Higher regularity in congested traffic dynamics

Verena Bögelein

Paris Lodron Universität Salzburg

Monday's Nonstandard Seminar
May 17, 2021

Very degenerate PDEs

Model case of a very degenerate PDE

$$
\operatorname{div}\left((|\nabla u|-1)_{+}^{p-1} \frac{\nabla u}{|\nabla u|}\right)=f
$$

\Leftrightarrow Minimizing the variational integral

Very degenerate PDEs

Model case of a very degenerate PDE

$$
\operatorname{div}\left((|\nabla u|-1)_{+}^{p-1} \frac{\nabla u}{|\nabla u|}\right)=f
$$

\Leftrightarrow Minimizing the variational integral

$$
F(u)=\int_{\Omega}\left[\frac{1}{p}(|\nabla u|-1)_{+}^{p}+f u\right] \mathrm{d} x
$$

Very degenerate PDEs

Model case of a very degenerate PDE

$$
\operatorname{div}\left((|\nabla u|-1)_{+}^{p-1} \frac{\nabla u}{|\nabla u|}\right)=f
$$

\Leftrightarrow Minimizing the variational integral

$$
F(u)=\int_{\Omega}\left[\frac{1}{p}(|\nabla u|-1)_{+}^{p}+f u\right] \mathrm{d} x
$$

$$
\begin{aligned}
h(t) & =(t-1)_{+}^{p} \\
p=\frac{3}{2}, p & =2, p=4
\end{aligned}
$$

$$
h(t)=\frac{(t-1)_{+}^{p-1}}{t}
$$

Motivation by traffic congestion problems

Wardrop equillibrium (Wardrop 1952)

Relies on two principles:

- User equilibrium: each user chooses the route that is the best \Rightarrow journey times in all routes actually used are equal and less than those that would be experienced by a single vehicle on any unused route
- System optimality: average journey time is at a minimum (in particular, users behave cooperatively in choosing their routes to ensure the most efficient use of the whole system)

Model by Monge-Kantorovich problem

- $\Omega \subset \mathbb{R}^{n} \quad(\bar{\Omega}$ models the city for $n=2)$
- μ_{0}, μ_{1} probability measures on $\bar{\Omega}$ (distribution of residents and services in the city $\bar{\Omega}$)
- $\Pi\left(\mu_{0}, \mu_{1}\right)$: set of transportation plans (probability measures on $\bar{\Omega} \times \bar{\Omega}$ having μ_{0} and μ_{1} as marginals)
- $c \in C(\bar{\Omega} \times \bar{\Omega}, \mathbb{R})$ cost function

Monge-Kantorovich optimal transportation problem

$$
\inf _{\gamma \in \Pi\left(\mu_{0}, \mu_{1}\right)} \int_{\bar{\Omega} \times \bar{\Omega}} c(x, y) \mathrm{d} \gamma(x, y)
$$

What is not realistic in this model:

- model is path independent (individual's travelling strategies are irrelevant)
- congestion effects are not considered (the cost $c(x, y)$ is independent of "how crowded" the used path is)

Traffic congestion model I

Carlier, Jimenez, Santambrogio (2008) introduced the notion of a transportation strategy taking into account

- different possible paths
- congestion effects

Traffic congestion model II

This model results in the following minimization problem:
$\min \left\{\int_{\Omega} \mathscr{H}(\sigma) \mathrm{d} x: \sigma \in L^{q}\left(\Omega, \mathbb{R}^{n}\right), \operatorname{div} \sigma=\mu_{0}-\mu_{1}, \sigma \cdot \nu_{\partial \Omega}=0\right\}$,
where σ represents the traffic flow and

$$
\mathscr{H}(\sigma)=H(|\sigma|), \quad \text { with } H(t)=t+\frac{1}{q} t^{q} \quad \text { and } \quad \frac{1}{p}+\frac{1}{q}=1 .
$$

The function $g(t)=H^{\prime}(t)=1+t^{q-1}$ models the congestion effect.

