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Very degenerate PDEs

Model case of a very degenerate PDE
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Motivation by traffic congestion problems

Wardrop equilibrium (Wardrop 1952)

Relies on two principles:
User equilibrium: each user chooses the route that is the
best⇒ journey times in all routes actually used are equal
and less than those that would be experienced by a single
vehicle on any unused route
System optimality: average journey time is at a minimum
(in particular, users behave cooperatively in choosing their
routes to ensure the most efficient use of the whole
system)
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Model by Monge-Kantorovich problem

Ω ⊂ Rn (Ω models the city for n = 2)
µ0, µ1 probability measures on Ω (distribution of residents
and services in the city Ω)
Π(µ0, µ1): set of transportation plans (probability measures
on Ω× Ω having µ0 and µ1 as marginals)
c ∈ C(Ω× Ω,R) cost function

Monge-Kantorovich optimal transportation problem

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

c(x, y) dγ(x, y).

What is not realistic in this model:
model is path independent (individual’s travelling strategies
are irrelevant)
congestion effects are not considered (the cost c(x, y) is
independent of “how crowded” the used path is)
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Traffic congestion model I

Carlier, Jimenez, Santambrogio (2008) introduced the notion of
a transportation strategy taking into account

different possible paths
congestion effects
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Traffic congestion model II

This model results in the following minimization problem:

min

{∫
Ω

H (σ) dx : σ ∈ Lq(Ω,Rn), div σ = µ0 − µ1, σ · ν∂Ω = 0
}
,

where σ represents the traffic flow and

H (σ) = H(|σ|), with H(t) = t + 1
q tq and 1

p + 1
q = 1.

The function g(t) = H′(t) = 1 + tq−1 models the congestion
effect.
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Traffic congestion model III

By duality one can show that σ = ∇H ∗(∇u)

H ∗ is the Legendre transform of H

u solves the Neumann problem{
div∇H ∗(∇u) = µ0 − µ1 in Ω,

∇H ∗(∇u) · ν = 0 on ∂Ω,
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Literature

Literature on traffic congestion problem models:

Warprop (1952)
Carlier, Jimenez, Santambrogio (2008)
Derivation of the model and existence of minimizers
Brasco, Carlier, Santambrogio (2010)
Characterization by the very degenerate elliptic PDE
. . .
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Very degenerate PDEs

Since
H (ζ) =

1
q
|ζ|q + |ζ|

we compute

H ∗(z) =
1
p

(|z| − 1)p
+, where p = q

q−1 .

This results in the very degenerate PDE

div

(
(|∇u| − 1)p−1

+

∇u
|∇u|

)
= f
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Lipschitz continuity

Weak solutions are Lipschitz continuous
Scalar setting: Brasco & Carlier & Santambrogio, Brasco
Vectorial setting: Clop & Giova & Hathami & Passarelli di
Napoli
As special case of an asymptotically regular problem:
Chipot & Evans, Raymond, Foss, Foss & Passarelli di
Papoli & Verde, . . .

Even if f ≡ 0: better than Lipschitz is not possible:

(|∇u| − 1)+ = 0 if |∇u| ≤ 1
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Higher regularity

Sobolev regularity: G ∈ W1,2 for G = (|∇u| − 1)
p
2
+
∇u
|∇u|

Brasco & Carlier & Santambrogio (2010)
Clop & Giova & Hatami & Passarelli di Napoli (2019): Vector
valued case

Continuity: g(∇u) is continuous for any continuous
function g : Rn → R with g = 0 on B1

Santambrogio & Vespri (2010): n = 2
Colombo & Figalli (2014): n ≥ 2
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Vectorial setting

Consider weak solutions u : Rn ⊃ Ω→ RN with N ≥ 1 of

div

(
(|Du| − 1)p−1

+

Du
|Du|

)
= f ,

where p > 1 and f : Ω→ RN .

What is the optimal regularity?
Contra: Solutions are less regular in the vectorial case
(even unbounded; counterexample by De Giorgi)
Pro: Solutions of the p-Laplace system

∆pu = 0

are of class C1,α for some α > 0 (first proof by Uhlenbeck)
(|Du|−1)p−1

+

|Du| depends only on the modulus of Du

⇒ there is some hope for regularity
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Regularity in the vectorial setting

Consider weak solutions u : Rn ⊃ Ω→ RN with N ≥ 1 of

div

(
(|Du| − 1)p−1

+

Du
|Du|

)
= f .

Theorem (B., Duzaar, Giova, Passarelli di Napoli)

Let p > 1 and

f ∈ Ln+σ(Ω,RN) for some σ > 0.

Then
g(Du) is continuous

for any continuous function g : RNn → R vanishing on {|ξ| ≤ 1}.
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Optimality of the result

We treat any p > 1

On the set where |Du| ≤ 1, Du could be discontinuous

Hölder continuity of g(Du) is not true: counterexample

f ∈ Ln is not enough: Du possibly unbounded
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Scetch of the Proof I

Lipschitz regularity. Du is bounded on any compact
subset of Ω

Regularization. Consider solution uε of{
div
(

(|Duε| − 1)p−1
+

Duε
|Duε|

)
+ ε∆uε = f , in BR ⊂ Ω,

uε = u, on ∂BR.
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Scetch of the Proof II

Hölder-continuity. For any δ ∈ (0, 1]

Gδ(Duε) is Hölder continuous with exponent αδ

where Gδ(ξ) := (|ξ|−1−δ)+
|ξ| ξ.

