Monday's Nonstandard Seminar 2020/21

Samuele Riccò

Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università di Modena e Reggio Emilia

REGULARITY FOR OBSTACLE PROBLEMS WITHOUT STRUCTURE CONDITIONS

Monday March 15th, 2021

The aim of this seminar is to deal with the possible occurance of the Lavrentiev phenomenon on a variational obstacle problem with p, q-growth.

The main tool used here is a Lemma which let us move from the variational obstacle problem to the one with the <u>relaxed functional</u>, in order to find the solutions' regularity we want. We assume the Sobolev regularity both for the gradient of the obstacle and for the coefficients.

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

Joint project with Dr. G. Bertazzoni ¹

^{*&}quot;Regularity for obstacle problems without structure conditions", preprint arXiv:2102.12906

The aim of this seminar is to deal with the possible occurance of the Lavrentiev phenomenon on a variational obstacle problem with p, q-growth.

The main tool used here is a Lemma which let us move from the variational obstacle problem to the one with the <u>relaxed functional</u>, in order to find the solutions' regularity we want. We assume the <u>Sobolev regularity</u> both for the gradient of the obstacle and for the coefficients.

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

Joint project with Dr. G. Bertazzoni ¹

^{*&}quot;Regularity for obstacle problems without structure conditions", preprint arXiv:2102.12906

The aim of this seminar is to deal with the possible occurance of the Lavrentiev phenomenon on a variational obstacle problem with p, q-growth.

The main tool used here is a Lemma which let us move from the variational obstacle problem to the one with the <u>relaxed functional</u>, in order to find the solutions' regularity we want. We assume the <u>Sobolev regularity</u> both for the gradient of the obstacle and for the coefficients.

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

Joint project with Dr. G. Bertazzoni ¹

^{*&}quot;Regularity for obstacle problems without structure conditions", preprint arXiv:2102.12906

The aim of this seminar is to deal with the possible occurance of the Lavrentiev phenomenon on a variational obstacle problem with p, q-growth.

The main tool used here is a Lemma which let us move from the variational obstacle problem to the one with the <u>relaxed functional</u>, in order to find the solutions' regularity we want. We assume the <u>Sobolev regularity</u> both for the gradient of the obstacle and for the coefficients.

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

Joint project with Dr. G. Bertazzoni¹

¹ "Regularity for obstacle problems without structure conditions", preprint arXiv:2102.12906

Motivation

• Statement of the problem and main results

- A priori estimate
- Approximation in case of occurrence of Lavrentiev Phenomenon

Motivation

• Statement of the problem and main results

• A priori estimate

• Approximation in case of occurrence of Lavrentiev Phenomenon

- Motivation
- Statement of the problem and main results
- A priori estimate
- Approximation in case of occurrence of Lavrentiev Phenomenon

- Motivation
- Statement of the problem and main results
- A priori estimate
- Approximation in case of occurrence of Lavrentiev Phenomenon

MOTIVATION

Motivation

This talk is focused on studying the Lipschitz continuity of the solutions to variational obstacle problems of the form

$$\min\left\{\int_{\Omega}f(x,Dw):w\in\mathcal{K}_{\psi}(\Omega)\right\}$$

in the case of p, q-growth condition, where <u>Lavrentiev phenomenon may occur</u>.

The relationship between the ellipticity and the growth exponent we impose is the one considered in a series of papers started with

> M. Eleuteri, P. Marcellini, E. Mascolo Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2016)

Motivation

This talk is focused on studying the Lipschitz continuity of the solutions to variational obstacle problems of the form

$$\min\left\{\int_{\Omega}f(x,Dw):w\in\mathcal{K}_{\psi}(\Omega)\right\}$$

in the case of *p*, *q*-growth condition, where Lavrentiev phenomenon may occur.

The relationship between the ellipticity and the growth exponent we impose is the one considered in a series of papers started with

M. Eleuteri, P. Marcellini, E. Mascolo Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2016)

Lipschitz continuity of solutions

The local boundedness of the gradient Dw is a fundamental property, in fact, thanks to that, the behavior of |Dw| at infinity becomes irrelevant for further regularity.

G. Mingione - Applications of Mathematics (2006)

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991)

The local boundedness of the gradient Dw is a fundamental property, in fact, thanks to that, the behavior of |Dw| at infinity becomes irrelevant for further regularity.

G. Mingione - Applications of Mathematics (2006)

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991)

The local boundedness of the gradient Dw is a fundamental property, in fact, thanks to that, the behavior of |Dw| at infinity becomes irrelevant for further regularity.

G. Mingione - Applications of Mathematics (2006)

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991)

The local boundedness of the gradient Dw is a fundamental property, in fact, thanks to that, the behavior of |Dw| at infinity becomes irrelevant for further regularity.

