλ|Nλ is coercive on W1,p
0 (Ω).

Lemma 2. If λ > βλ̂1(q), then every minimizing sequence of (4) is
bounded in W1,q

0 (Ω).

Lemma 3. If λ > βλ̂1(q), then mλ > 0.

Lemma 4. If λ > βλ̂1(q), then there exists ûλ ∈ Nλ such that
mλ = ϕλ(ûλ).
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3. Double phase problems with mixed regime
Let Ω ⊆ RN be a bounded regular connected open set and assume that
p, q ∈ (1,∞). Consider the Lane-Emden problem

−∆pu = |u|q−2u in Ω
u = 0 on ∂Ω
u 6≡ 0 in Ω.

(7)

Usually, this analysis is developed in relationship with the values of q
with respect to the Sobolev critical exponent p∗ of p, which is defined
by

p∗ =


Np

N − p
if 1 < p < N

+∞ if p > N.
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The following three basic situations can occur:

(i) q < p∗ (subcritical case). Then the associated energy functional is
either coercive (if q < p) or has a mountain pass geometry and
satisfies the Palais-Smale condition (if q > p), hence problem (7) has
at least one solution. The case p = q corresponds to an eigenvalue
problem, so we cannot exclude a nonexistence property.

(ii) q = p∗, provided that 1 < p < N (critical case). In this case, the
topology of Ω plays a crucial role. In particular, if p = 2, N = 3,
q = 6 and Ω is not contractible, then problem (7) has at least one
positive solution.

(iii) q > p∗, provided that 1 < p < N (supercritical case). This
situation is delicate and a major role is played by the geometry of Ω.
For instance, if Ω is starshaped then problem (7) does not have any
solution (by Pohozaev’s identity). Also, if Ω is an annulus, problem
(7) always has at least one solution.
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Isotropic case: p and q are constant
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In the case of variable exponents, the Lane-Emden problem (7)
becomes  −∆p(x)u = |u|q(x)−2u in Ω

u = 0 on ∂Ω
u 6≡ 0 in Ω,

(8)

where ∆p(x)u := div (|∇u|p(x)−2∇u).

In this case, the critical exponent of p(x) depends on the point and it is
defined by

p∗(x) =


Np(x)

N − p(x)
if 1 < p(x) < N

+∞ if p(x) > N.
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An example in the subcritical setting. Consider the problem −∆p(x)u = λ |u|q(x)−2u in Ω

u = 0 on ∂Ω
u 6≡ 0 in Ω

(9)

under the following hypotheses:
(h1) 1 < minx∈Ω q(x) < minx∈Ω p(x) < maxx∈Ω q(x);
(h2) q(x) < p∗(x) for all x ∈ Ω.

Case of small perturbations: there exists λ∗ > 0 such that problem
(9) has at least one solution for all λ ∈ (0, λ∗).

Problem (8) can fulfill even a “subcritical-critical-supercritical" triple
regime, in the sense that Ω = Ω1 ∪ Ω2 ∪ Ω3 and

q(x) < p∗(x) if x ∈ Ω1;

q(x) = p∗(x) if x ∈ Ω2;

q(x) > p∗(x) if x ∈ Ω3.
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Anisotropic case: p and q are variable
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Problem 1: the radial case.
Let p, q,m, a : BR(0)→ R be continuous functions satisfying :

{
1 < p− = minx∈BR(0) p(x) 6 maxx∈BR(0) p(x) = p+ < N.
1 < m− = minx∈BR(0) m(x) 6 maxx∈BR(0) m(x) = m+ < N.

(H1)
0 6 a(x) 6 L, ∀x ∈ BR(0). (H2)

p(x) = p(|x|), a(x) = a(|x|), q(x) = q(|x|) ∀x ∈ BR(0). (H3)

Assume that there exists 0 < r < R such that

q > 0 in Ω and p+ < qr
− = min

x∈Br(0)
q(x) 6 max

x∈Br(0)
q(x) = qr

+ < min
x∈Ω

p∗(x).