Traffic congestion model III

By duality one can show that $\sigma=\nabla \mathscr{H}^{*}(\nabla u)$

- \mathscr{H}^{*} is the Legendre transform of \mathscr{H}
- u solves the Neumann problem

$$
\begin{cases}\operatorname{div} \nabla \mathscr{H}^{*}(\nabla u)=\mu_{0}-\mu_{1} & \text { in } \Omega, \\ \nabla \mathscr{H}^{*}(\nabla u) \cdot \nu=0 & \text { on } \partial \Omega,\end{cases}
$$

Literature

Literature on traffic congestion problem models:

- Warprop (1952)
- Carlier, Jimenez, Santambrogio (2008) Derivation of the model and existence of minimizers
- Brasco, Carlier, Santambrogio (2010) Characterization by the very degenerate elliptic PDE
- ...

Very degenerate PDEs

Since

$$
\mathscr{H}(\zeta)=\frac{1}{q}|\zeta|^{q}+|\zeta|
$$

we compute

$$
\mathscr{H}^{*}(z)=\frac{1}{p}(|z|-1)_{+}^{p}, \quad \text { where } p=\frac{q}{q-1} .
$$

This results in the very degenerate PDE

$$
\operatorname{div}\left((|\nabla u|-1)_{+}^{p-1} \frac{\nabla u}{|\nabla u|}\right)=f
$$

Lipschitz continuity

- Weak solutions are Lipschitz continuous
- Scalar setting: Brasco \& Carlier \& Santambrogio, Brasco
- Vectorial setting: Clop \& Giova \& Hathami \& Passarelli di Napoli
- As special case of an asymptotically regular problem: Chipot \& Evans, Raymond, Foss, Foss \& Passarelli di Papoli \& Verde, ...
- Even if $f \equiv 0$: better than Lipschitz is not possible:

$$
(|\nabla u|-1)_{+}=0 \quad \text { if }|\nabla u| \leq 1
$$

Higher regularity

- Sobolev regularity: $\mathscr{G} \in W^{1,2}$ for $\mathscr{G}=(|\nabla u|-1)^{\frac{p}{2}} \frac{\nabla u}{|\nabla u|}$
- Brasco \& Carlier \& Santambrogio (2010)
- Clop \& Giova \& Hatami \& Passarelli di Napoli (2019): Vector valued case
- Continuity: $g(\nabla u)$ is continuous for any continuous function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $g=0$ on B_{1}
- Santambrogio \& Vespri (2010): $n=2$
- Colombo \& Figalli (2014): $n \geq 2$

Vectorial setting

Consider weak solutions $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{N}$ with $N \geq 1$ of

$$
\operatorname{div}\left((|D u|-1)_{+}^{p-1} \frac{D u}{|D u|}\right)=f,
$$

where $p>1$ and $f: \Omega \rightarrow \mathbb{R}^{N}$.
What is the optimal regularity?

- Contra: Solutions are less regular in the vectorial case (even unbounded; counterexample by De Giorgi)
- Pro: Solutions of the p-Laplace system

$$
\Delta_{p} u=0
$$

are of class $C^{1, \alpha}$ for some $\alpha>0$ (first proof by Uhlenbeck)

- $\frac{(|D u|-1)_{+}^{p-1}}{|D u|}$ depends only on the modulus of $D u$
\Rightarrow there is some hope for regularity

Regularity in the vectorial setting

Consider weak solutions $u: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{N}$ with $N \geq 1$ of

$$
\operatorname{div}\left((|D u|-1)_{+}^{p-1} \frac{D u}{|D u|}\right)=f
$$

Theorem (B., Duzaar, Giova, Passarelli di Napoli)
Let $p>1$ and

$$
f \in L^{n+\sigma}\left(\Omega, \mathbb{R}^{N}\right) \quad \text { for some } \sigma>0
$$

Then

$$
g(D u) \text { is continuous }
$$

for any continuous function $g: \mathbb{R}^{N n} \rightarrow \mathbb{R}$ vanishing on $\{|\xi| \leq 1\}$.