G. Mingione - Applications of Mathematics (2006)

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991)

p, q-growth

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991) P. Marcellini - J. Differential Equations (1993)

P. Marcellini - Discrete Cont. Din. Systems (2020) P. Marcellini - Nonlinear Anal. (2020)

MONDAY'S NONSTANDARD SEMINAR

p, q-growth

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991) P. Marcellini - J. Differential Equations (1993)

P. Marcellini - Discrete Cont. Din. Systems (2020) P. Marcellini - Nonlinear Anal. (2020)

MONDAY'S NONSTANDARD SEMINAR

p, q-growth

P. Marcellini - Arch. Ration. Mech. Anal. (1989) P. Marcellini - J. Differential Equations (1991) P. Marcellini - J. Differential Equations (1993)

P. Marcellini - Discrete Cont. Din. Systems (2020) P. Marcellini - Nonlinear Anal. (2020)

MONDAY'S NONSTANDARD SEMINAR

The Lavrentiev phenomenon is a surprising result first demonstrated in 1926 by M. Lavrentiev that, in our case, it may occurs due to the <u>nonstandard growth conditions</u> required on the lagrangian.

Under our assumptions, this phenomenon can be reformulated in these terms:

$$\inf_{w \in (W^{1,p} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx < \inf_{w \in (W^{1,q} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx$$

This is an obstruction to regularity, since it prevents minimizers to belong to $W^{1,q}$. The basic strategy to get regularity results is to exclude the occurrence of Lavrentiev phenomenon by imposing that the Lavrentiev gap vanishes on solutions. The Lavrentiev phenomenon is a surprising result first demonstrated in 1926 by M. Lavrentiev that, in our case, it may occurs due to the <u>nonstandard growth conditions</u> required on the lagrangian.

Under our assumptions, this phenomenon can be reformulated in these terms:

$$\inf_{w \in (W^{1,p} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx \, < \, \inf_{w \in (W^{1,q} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx$$

This is an obstruction to regularity, since it prevents minimizers to belong to $W^{1,q}$. The basic strategy to get regularity results is to exclude the occurrence of Lavrentiev phenomenon by imposing that the Lavrentiev gap vanishes on solutions. The Lavrentiev phenomenon is a surprising result first demonstrated in 1926 by M. Lavrentiev that, in our case, it may occurs due to the <u>nonstandard growth conditions</u> required on the lagrangian.

Under our assumptions, this phenomenon can be reformulated in these terms:

$$\inf_{w \in (W^{1,p} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx \, < \, \inf_{w \in (W^{1,q} \cap \{w \ge \psi\})} \int_{\Omega} f(x, Dw) \, dx$$

This is an obstruction to regularity, since it prevents minimizers to belong to $W^{1,q}$. The basic strategy to get regularity results is to exclude the occurrence of Lavrentiev phenomenon by imposing that the Lavrentiev gap vanishes on solutions.

Lavrentiev phenomenon

G. Buttazzo, V. J. Mizel - J. Functional Anal. (1992) G. Buttazzo, M. Belloni - Mathematical Applications (1995) V.V. Zhikov - Russian J. Math. Phys. (1995)

L. Esposito, F. Leonetti, G. Mingione - J. Differential Equations (2004) A. Esposito, F. Leonetti, P. V. Petricca - Adv. Nonlinear Anal. (2019) A. K. Balci, L. Diening, M. Surnachev - Calc. Var. PDE (2020)

Lavrentiev phenomenon

G. Buttazzo, V. J. Mizel - J. Functional Anal. (1992) G. Buttazzo, M. Belloni - Mathematical Applications (1995) V.V. Zhikov - Russian J. Math. Phys. (1995)

L. Esposito, F. Leonetti, G. Mingione - J. Differential Equations (2004)
A. Esposito, F. Leonetti, P. V. Petricca - Adv. Nonlinear Anal. (2019)
A. K. Balci, L. Diening, M. Surnachev - Calc. Var. PDE (2020)

However, here we adopt a different viewpoint, following the lines of

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

We present a general Lipschitz regularity result by covering the case in which the <u>Lavrentiev phenomenon may occur</u>. In this respect, a key role will be played by the relaxed functional and by the <u>crucial Lemma</u> which is the natural counterpart of the necessary and sufficient condition to get the absence of Lavrentiev phenomenon.

However, here we adopt a different viewpoint, following the lines of

M. Eleuteri, P. Marcellini, E. Mascolo - Adv. Calc. Var. (2020)

We present a general Lipschitz regularity result by covering the case in which the <u>Lavrentiev phenomenon may occur</u>. In this respect, a key role will be played by the relaxed functional and by the <u>crucial Lemma</u> which is the natural counterpart of the necessary and sufficient condition to get the absence of Lavrentiev phenomenon.

Sobolev dependence

We consider Sobolev dependence on the obstacle and the partial map $x \mapsto D_{\xi} f(x, \xi)$.

J. Kristensen, G. Mingione - Ar. Rat. Mech. Anal. (2006) A. Passarelli di Napoli - Adv. Calc. Var. (2011)

F. Giannetti, A. Passarelli di Napoli - Mathematische Zeitschrift (2015) R. Giova - J. Differential Equations (2015)

F. Giannetti, A. Passarelli di Napoli, C. Scheven - J. Lon. Math. Soc. (2016) G. Cupini, F. Giannetti, R. Giova, A. Passarelli di Napoli - J. Diff. Eq. (2018) A. Gentile - preprint (2021)

Sobolev dependence

We consider Sobolev dependence on the obstacle and the partial map $x \mapsto D_{\xi} f(x, \xi)$.