(H4)
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Note that q is subcritical in Br(0), but there is no hypotheses on the
function q in the annulus AR,r = BR(0) \ Br(0), hence q can have a
supercritical growth close to the boundary. However, note that for any
t ∈ (0,R) we have the continuous embedding

W1,p(x)(BR(0)) ↪→ W1,p−(AR,t)

and the compact embedding (Strauss)

W1,p−
rad (AR,t) ↪→ C(AR,t).
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Therefore the embedding

W1,p(x)
rad (BR(0)) ↪→ C(AR,t), (10)

is compact, where

W1,p(x)
rad (BR(0)) = {u ∈ W1,p(x)(BR(0)) : u(x) = u(|x|) a.e. in BR(0)}.

It follows that the embedding

W1,p(x)
rad (BR(0)) ↪→ Lq(x)(BR(0)), (11)

is also compact.

58 / 101



Denote
∆m(x),a(x)u = div (a(x)|∇u|m(x)−2∇u).

If a 6= 0, we set

E = W1,p(x)
0 (BR(0)) ∩W1,m(x)

a(x),0 (BR(0)),

where W1,m(x)
a(x),0 (BR(0)) is the space W1,m(x)

0 (BR(0)) endowed with the
norm

‖∇u‖m(x),a(x) = inf

{
λ > 0

∣∣∣∣∣
∫
RN

a(x)

∣∣∣∣ |∇u|
λ

∣∣∣∣m(x)

dx 6 1

}
.

Hereafter, we endow E with the norm

‖u‖ = ‖∇u‖p(x) + ‖∇u‖m(x),a(x).

We observe that if a = 0, then E = W1,p(x)
0 (BR(0)) and ‖ ‖ is exactly

the usual norm in W1,p(x)
0 (BR(0)).
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From the definition of E, we have the continuous embedding

E ↪→ W1,p(x)
0 (BR(0)).

This fact combined with (11) implies that the embedding

Erad(BR(0)) ↪→ Lq(x)(BR(0)), (12)

is also compact, where

Erad = W1,p(x)
rad,0 (BR(0)) ∩W1,m(x)

rad,0 (BR(0)).
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Theorem
Assume that conditions (H1)− (H4) are fulfilled. Then the following
nonhomogeneous boundary value problem{

−∆p(x)u−∆m(x),a(x)u = |u|q(x)−2u in BR,

u = 0 on ∂BR
(P1)

has a nontrivial solution in E.

Palais’ principle of symmetric criticality, 1979:

Critical symmetric points are symmetric critical points.

Let X be a Banach space on which a symmetry group G linearly acts
and let J be a G-invariant functional defined on X. Then every critical
point of J restricted on the subspace of symmetric points becomes
also a critical point of J on the whole space X.
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Proof.

Let

I(u) =

∫
BR

(
1

p(x)
|∇u|p(x) +

a(x)

m(x)
|∇u|m(x)

)
dx−

∫
BR

1
q(x)
|u|q(x) dx.

This functional is not well defined on the whole space E because we
do not assume any growth condition on q in the annulus AR,r. In the
sequel we will restrict I to Erad, because I ∈ C1(Erad,R) and

I′(u)v =

∫
BR

(|∇u|p(x)−2∇u∇v+a(x)|∇u|m(x)−2∇u∇v) dx−
∫

BR

|u|q(x)−2uv dx.
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Then I satisfies the mountain pass geometry and also the (PS)
condition, because we have the compact embedding (11). Thus, we
find a nontrivial critical point u ∈ Erad.

Our goal is to prove that u is in fact a critical point of I in the whole
space E. However, we cannot applied directly the Palais principle of
symmetric criticality, because I is not well defined in whole E. In
order to overcome this difficulty, we will use the following trick:
consider the function

g(x, t) = ξ(|x|)|t|q(x) + (1− ξ(|x|))|u(x)|q(x), ∀x ∈ BR,

where ξ ∈ C∞([0,R],R) satisfies

ξ(x) =

{
1, x ∈ B r

2
(0)

0, x ∈ BR(0) \ B 3r
5
(0).

Since u ∈ C(AR, r
2
), it follows from (H4) that

|g(x, t)| 6 C(|t|qr
+ + 1), ∀(x, t) ∈ BR × R.

This fact implies that g has a subcritical growth.