Constants are independent of ε!

Passage to the limit.
ε→ 0: Gδ(Du) is Hölder continuous with exponent αδ
δ → 0: Continuity of

(|Du| − 1)+
|Du|

Du

Continuity of g(Du).

ξ 7→ (|ξ|−1)+
|ξ| ξ is invertible on the set {|ξ| > 1}

Verena Bögelein
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Hölder-continuity of Gδ(Duε)

Our goal (abbreviate Du = Duε):

−
∫

Br(xo)
|Gδ(Du)− Γxo |2 dx ≤ c

( r
%

)2α
∀Br(xo) ⊂ B%(xo) ⊂ BR

Suppose
sup

B%(xo)
|Gδ(Du)| ≤ µ

Distinguish between two regimes (0 < ν � 1):

(D) |Eν%(xo)| ≤ (1− ν)|B%(xo)|,

(ND) |Eν%(xo)| > (1− ν)|B%(xo)| and µ ≥ δ,

where

Eν%(xo) := B%(xo) ∩ {|Gδ(Du)| > (1− ν)µ
}
.
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Universal energy inequality

In the weak form use the test-function

ϕ = ζφ(|Du|)Dβu,

where β ∈ {1, . . . , n}, ζ cut-off function, φ non-negative and
non-decreasing. We obtain∫

BR

[
A
(
D2u,D2u

)
φ(|Du|) + B

(
∇|Du|,∇|Du|

)
φ′(|Du|)|Du|

]
ζdx

+

∫
BR

B
(
∇|Du|,∇ζ

)
φ(|Du|)|Du| dx ≤ 0,

where A = A (Du) and B = B(Du) are bilinear forms.
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where β ∈ {1, . . . , n}, ζ cut-off function, φ non-negative and
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BR

[
A
(
D2u,D2u

)
φ(|Du|)︸ ︷︷ ︸

≥ 0

+ B
(
∇|Du|,∇|Du|

)
φ′(|Du|)|Du|︸ ︷︷ ︸

≥ 0

]
ζdx

+

∫
BR

B
(
∇|Du|,∇ζ

)
φ(|Du|)|Du| dx︸ ︷︷ ︸

≤ 0 ⇒ ∇|Du| is subsolution

≤ 0,
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Degenerate regime

∇|Du| is a subsolution to an elliptic equation

Reduction of the supremum by a De Giorgi type argument:

sup
B%/2(xo)

|Gδ(Du)| ≤ κµ, κ < 1
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Non-degenerate regime

Define the excess

Φ(xo, %) := −
∫

B%(xo)

∣∣Du− (Du)xo,%

∣∣2 dx

The measure theoretic information yields

Φ(xo, %)� 1 and |(Du)xo,%| ≥ 1 + δ + 1
2µ

Compare u with the solution v of a linear elliptic system

−
∫

B%/2(xo)
|Du− Dv|2 dx ≤ c Φ(xo, %)1+ϑ for some ϑ > 0

Excess decay

Φ(xo, τ%) ≤ c τ 2Φ(xo, %) for τ ∈ (0, 1)

Iteration
The limit Γxo := limi→∞

(
Gδ(Du)

)
τ i%

exists

Campanato-type estimate: −
∫

Br
|Gδ(Du)− Γxo |2 dx ≤ c

( r
%

)2β

Verena Bögelein



Non-degenerate regime

Define the excess

Φ(xo, %) := −
∫

B%(xo)

∣∣Du− (Du)xo,%

∣∣2 dx

The measure theoretic information yields

Φ(xo, %)� 1 and |(Du)xo,%| ≥ 1 + δ + 1
2µ

Compare u with the solution v of a linear elliptic system

−
∫

B%/2(xo)
|Du− Dv|2 dx ≤ c Φ(xo, %)1+ϑ for some ϑ > 0

Excess decay

Φ(xo, τ%) ≤ c τ 2Φ(xo, %) for τ ∈ (0, 1)

Iteration
The limit Γxo := limi→∞

(
Gδ(Du)

)
τ i%

exists

Campanato-type estimate: −
∫

Br
|Gδ(Du)− Γxo |2 dx ≤ c

( r
%

)2β

Verena Bögelein
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Combining both regimes

Define %i = 2−i%

Suppose that (D) is satisfied on B%i(xo) for i = 0, . . . , io − 1:

sup
B%i (xo)

|Gδ(Du)| ≤ κiµ =: µi

Suppose that (D) is not satisfied on B%io
(xo)

−
∫

Br

|Gδ(Du)− Γxo |2 dx ≤ c
( r
%io

)2β
for r ≤ %io

⇒ Campanato type estimate for Gδ(Du)
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