J. Kristensen, G. Mingione - Ar. Rat. Mech. Anal. (2006) A. Passarelli di Napoli - Adv. Calc. Var. (2011)

F. Giannetti, A. Passarelli di Napoli - Mathematische Zeitschrift (2015) R. Giova - J. Differential Equations (2015)

F. Giannetti, A. Passarelli di Napoli, C. Scheven - J. Lon. Math. Soc. (2016) G. Cupini, F. Giannetti, R. Giova, A. Passarelli di Napoli - J. Diff. Eq. (2018) A. Gentile - preprint (2021) We consider Sobolev dependence on the obstacle and the partial map $x \mapsto D_{\xi} f(x, \xi)$.

J. Kristensen, G. Mingione - Ar. Rat. Mech. Anal. (2006) A. Passarelli di Napoli - Adv. Calc. Var. (2011)

F. Giannetti, A. Passarelli di Napoli - Mathematische Zeitschrift (2015) R. Giova - J. Differential Equations (2015)

F. Giannetti, A. Passarelli di Napoli, C. Scheven - J. Lon. Math. Soc. (2016) G. Cupini, F. Giannetti, R. Giova, A. Passarelli di Napoli - J. Diff. Eq. (2018) A. Gentile - preprint (2021)

Double-phase functional

$$w\mapsto \int_{\Omega}\left[\left|Dw\right|^{p}+a(x)\left(1+\left|Dw\right|^{2}
ight)^{rac{q}{2}}
ight]\,dx$$

with q > p > 1 and $a(\cdot)$ a bounded Sobolev coefficient

M. Colombo, G. Mingione - Arch. Rat. Mech. Anal. (2015)

Double-phase functional

$$w\mapsto \int_\Omega \left[\left| Dw
ight|^p + {\sf a}(x) \left(1 + \left| Dw
ight|^2
ight)^{rac{q}{2}}
ight] \, dx$$

with q > p > 1 and $a(\cdot)$ a bounded Sobolev coefficient

M. Colombo, G. Mingione - Arch. Rat. Mech. Anal. (2015)

STATEMENT OF THE PROBLEM AND MAIN RESULTS

/ariational integral
$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $\min \left\{ \mathcal{F}(u) : u \in \mathcal{K}_\psi(\Omega)
ight\}$

• Ω is a bounded open set of \mathbb{R}^n , $n\geq 2$

- ψ : $\Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W_0^{1,p}(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $\min \left\{ \mathcal{F}(u) : u \in \mathcal{K}_\psi(\Omega)
ight\}$

• Ω is a bounded open set of \mathbb{R}^n , $n \geq 2$

- ψ : $\Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W_0^{1,p}(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $\min \left\{ \mathcal{F}(u) : u \in \mathcal{K}_\psi(\Omega)
ight\}$

• Ω is a bounded open set of \mathbb{R}^n , $n\geq 2$

- $\psi: \Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W_0^{1,p}(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $\min \ \{\mathcal{F}(u): u \in \mathcal{K}_\psi(\Omega)\}$

• Ω is a bounded open set of \mathbb{R}^n , $n\geq 2$

- $\psi: \Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W_0^{1,p}(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$
Assumptions

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $ext{min}\;\{\mathcal{F}(u):u\in\mathcal{K}_\psi(\Omega)\}$

• Ω is a bounded open set of \mathbb{R}^n , $n \geq 2$

• $f: \Omega \times \mathbb{R}^n \to [0, +\infty)$ is a Carathéodory function, convex and of class \mathcal{C}^2 with respect to the second variable

• $\psi: \Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$

- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W_0^{1,p}(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

Assumptions

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $ext{min}\;\{\mathcal{F}(u):u\in\mathcal{K}_\psi(\Omega)\}$

• Ω is a bounded open set of \mathbb{R}^n , $n\geq 2$

• $f: \Omega \times \mathbb{R}^n \to [0, +\infty)$ is a Carathéodory function, convex and of class \mathcal{C}^2 with respect to the second variable

- $\psi: \Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W^{1,p}_0(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$

• u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

Assumptions

Variational integral

$$\mathcal{F}(u) := \int_{\Omega} f(x, Du) \, dx$$

Obstacle problem $ext{min}\;\{\mathcal{F}(u):u\in\mathcal{K}_\psi(\Omega)\}$

• Ω is a bounded open set of \mathbb{R}^n , $n \geq 2$

• $f: \Omega \times \mathbb{R}^n \to [0, +\infty)$ is a Carathéodory function, convex and of class \mathcal{C}^2 with respect to the second variable

- $\psi: \Omega \to [-\infty, +\infty)$, called obstacle, belongs to the Sobolev space $W^{1,p}(\Omega)$
- $\mathcal{K}_{\psi}(\Omega) := \left\{ w \in u_0 + W^{1,p}_0(\Omega) : w \ge \psi \text{ a.e. in } \Omega \right\}$
- u_0 is a fixed boundary value. We need to assume $u_0 \in W^{1,q}(\Omega)$