67 / 101



Then I satisfies the mountain pass geometry and also the (PS)
condition, because we have the compact embedding (11). Thus, we
find a nontrivial critical point u ∈ Erad.
Our goal is to prove that u is in fact a critical point of I in the whole
space E. However, we cannot applied directly the Palais principle of
symmetric criticality, because I is not well defined in whole E. In
order to overcome this difficulty, we will use the following trick:
consider the function

g(x, t) = ξ(|x|)|t|q(x) + (1− ξ(|x|))|u(x)|q(x), ∀x ∈ BR,

where ξ ∈ C∞([0,R],R) satisfies

ξ(x) =

{
1, x ∈ B r

2
(0)

0, x ∈ BR(0) \ B 3r
5
(0).

Since u ∈ C(AR, r
2
), it follows from (H4) that

|g(x, t)| 6 C(|t|qr
+ + 1), ∀(x, t) ∈ BR × R.

This fact implies that g has a subcritical growth.

68 / 101



Then I satisfies the mountain pass geometry and also the (PS)
condition, because we have the compact embedding (11). Thus, we
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Consider the nonlinear problem{
−∆p(x)w−∆m(x),a(x)w = g(x,w) in BR,

w = 0 on ∂BR,
(Pg)

whose associated energy is given by

J(w) =

∫
BR

(
1

p(x)
|∇w|p(x) +

a(x)

m(x)
|∇w|m(x)

)
dx−

∫
BR

G(x,w) dx,

where G(x, t) =
∫ t

0 g(x, s) ds.
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Since g is subcritical, it follows that J is well defined in the whole
space E, J ∈ C1(E,R) and

J′(u)v =

∫
BR

(|∇w|p(x)−2∇w∇v + a(x)|∇w|m(x)−2∇w∇v) dx

−
∫

BR

g(x,w)v dx, ∀u, v ∈ E.

Since
g(x, u(x)) = |u|q(x)−2u(x), ∀x ∈ BR,

we see that u is a critical point of J restricted to Erad. Now we can
apply the Palais principle of symmetric criticality to conclude that u is
a nontrivial critical point of J in the whole E.
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Problem 2: the non-radial case.
Consider the problem:{

−∆p(x)u−∆m(x),a(x)u = |u|q(x)−2u in Ω,

u = 0 on ∂Ω.
(P2)

We assume that there exist positive numbers r < R such that BR ⊂ Ω
and a(x) = a0 for all x ∈ AR,r.
Assume that p, q,m, a : Ω→ R are continuous and{

1 < p− = minx∈Ω p(x) 6 maxx∈Ω p(x) = p+ < N,
1 < m− = minx∈Ω m(x) 6 maxx∈Ω m(x) = m+ < N.

(H5)

0 6 a(x) 6 L, ∀x ∈ Ω (H6)

p(x) = p(|x|) and q(x) = q(|x|), ∀x ∈ AR,r. (H7)
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Assume that the variable exponent q satisfies

q > 0 in Ω and p+ < qA
− = min

x∈Ω\AR,r

q(x) = qA
+ 6 max

x∈Ω\AR,r

q(x) < min
x∈Ω

p∗(x).

(H8)
Important: we do not assume any growth condition on q in the
annulus AR,r, hence q can have a supercritical growth in that region.

Theorem
Assume that hypotheses (H5)− (H8) are fulfilled. Then problem (P2)
has a nontrivial solution in E.
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Sketch of the proof.

1. The energy associated to problem (P2) is

I(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

a(x)

m(x)
|∇u|m(x)

)
dx−

∫
Ω

1
q(x)
|u|q(x) dx.

Since we do not assume any growth condition on q in the annulus AR,r

I is not well defined on the whole E.

2. We restrict I to the closed subspace X ⊂ E given by

X = {u ∈ E : u(x) = u(|x|) a.e. x ∈ AR,r}.

3. By the mountain pass theorem, there is a nontrivial critical point
u0 ∈ X of I.
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4. Next, we show that u0 is, in fact, a critical point of I.

For this
purpose we cannot use the Palais principle, because Ω is not a ball.
Here, the trick is the following: for all
ϕ ∈ X0(AR,r) = {u ∈ X : u = 0 on ∂(AR,r)} we have∫

AR,r

(|∇u0|p(x)−2∇u0∇ϕ+ a(x)|∇u0|m(x)−2∇u0∇ϕ) dx−∫
AR,r

|u0|q(x)−2u0ϕ dx = 0.