Optimality of the result

- We treat any $p>1$
- On the set where $|D u| \leq 1, D u$ could be discontinuous
- Hölder continuity of $g(D u)$ is not true: counterexample
- $f \in L^{n}$ is not enough: Du possibly unbounded

Scetch of the Proof I

- Lipschitz regularity. $D u$ is bounded on any compact subset of Ω
- Regularization. Consider solution u_{ε} of

Scetch of the Proof I

- Lipschitz regularity. $D u$ is bounded on any compact subset of Ω
- Regularization. Consider solution u_{ε} of

$$
\left\{\begin{array}{cl}
\operatorname{div}\left(\left(\left|D u_{\varepsilon}\right|-1\right)_{+}^{p-1} \frac{D u_{\varepsilon}}{\left|D u_{\varepsilon}\right|}\right)+\varepsilon \Delta u_{\varepsilon}=f, & \text { in } B_{R} \subset \Omega \\
u_{\varepsilon}=u, & \text { on } \partial B_{R}
\end{array}\right.
$$

Scetch of the Proof II

- Hölder-continuity. For any $\delta \in(0,1]$
$G_{\delta}\left(D u_{\varepsilon}\right)$ is Hölder continuous with exponent α_{δ}
where $G_{\delta}(\xi):=\frac{(|\xi|-1-\delta)_{+}}{|\xi|} \xi$.
Constants are independent of ε !
- Passage to the limit.
- $\varepsilon \rightarrow 0: G_{\delta}(D u)$ is Hölder continuous with exponent α_{δ} - $\delta \rightarrow 0$: Continuity of

- Continuity of $g(D u)$.
- $\xi \mapsto \frac{(|\xi|-1)+}{|\xi|} \xi$ is invertible on the set $\{|\xi|>1\}$

Scetch of the Proof II

- Hölder-continuity. For any $\delta \in(0,1]$
$G_{\delta}\left(D u_{\varepsilon}\right)$ is Hölder continuous with exponent α_{δ}
where $G_{\delta}(\xi):=\frac{(|\xi|-1-\delta)_{+}}{|\xi|} \xi$.
Constants are independent of ε !
- Passage to the limit.
- $\varepsilon \rightarrow 0: G_{\delta}(D u)$ is Hölder continuous with exponent α_{δ}
- $\delta \rightarrow 0$: Continuity of

$$
\frac{(|D u|-1)_{+}}{|D u|} D u
$$

- Continuity of $g(D u)$.
- $\xi \mapsto \frac{(|\xi|-1)_{+}}{|\xi|}$ is invertible on the set $\{|\xi|>1\}$

Scetch of the Proof II

- Hölder-continuity. For any $\delta \in(0,1]$
$G_{\delta}\left(D u_{\varepsilon}\right)$ is Hölder continuous with exponent α_{δ}
where $G_{\delta}(\xi):=\frac{(|\xi|-1-\delta)_{+}}{|\xi|} \xi$.
Constants are independent of ε !
- Passage to the limit.
- $\varepsilon \rightarrow 0: G_{\delta}(D u)$ is Hölder continuous with exponent α_{δ}
- $\delta \rightarrow 0$: Continuity of

$$
\frac{(|D u|-1)_{+}}{|D u|} D u
$$

- Continuity of $g(D u)$.
- $\xi \mapsto \frac{(|\xi|-1)_{+}}{|\xi|} \xi$ is invertible on the set $\{|\xi|>1\}$

Hölder-continuity of $G_{\delta}\left(D u_{\varepsilon}\right)$

Our goal (abbreviate $D u=D u_{\varepsilon}$):

$$
f_{B_{r}\left(x_{o}\right)}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\varrho}\right)^{2 \alpha} \quad \forall B_{r}\left(x_{o}\right) \subset B_{\varrho}\left(x_{o}\right) \subset B_{R}
$$

- Suppose

$$
\sup _{B_{\varrho}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \mu
$$

- Distinguish between two regimes $(0<\nu \ll 1)$:
(D)

$$
\left|E_{\varrho}^{\nu}\left(x_{o}\right)\right| \leq(1-\nu)\left|B_{\varrho}\left(x_{o}\right)\right|,
$$