M. Eleuteri, P. Marcellini, E. Mascolo - Ann. Mat. Pura Appl. (2016)

Exponents condition $1 \le \frac{q}{p} < 1 + \frac{r-n}{rn} = 1 + \frac{1}{n} - \frac{1}{r}$ where we consider $q > p \ge 2$ and where r > n

M. Eleuteri, P. Marcellini, E. Mascolo - Ann. Mat. Pura Appl. (2016)

We suppose that there exist:

- $\nu > 0$ and L > 0
- $h:\Omega \to [0,+\infty)$ such as $h(x) \in L^r_{\sf loc}(\Omega)$

Hypothesis on functional

$$\begin{split} \nu \left(1 + |\xi|^2\right)^{\frac{p}{2}} &\leq f(x,\xi) \leq L \left(1 + |\xi|^2\right)^{\frac{q}{2}} \\ \nu \left(1 + |\xi|^2\right)^{\frac{p-2}{2}} |\lambda|^2 \leq \sum_{i,j} f_{\xi_i \xi_j}(x,\xi) \,\lambda_i \,\lambda_j \leq L \left(1 + |\xi|^2\right)^{\frac{q-2}{2}} |\lambda|^2 \\ &|f_{x\xi}(x,\xi)| \leq h(x) \left(1 + |\xi|^2\right)^{\frac{q-1}{2}} \end{split}$$

We suppose that there exist:

- $\nu > 0$ and L > 0
- $h:\Omega \to [0,+\infty)$ such as $h(x) \in L^r_{loc}(\Omega)$

Hypothesis on functional

$$\begin{split} \nu \left(1 + |\xi|^2\right)^{\frac{p}{2}} &\leq f(x,\xi) \leq L \left(1 + |\xi|^2\right)^{\frac{q}{2}} \\ \nu \left(1 + |\xi|^2\right)^{\frac{p-2}{2}} |\lambda|^2 \leq \sum_{i,j} f_{\xi_i \xi_j}(x,\xi) \,\lambda_i \,\lambda_j \leq L \left(1 + |\xi|^2\right)^{\frac{q-2}{2}} |\lambda|^2 \\ &|f_{x\xi}(x,\xi)| \leq h(x) \left(1 + |\xi|^2\right)^{\frac{q-1}{2}} \end{split}$$

We suppose that there exist:

- $\nu > 0$ and L > 0
- $h:\Omega \to [0,+\infty)$ such as $h(x) \in L^r_{\mathsf{loc}}(\Omega)$

$$\begin{split} \nu \left(1 + |\xi|^2\right)^{\frac{p}{2}} &\leq f(x,\xi) \leq L \left(1 + |\xi|^2\right)^{\frac{q}{2}} \\ \nu \left(1 + |\xi|^2\right)^{\frac{p-2}{2}} |\lambda|^2 \leq \sum_{i,j} f_{\xi_i \xi_j}(x,\xi) \,\lambda_i \,\lambda_j \leq L \left(1 + |\xi|^2\right)^{\frac{q-2}{2}} |\lambda|^2 \\ |f_{\mathsf{x}\xi}(x,\xi)| \leq h(x) \left(1 + |\xi|^2\right)^{\frac{q-1}{2}} \end{split}$$

We suppose that there exist:

- $\nu > 0$ and L > 0
- $h:\Omega
 ightarrow [0,+\infty)$ such as $h(x) \in L^r_{\sf loc}(\Omega)$

Hypothesis on functional

$$\begin{split} \nu \left(1 + |\xi|^2\right)^{\frac{p}{2}} &\leq f(x,\xi) \leq L \left(1 + |\xi|^2\right)^{\frac{q}{2}} \\ \nu \left(1 + |\xi|^2\right)^{\frac{p-2}{2}} |\lambda|^2 \leq \sum_{i,j} f_{\xi_i \xi_j}(x,\xi) \,\lambda_i \,\lambda_j \leq L \left(1 + |\xi|^2\right)^{\frac{q-2}{2}} |\lambda|^2 \\ &|f_{x\xi}(x,\xi)| \leq h(x) \left(1 + |\xi|^2\right)^{\frac{q-1}{2}} \end{split}$$
for all $\lambda, \xi \in \mathbb{R}^n$, $\lambda = \lambda_i, \, \xi = \xi_i, \, i = 1, 2, \dots, n$ a.e. in Ω

Theorem (A priori estimate)

Let $u \in \mathcal{K}_{\psi}(\Omega)$ be a smooth solution to the obstacle problem under the assumptions of growth and ellipticity stated before. If $\psi \in W^{2,r}_{loc}(\Omega)$, then $u \in W^{1,\infty}_{loc}(\Omega)$ and the following estimate

$$\|Du\|_{L^{\infty}(B_{\rho})} \leq C \left\{ \int_{B_{R}} [1 + f(x, Du)] dx \right\}^{\beta}$$

holds for every $0 < \rho < R$ and with positive constants C and β depending on $n, r, p, q, \nu, L, R, \rho$ and on the local bounds for $\|D\psi\|_{W^{1,r}}$ and $\|h\|_{L^r}$.

Now we want to present a meaningful definition of <u>relaxation</u> for the variational obstacle problem we are focusing about.