5. Finally, by using cut-off functions and density arguments, we
conclude that u0 is a nontrivial solution.
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Problem 3: The case where q vanishes close to the boundary.
Consider the problems{

−∆p(x)u−∆m(x),a(x)u = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω.
(P3)

Assume that there exist positive numbers r < R such that BR(0) ⊂ Ω,

AR,r ⊂ Ωδ and a(x) = a0 ∀x ∈ AR,r,

where
Ωδ = {x ∈ Ω : dist (x, ∂Ω) > δ}.
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Assume that p, q,m, a : Ω→ R are continuous and satisfy{
1 < p− = minx∈Ω p(x) 6 maxx∈Ω p(x) = p+ < N,
1 < m− = minx∈Ω m(x) 6 maxx∈Ω m(x) = m+ < N.

(H9)

max{p+,m+} < qA
− = min

x∈Ωδ\AR,r

q(x) 6 qA
+ = max

x∈Ωδ\AR,r

q(x) < min
x∈Ω

p∗(x).

(H10)
0 6 a(x) 6 L, ∀x ∈ Ω (H11)

q(x) > 0 ∀x ∈ Ω and lim
dist (x,∂Ω)→0

q(x) = 0. (H12)
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Theorem
Assume that hypotheses (H9)− (H12) are fulfilled. Then there exists
λ∗ > 0 such that for all λ ∈ (0, λ∗) problem (P3) has at least two
nontrivial solutions in E.

Sketch of the proof. The associated energy functional is

I(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

a(x)

m(x)
|∇u|m(x)

)
dx−

∫
Ω

λ

q(x)
|u|q(x) dx.

Again, I is not well defined in the whole space E. That is why we
restrict the functional I to the closed subspace X ⊂ E given by

X = {u ∈ E : u(x) = u(|x|) a.e. x ∈ AR,r}.

Then I ∈ C1(X,R) and I satisfies the (PS) condition in X.
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Lemma
Given τ > 0, there are ρ = ρ(τ) > 0 and λ∗ = λ∗(τ) such that

Iλ(u) > ρ for ‖u‖ = τ and λ ∈ (0, λ∗).

Lemma
Setting Aλ = inf{Iλ(u) : ‖u‖ 6 τ}, we have that Aλ < 0 for all
λ ∈ (0, λ∗).

The last two lemmas permit to apply the Ekeland variational principle
to conclude that there exists uλ ∈ X such that

I′λ(uλ)v = 0, ∀v ∈ X and Iλ(uλ) = Aλ < 0.

It follows that uλ is a critical point of Iλ in E for all λ ∈ (0, λ∗).
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Lemma
For any fixed φ ∈ C∞0 (Ωδ \ AR,r), we have

Iλ(tφ)→ −∞ as t→ +∞.

Proof of Theorem 3. By the previous results, Iλ satisfies the mountain
pass geometry. Then for almost every λ ∈ (0, λ∗) there is a bounded
(PS)cλ sequence for Iλ, where cλ is the mountain level of Iλ. Since Iλ
verifies the (PS) condition, it follows that for almost every λ ∈ (0, λ∗)
the level cλ is a critical level, that is, there is uλ ∈ X such that

I′λ(uλ) = 0 and Iλ(uλ) = cλ > 0.

We conclude that problem (P3) has at least two solutions uλ and uλ

for almost every λ ∈ (0, λ∗) with

Iλ(uλ) = Aλ < 0 and Iλ(uλ) = cλ > 0.

Finally, we conclude that uλ and uλ are, in fact, critical points of Iλ in
E, hence two nontrivial solutions of problem (P3).
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4. Open problems

1. Baouendi-Grushin operators:

divx

(
G(x, y)|∇x|G(x,y)−2∇x

)
+ divy

(
G(x, y)|x|γ |∇y|G(x,y)−2∇y

)
.

2. Biharmonic problems with mixed regime

3. Double-phase fractional anisotropic Kirchhoff problems

4. Choquard problems with mixed regime

4. Heat equations with mixed regime
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[3] V. Ambrosio, V.D. Rădulescu, Fractional double-phase patterns:
concentration and multiplicity of solutions, J. Math. Pures Appl. 142
(2020), 101-145.
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