(ND)

$$
\left|E_{\varrho}^{\nu}\left(x_{o}\right)\right|>(1-\nu)\left|B_{\varrho}\left(x_{o}\right)\right| \quad \text { and } \quad \mu \geq \delta,
$$

where

$$
E_{\varrho}^{\nu}\left(x_{o}\right):=B_{\varrho}\left(x_{o}\right) \cap\left\{\left|G_{\delta}(D u)\right|>(1-\nu) \mu\right\} .
$$

Universal energy inequality

In the weak form use the test-function

$$
\varphi=\zeta \phi(|D u|) D_{\beta} u
$$

where $\beta \in\{1, \ldots, n\}, \zeta$ cut-off function, ϕ non-negative and non-decreasing. We obtain

$$
\begin{aligned}
\int_{B_{R}}\left[\mathscr{A}\left(D^{2} u, D^{2} u\right) \phi(|D u|)\right. & \left.+\mathscr{B}(\nabla|D u|, \nabla|D u|) \phi^{\prime}(|D u|)|D u|\right] \zeta \mathrm{d} x \\
& +\int_{B_{R}} \mathscr{B}(\nabla|D u|, \nabla \zeta) \phi(|D u|)|D u| \mathrm{d} x \leq 0,
\end{aligned}
$$

where $\mathscr{A}=\mathscr{A}(D u)$ and $\mathscr{B}=\mathscr{B}(D u)$ are bilinear forms.

Universal energy inequality

In the weak form use the test-function

$$
\varphi=\zeta \phi(|D u|) D_{\beta} u
$$

where $\beta \in\{1, \ldots, n\}, \zeta$ cut-off function, ϕ non-negative and non-decreasing. We obtain

$$
\begin{aligned}
\int_{B_{R}}[\underbrace{\mathscr{A}\left(D^{2} u, D^{2} u\right)}_{\geq \nu\left|D^{2} u\right|^{2}} \phi(|D u|) & +\underbrace{\mathscr{B}(\nabla|D u|, \nabla|D u|)}_{\geq \nu|\nabla| D u| |^{2}} \phi^{\prime}(|D u|)|D u|] \zeta \mathrm{d} x \\
& +\int_{B_{R}} \mathscr{B}(\nabla|D u|, \nabla \zeta) \phi(|D u|)|D u| \mathrm{d} x \leq 0
\end{aligned}
$$

where $\mathscr{A}=\mathscr{A}(D u)$ and $\mathscr{B}=\mathscr{B}(D u)$ are bilinear forms.

Universal energy inequality

In the weak form use the test-function

$$
\varphi=\zeta \phi(|D u|) D_{\beta} u
$$

where $\beta \in\{1, \ldots, n\}, \zeta$ cut-off function, ϕ non-negative and non-decreasing. We obtain

$$
\begin{aligned}
\int_{B_{R}}[\underbrace{\mathscr{A}\left(D^{2} u, D^{2} u\right) \phi(|D u|)}_{\geq 0} & +\underbrace{\mathscr{B}(\nabla|D u|, \nabla|D u|) \phi^{\prime}(|D u|)|D u|}_{\geq 0}] \zeta \mathrm{d} x \\
& +\underbrace{\int_{B_{R}} \mathscr{B}(\nabla|D u|, \nabla \zeta) \phi(|D u|)|D u| \mathrm{d} x}_{\leq 0 \Rightarrow \nabla|D u| \text { is subsolution }} \leq 0
\end{aligned}
$$

where $\mathscr{A}=\mathscr{A}(D u)$ and $\mathscr{B}=\mathscr{B}(D u)$ are bilinear forms.

Degenerate regime

- $\nabla|D u|$ is a subsolution to an elliptic equation
- Reduction of the supremum by a De Giorgi type argument:

$$
\sup _{B_{\varrho / 2}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \kappa \mu, \quad \kappa<1
$$

Non-degenerate regime

- Define the excess

$$
\Phi\left(x_{o}, \varrho\right):=\int_{B_{e}\left(x_{o}\right)}\left|D u-(D u)_{x_{o}, \varrho}\right|^{2} \mathrm{~d} x
$$

- The measure theoretic information yields

$$
\Phi\left(x_{o}, \varrho\right) \ll 1 \quad \text { and } \quad\left|(D u)_{x_{o, \varrho}}\right| \geq 1+\delta+\frac{1}{2} \mu
$$