Class of solutions $\mathcal{K}^*_\psi(\Omega) \,:=\, \{w\in u_0+W^{1,q}_0(\Omega):w\geq \psi ext{ a.e. in }\Omega\}$

C. De Filippis - J. Math. Anal. Appl., to appear

Now we want to present a meaningful definition of <u>relaxation</u> for the variational obstacle problem we are focusing about.

Class of solutions $\mathcal{K}^*_\psi(\Omega) := \{ w \in u_0 + W^{1,q}_0(\Omega) : w \ge \psi \text{ a.e. in } \Omega \}$

C. De Filippis - J. Math. Anal. Appl., to appear

Now we want to present a meaningful definition of <u>relaxation</u> for the variational obstacle problem we are focusing about.

Class of solutions $\mathcal{K}^*_\psi(\Omega) := \{ w \in u_0 + W^{1,q}_0(\Omega) : w \ge \psi \text{ a.e. in } \Omega \}$

C. De Filippis - J. Math. Anal. Appl., to appear

Relaxed functional $\overline{\mathcal{F}}(u) := \inf_{\mathcal{C}(u)} \{\liminf_{j \to +\infty} \mathcal{F}(u_j)\}$ $\mathcal{C}(u) := \{\{u_j\}_{j \in \mathbb{N}} \subset \mathcal{K}^*_{\psi}(\Omega) : u_j \rightharpoonup u \text{ weakly in } W^{1,p}(\Omega)\}$

P. Marcellini - Ann. IHP Anal. Non Lin. (1986)

E. Acerbi, G. Bouchitté, I. Fonseca - Ann. IHP Anal. Non Lin. (2003)

Relaxed functional $\overline{\mathcal{F}}(u) := \inf_{\mathcal{C}(u)} \{\liminf_{j \to +\infty} \mathcal{F}(u_j)\}$ $\mathcal{C}(u) := \{\{u_j\}_{j \in \mathbb{N}} \subset \mathcal{K}^*_{\psi}(\Omega) : u_j \rightharpoonup u \text{ weakly in } W^{1,p}(\Omega)\}$

P. Marcellini - Ann. IHP Anal. Non Lin. (1986)

E. Acerbi, G. Bouchitté, I. Fonseca - Ann. IHP Anal. Non Lin. (2003)

Relaxed functional $\overline{\mathcal{F}}(u) := \inf_{\mathcal{C}(u)} \{\liminf_{j \to +\infty} \mathcal{F}(u_j)\}$ $\mathcal{C}(u) := \{\{u_j\}_{j \in \mathbb{N}} \subset \mathcal{K}^*_{\psi}(\Omega) : u_j \rightharpoonup u \text{ weakly in } W^{1,p}(\Omega)\}$

P. Marcellini - Ann. IHP Anal. Non Lin. (1986)

E. Acerbi, G. Bouchitté, I. Fonseca - Ann. IHP Anal. Non Lin. (2003)

Theorem

Assume that f satisfies the hypothesis we stated before. The Dirichlet problem

min
$$\left\{\overline{\mathcal{F}}(u): u \in \mathcal{K}_{\psi}(\Omega)\right\}$$

with $\overline{\mathcal{F}}$ defined above and $u_0 \in W^{1,q}(\Omega)$, has at least one locally Lipschitz continuous solution.

A PRIORI ESTIMATE

F. Duzaar - Dissertation Thesis (1985) M. Fuchs - Analysis (1985)

F. Duzaar - J. Reine Angew. Math. (1987) M. Fuchs - Ann. Mat. Pura Appl. (1990) M. Fuchs - Advanced Lectures in Mathematics (1994) M. Fuchs, L. Gongbao - Abstr. Appl. Anal. (1998) M. Fuchs, G. Mingione - Manuscripta Math. (2000)

C. Benassi, M. Caselli - Rendiconti Lincei (2020)

F. Duzaar - Dissertation Thesis (1985) M. Fuchs - Analysis (1985)

F. Duzaar - J. Reine Angew. Math. (1987) M. Fuchs - Ann. Mat. Pura Appl. (1990) M. Fuchs - Advanced Lectures in Mathematics (1994) M. Fuchs, L. Gongbao - Abstr. Appl. Anal. (1998) M. Fuchs, G. Mingione - Manuscripta Math. (2000)

C. Benassi, M. Caselli - Rendiconti Lincei (2020)

F. Duzaar - Dissertation Thesis (1985) M. Fuchs - Analysis (1985)

F. Duzaar - J. Reine Angew. Math. (1987) M. Fuchs - Ann. Mat. Pura Appl. (1990) M. Fuchs - Advanced Lectures in Mathematics (1994) M. Fuchs, L. Gongbao - Abstr. Appl. Anal. (1998) M. Fuchs, G. Mingione - Manuscripta Math. (2000)

C. Benassi, M. Caselli - Rendiconti Lincei (2020)

Variational inequality

$$\int_{\Omega} D_{\xi} f(x, Du) \cdot D(\varphi - u) \, dx \ge 0$$

that holds true for all $\varphi \in W^{1,q}_{\mathsf{loc}}(\Omega)$, $\varphi \geq \psi$

$$g := -div(D_{\xi}f(x, Du))\chi_{[u=\psi]}$$

Higher differentiability

$$D\psi \in W^{1,r}_{\mathsf{loc}}(\Omega) \implies (1+|Du|^2)^{rac{
ho-2}{4}} Du \in W^{1,2}_{\mathsf{loc}}(\Omega)$$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Variational inequality

$$\int_{\Omega} D_{\xi} f(x, Du) \cdot D(\varphi - u) \, dx \ge 0$$

that holds true for all $\varphi \in W^{1,q}_{\mathsf{loc}}(\Omega)$, $\varphi \geq \psi$

$$g := -div(D_{\xi}f(x, Du))\chi_{[u=\psi]}$$

Higher differentiability

$$D\psi \in W^{1,r}_{\mathsf{loc}}(\Omega) \implies (1+|Du|^2)^{rac{p-2}{4}} Du \in W^{1,2}_{\mathsf{loc}}(\Omega)$$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Variational inequality

$$\int_{\Omega} D_{\xi} f(x, Du) \cdot D(\varphi - u) \, dx \ge 0$$

that holds true for all $arphi \in W^{1,q}_{\mathsf{loc}}(\Omega)$, $arphi \geq \psi$

$$g := -div(D_{\xi}f(x, Du))\chi_{[u=\psi]}$$

Higher differentiability

$$D\psi\in W^{1,r}_{\mathsf{loc}}(\Omega) \quad \Longrightarrow \quad \left(1+|Du|^2
ight)^{rac{p-2}{4}} Du\in W^{1,2}_{\mathsf{loc}}(\Omega).$$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Starting point

$$\int_{\Omega} D_{\xi} f(x, Du) \cdot D\eta \, dx = \int_{\Omega} g \, \eta \, dx \qquad \forall \, \eta \in \, C_0^1(\Omega)$$

stimate on g $|g| \leq h(x) \left(1 + |D\psi|^2\right)^{rac{q-1}{2}} + L \left(1 + |D\psi|^2\right)^{rac{q-2}{2}} |D^2\psi|$

Starting point

$$\int_{\Omega} D_{\xi} f(x, Du) \cdot D\eta \, dx = \int_{\Omega} g \, \eta \, dx \qquad \forall \, \eta \in C_0^1(\Omega)$$

Estimate on g

$$|g| \leq h(x) (1 + |D\psi|^2)^{\frac{q-1}{2}} + L (1 + |D\psi|^2)^{\frac{q-2}{2}} |D^2\psi|$$

"Second variation" system

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} f_{\xi_{i}\xi_{j}}(x, Du) \, u_{x_{j}x_{s}} \, D_{x_{i}} \, \varphi + \sum_{i=1}^{n} f_{\xi_{i}x_{s}}(x, Du) \, D_{x_{i}} \, \varphi \right) dx = \int_{\Omega} g \, D_{x_{s}} \, \varphi \, dx$$
for all $s = 1, \dots, n$ and for all $\varphi \in W_{0}^{1,2}(\Omega)$.

• 0 <
ho < R with B_R compactly contained in Ω

• $\eta \in C_0^1(\Omega)$ such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_ρ , $\eta \equiv 0$ outside B_R , $|D\eta| \le \frac{c}{R-\rho}$ • $\gamma \ge 0$

$$arphi=\eta^2\,(1+|{\it D}u|^2)^\gamma\,u_{x_{
m s}}$$

"Second variation" system

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} f_{\xi_{i}\xi_{j}}(x, Du) \, u_{x_{j}x_{s}} \, D_{x_{i}} \, \varphi + \sum_{i=1}^{n} f_{\xi_{i}x_{s}}(x, Du) \, D_{x_{i}} \, \varphi \right) dx = \int_{\Omega} g \, D_{x_{s}} \, \varphi \, dx$$
for all $s = 1, \ldots, n$ and for all $\varphi \in W_{0}^{1,2}(\Omega)$.

• 0 < ho < R with B_R compactly contained in Ω

• $\eta \in C_0^1(\Omega)$ such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_{ρ} , $\eta \equiv 0$ outside B_R , $|D\eta| \le \frac{C}{R-\rho}$ • $\gamma \ge 0$

$$arphi=\eta^2\,(1+|Du|^2)^\gamma\,u_{\scriptscriptstyle X_S}$$

"Second variation" system

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} f_{\xi_{i}\xi_{j}}(x, Du) \, u_{x_{j}x_{s}} \, D_{x_{i}} \, \varphi + \sum_{i=1}^{n} f_{\xi_{i}x_{s}}(x, Du) \, D_{x_{i}} \, \varphi \right) dx = \int_{\Omega} g \, D_{x_{s}} \, \varphi \, dx$$
for all $s = 1, \dots, n$ and for all $\varphi \in W_{0}^{1,2}(\Omega)$.