- Compare u with the solution v of a linear elliptic system

- Excess decay

$$
\Phi\left(x_{o}, \tau \varrho\right) \leq c \tau^{2} \Phi\left(x_{0}, \varrho\right) \quad \text { for } \tau \in(0,1)
$$

- Iteration
- The limit $\Gamma_{x_{o}}:=\lim _{i \rightarrow \infty}\left(G_{\delta}(D u)\right)_{\tau^{i} \varrho}$ exists
- Campanato-type estimate: $f_{B_{r}}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\rho}\right)^{2 \beta}$

Non-degenerate regime

- Define the excess

$$
\Phi\left(x_{o}, \varrho\right):=\int_{B_{e}\left(x_{o}\right)}\left|D u-(D u)_{x_{o}, \varrho}\right|^{2} \mathrm{~d} x
$$

- The measure theoretic information yields

$$
\Phi\left(x_{o}, \varrho\right) \ll 1 \quad \text { and } \quad\left|(D u)_{x_{o}, \varrho}\right| \geq 1+\delta+\frac{1}{2} \mu
$$

- Compare u with the solution v of a linear elliptic system

- Excess decay
$\Phi\left(x_{0}, \tau \ell\right) \leq c \tau^{2} \Phi\left(x_{0}, \varrho\right) \quad$ for $\tau \in(0,1)$
- Iteration
- The limit $\Gamma_{x_{o}}:=\lim _{i \rightarrow \infty}\left(G_{\delta}(D u)\right)_{\tau^{i} \rho}$ exists
- Campanato-type estimate: $f_{B}\left|G_{\delta}(D u)-\Gamma_{x_{0}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\rho}\right)^{2 f}$

Non-degenerate regime

- Define the excess

$$
\Phi\left(x_{o}, \varrho\right):=\int_{B_{\varrho}\left(x_{o}\right)}\left|D u-(D u)_{x_{o}, \varrho}\right|^{2} \mathrm{~d} x
$$

- The measure theoretic information yields

$$
\Phi\left(x_{o}, \varrho\right) \ll 1 \quad \text { and } \quad\left|(D u)_{x_{o}, \varrho}\right| \geq 1+\delta+\frac{1}{2} \mu
$$

- Compare u with the solution v of a linear elliptic system

$$
f_{B_{\varrho / 2}\left(x_{o}\right)}|D u-D v|^{2} \mathrm{~d} x \leq c \Phi\left(x_{o}, \varrho\right)^{1+\vartheta} \quad \text { for some } \vartheta>0
$$

- Excess decay

- Iteration
- The limit $\Gamma_{x_{0}}:=\lim _{i \rightarrow \infty}\left(G_{\delta}(D u)\right)_{\tau_{i} 0}$ exists

Non-degenerate regime

- Define the excess

$$
\Phi\left(x_{o}, \varrho\right):=\int_{B_{\varrho}\left(x_{o}\right)}\left|D u-(D u)_{x_{o}, \varrho}\right|^{2} \mathrm{~d} x
$$

- The measure theoretic information yields

$$
\Phi\left(x_{o}, \varrho\right) \ll 1 \quad \text { and } \quad\left|(D u)_{x_{o}, \varrho}\right| \geq 1+\delta+\frac{1}{2} \mu
$$

- Compare u with the solution v of a linear elliptic system

$$
f_{B_{\varrho / 2}\left(x_{o}\right)}|D u-D v|^{2} \mathrm{~d} x \leq c \Phi\left(x_{o}, \varrho\right)^{1+\vartheta} \quad \text { for some } \vartheta>0
$$

- Excess decay

$$
\Phi\left(x_{o}, \tau \varrho\right) \leq c \tau^{2} \Phi\left(x_{o}, \varrho\right) \quad \text { for } \tau \in(0,1)
$$

- Iteration
- The limit $\Gamma_{x_{o}}:=\lim _{i \rightarrow \infty}\left(G_{\delta}(D u)\right)_{\tau^{i} \rho}$ exists