- 0 < ho < R with B_R compactly contained in Ω
- $\eta \in C_0^1(\Omega)$ such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_{ρ} , $\eta \equiv 0$ outside B_R , $|D\eta| \le \frac{C}{R-\rho}$ • $\gamma \ge 0$

$$arphi=\eta^2\,(1+|{\it D}u|^2)^\gamma\,u_{\scriptscriptstyle \! X_{\!s}}$$

"Second variation" system

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} f_{\xi_{i}\xi_{j}}(x, Du) \, u_{x_{j}x_{s}} \, D_{x_{i}} \, \varphi + \sum_{i=1}^{n} f_{\xi_{i}x_{s}}(x, Du) \, D_{x_{i}} \, \varphi \right) dx = \int_{\Omega} g \, D_{x_{s}} \, \varphi \, dx$$
for all $s = 1, \dots, n$ and for all $\varphi \in W_{0}^{1,2}(\Omega)$.

- 0 < ho < R with B_R compactly contained in Ω
- $\eta \in C_0^1(\Omega)$ such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_{ρ} , $\eta \equiv 0$ outside B_R , $|D\eta| \le \frac{c}{R-\rho}$

• $\gamma \ge 0$

$$\varphi = \eta^2 \, (1 + |Du|^2)^\gamma \, u_{x_s}$$

"Second variation" system

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} f_{\xi_{i}\xi_{j}}(x, Du) \, u_{x_{j}x_{s}} \, D_{x_{i}} \, \varphi + \sum_{i=1}^{n} f_{\xi_{i}x_{s}}(x, Du) \, D_{x_{i}} \, \varphi \right) dx = \int_{\Omega} g \, D_{x_{s}} \, \varphi \, dx$$
for all $s = 1, \dots, n$ and for all $\varphi \in W_{0}^{1,2}(\Omega)$.

- 0 < ho < R with B_R compactly contained in Ω
- $\eta \in C_0^1(\Omega)$ such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_{ρ} , $\eta \equiv 0$ outside B_R , $|D\eta| \le \frac{c}{R-\rho}$

• $\gamma \ge 0$

$$arphi=\eta^2\,(1+|{\it D}u|^2)^\gamma\,u_{x_{
m s}}$$

Summing up the 9 integrals and using the hypothesis we obtain

$$\int_{\Omega} \eta^{2} \left(1 + |Du|^{2}\right)^{\frac{p-2}{2}+\gamma} |D^{2}u|^{2} dx$$

$$\leq C \Theta \left(1 + \gamma^{2}\right) \left[\int_{\Omega} (\eta^{2m} + |D\eta|^{2m}) \left(1 + |Du|^{2}\right)^{\left(q - \frac{p}{2} + \gamma\right)m} dx \right]^{\frac{1}{m}}$$

where the constant ${\mathcal C}$ depends on u,L,n,p,q but it is independent of γ

$$\Theta = 1 + \|g\|_{L^{r}(\Omega)}^{2} + \|h\|_{L^{r}(\Omega)}^{2}$$
$$m = \frac{r}{r-2}$$

Summing up the 9 integrals and using the hypothesis we obtain

$$\int_{\Omega} \eta^{2} (1 + |Du|^{2})^{\frac{p-2}{2} + \gamma} |D^{2}u|^{2} dx$$

$$\leq C \Theta (1 + \gamma^{2}) \left[\int_{\Omega} (\eta^{2m} + |D\eta|^{2m}) (1 + |Du|^{2})^{(q - \frac{p}{2} + \gamma)m} dx \right]^{\frac{1}{m}}$$

where the constant C depends on ν, L, n, p, q but it is independent of γ

$$\Theta = 1 + \|g\|_{L^r(\Omega)}^2 + \|h\|_{L^r(\Omega)}^2$$
$$m = \frac{r}{r-2}$$

Summing up the 9 integrals and using the hypothesis we obtain

$$\int_{\Omega} \eta^{2} (1 + |Du|^{2})^{\frac{p-2}{2} + \gamma} |D^{2}u|^{2} dx$$

$$\leq C \Theta (1 + \gamma^{2}) \left[\int_{\Omega} (\eta^{2m} + |D\eta|^{2m}) (1 + |Du|^{2})^{(q - \frac{p}{2} + \gamma)m} dx \right]^{\frac{1}{m}}$$

where the constant C depends on ν, L, n, p, q but it is independent of γ

$$\Theta = 1 + \|g\|_{L^r(\Omega)}^2 + \|h\|_{L^r(\Omega)}^2$$

 $m = rac{r}{r-2}$

The iteration process

C. De Filippis, G. Mingione - J. Geom. Anal. (2020)

C. De Filippis - J. Math. Anal. Appl., to appear

Final result

$$\|Du\|_{L^{\infty}(B_{\rho})} \leq C \left\{ \int_{B_{R}} [1+f(x,Du)] dx \right\}^{\beta}$$

Holds for every $0 < \rho < R$ and with positive constants C and β depending on $n, r, p, q, \nu, L, R, \rho$ and on the local bounds for $||D\psi||_{W^{1,r}}$ and $||h||_{L^{r}}$.