Non-degenerate regime

- Define the excess

$$
\Phi\left(x_{o}, \varrho\right):=\int_{B_{\varrho}\left(x_{o}\right)}\left|D u-(D u)_{x_{o}, \varrho}\right|^{2} \mathrm{~d} x
$$

- The measure theoretic information yields

$$
\Phi\left(x_{o}, \varrho\right) \ll 1 \quad \text { and } \quad\left|(D u)_{x_{o}, \varrho}\right| \geq 1+\delta+\frac{1}{2} \mu
$$

- Compare u with the solution v of a linear elliptic system

$$
f_{B_{\varrho / 2}\left(x_{o}\right)}|D u-D v|^{2} \mathrm{~d} x \leq c \Phi\left(x_{o}, \varrho\right)^{1+\vartheta} \quad \text { for some } \vartheta>0
$$

- Excess decay

$$
\Phi\left(x_{o}, \tau \varrho\right) \leq c \tau^{2} \Phi\left(x_{o}, \varrho\right) \quad \text { for } \tau \in(0,1)
$$

- Iteration
- The limit $\Gamma_{x_{o}}:=\lim _{i \rightarrow \infty}\left(G_{\delta}(D u)\right)_{\tau^{i} \varrho}$ exists
- Campanato-type estimate: $f_{B_{r}}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\varrho}\right)^{2 \beta}$

Combining both regimes

- Define $\varrho^{i}=2^{-i} \varrho$
- Suppose that (D) is satisfied on $B_{Q_{i}}\left(x_{o}\right)$ for $i=0, \ldots, i_{o}-1$:

$$
\sup _{B_{Q_{i}}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \kappa^{i} \mu=: \mu_{i}
$$

- Suppose that (D) is not satisfied on $B_{\varrho_{i o}}\left(x_{o}\right)$

$$
\int_{B_{r}}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} d x \leq c\left(\frac{r}{\varrho_{i}}\right)^{2 \beta} \text { for } r \leq \varrho_{i_{0}}
$$

- \Rightarrow Campanato type estimate for $G_{\delta}(D u)$

Combining both regimes

- Define $\varrho^{i}=2^{-i} \varrho$
- Suppose that (D) is satisfied on $B_{\varrho_{i}}\left(x_{o}\right)$ for $i=0, \ldots, i_{o}-1$:

$$
\sup _{B_{e_{i}}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \kappa^{i} \mu=: \mu_{i}
$$

- Suppose that (D) is not satisfied on $B_{Q_{i o}}\left(x_{o}\right)$

- \Rightarrow Campanato type estimate for $G_{\delta}(D u)$

Combining both regimes

- Define $\varrho^{i}=2^{-i} \varrho$
- Suppose that (D) is satisfied on $B_{\varrho_{i}}\left(x_{o}\right)$ for $i=0, \ldots, i_{o}-1$:

$$
\sup _{B_{Q_{i}}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \kappa^{i} \mu=: \mu_{i}
$$

- Suppose that (D) is not satisfied on $B_{\varrho_{i_{o}}}\left(x_{o}\right)$

$$
f_{B_{r}}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\varrho_{i_{o}}}\right)^{2 \beta} \quad \text { for } r \leq \varrho_{i_{o}}
$$

- \Rightarrow Campanato type estimate for $G_{\delta}(D u)$

Combining both regimes

- Define $\varrho^{i}=2^{-i} \varrho$
- Suppose that (D) is satisfied on $B_{\varrho_{i}}\left(x_{o}\right)$ for $i=0, \ldots, i_{o}-1$:

$$
\sup _{B_{e_{i}}\left(x_{o}\right)}\left|G_{\delta}(D u)\right| \leq \kappa^{i} \mu=: \mu_{i}
$$

- Suppose that (D) is not satisfied on $B_{\varrho_{i o}}\left(x_{o}\right)$

$$
\int_{B_{r}}\left|G_{\delta}(D u)-\Gamma_{x_{o}}\right|^{2} \mathrm{~d} x \leq c\left(\frac{r}{\varrho_{i_{o}}}\right)^{2 \beta} \quad \text { for } r \leq \varrho_{i_{o}}
$$

- \Rightarrow Campanato type estimate for $G_{\delta}(D u)$