The iteration process

C. De Filippis, G. Mingione - J. Geom. Anal. (2020)

C. De Filippis - J. Math. Anal. Appl., to appear

Final result

$$\|Du\|_{L^{\infty}(B_{\rho})} \leq C \left\{ \int_{B_{R}} [1+f(x,Du)] dx \right\}^{\beta}$$

Holds for every $0 < \rho < R$ and with positive constants C and β depending on $n, r, p, q, \nu, L, R, \rho$ and on the local bounds for $\|D\psi\|_{W^{1,r}}$ and $\|h\|_{L^{r}}$.
The iteration process

C. De Filippis, G. Mingione - J. Geom. Anal. (2020)

C. De Filippis - J. Math. Anal. Appl., to appear

Final result

$$\|Du\|_{L^{\infty}(B_{\rho})} \leq C \left\{ \int_{B_{R}} [1+f(x,Du)] dx \right\}^{\beta}$$

Holds for every $0 < \rho < R$ and with positive constants C and β depending on $n, r, p, q, \nu, L, R, \rho$ and on the local bounds for $\|D\psi\|_{W^{1,r}}$ and $\|h\|_{L^{r}}$.

APPROXIMATION IN CASE OF OCCURRENCE OF LAVRENTIEV PHENOMENON

L. Boccardo, P. Marcellini - Ann. Mat. Pura Appl. (1976)

Lemma

For each $u \in \mathcal{K}_{\psi}(\Omega)$, there exists a sequence $u_k \in \mathcal{K}_{\psi}^*(\Omega)$ such that $u_k \rightharpoonup u$ weakly in $W^{1,p}(\Omega)$ and $\overline{\mathcal{F}}(u) = \lim_{k \to +\infty} \mathcal{F}(u_k)$

This Lemma's proof is based on a <u>diagonal argument</u> with sequences of elements in the class of solutions $\mathcal{K}^*_{\psi}(\Omega)$.

L. Boccardo, P. Marcellini - Ann. Mat. Pura Appl. (1976)

Lemma

For each $u \in \mathcal{K}_{\psi}(\Omega)$, there exists a sequence $u_k \in \mathcal{K}_{\psi}^*(\Omega)$ such that $u_k \rightharpoonup u$ weakly in $W^{1,p}(\Omega)$ and $\overline{\mathcal{F}}(u) = \lim_{k \to +\infty} \mathcal{F}(u_k)$

This Lemma's proof is based on a <u>diagonal argument</u> with sequences of elements in the class of solutions $\mathcal{K}^*_{\psi}(\Omega)$.

L. Boccardo, P. Marcellini - Ann. Mat. Pura Appl. (1976)

Lemma

For each $u \in \mathcal{K}_{\psi}(\Omega)$, there exists a sequence $u_k \in \mathcal{K}_{\psi}^*(\Omega)$ such that $u_k \rightharpoonup u$ weakly in $W^{1,p}(\Omega)$ and $\overline{\mathcal{F}}(u) = \lim_{k \to +\infty} \mathcal{F}(u_k)$

This Lemma's proof is based on a <u>diagonal argument</u> with sequences of elements in the class of solutions $\mathcal{K}^*_{\psi}(\Omega)$.

Theorem

Let f be satisfying the growth conditions and strictly convex at infinity and $f_{\xi\xi}$ and f_{ξ_x} be two Carathéodory functions, satisfying ellipticity and growing conditions. Then there exists a sequence of C^2 -functions

$$f^{\prime k}: \Omega \times \mathbb{R}^n \to [0, +\infty)$$

with f^{lk} convex in the last variable and strictly convex at infinity, such that f^{lk} converges to f as $l \to \infty$ and $k \to \infty$ for a.e. $x \in \Omega$, for all $\xi \in \mathbb{R}^n$ and uniformly in $\Omega_0 \times K$, where $\Omega_0 \Subset \Omega$ and K being a compact set of \mathbb{R}^n . Moreover the functions f^{lk} satisfy the hypothesis with constants which are independent on k and satisfy the additional hypothesis necessaries to conclude our proof with constants which are dependent only on k.

> I. Fonseca, N. Fusco, P. Marcellini -ESAIM Control Optim. Calc. Var. (2002)

Theorem

Let f be satisfying the growth conditions and strictly convex at infinity and $f_{\xi\xi}$ and f_{ξ_x} be two Carathéodory functions, satisfying ellipticity and growing conditions. Then there exists a sequence of C^2 -functions

$$f^{\prime k}: \Omega \times \mathbb{R}^n \to [0, +\infty)$$

with f^{lk} convex in the last variable and strictly convex at infinity, such that f^{lk} converges to f as $l \to \infty$ and $k \to \infty$ for a.e. $x \in \Omega$, for all $\xi \in \mathbb{R}^n$ and uniformly in $\Omega_0 \times K$, where $\Omega_0 \Subset \Omega$ and K being a compact set of \mathbb{R}^n . Moreover the functions f^{lk} satisfy the hypothesis with constants which are independent on k and satisfy the additional hypothesis necessaries to conclude our proof with constants which are dependent only on k.

> I. Fonseca, N. Fusco, P. Marcellini -ESAIM Control Optim. Calc. Var. (2002)

Theorem

Assume that f satisfies the hypothesis we stated before. The Dirichlet problem

$$\mathsf{min}\,\left\{\overline{\mathcal{F}}(u): u\in\mathcal{K}_\psi(\Omega)\right\}$$

with $\overline{\mathcal{F}}$ defined above and $u_0 \in W^{1,q}(\Omega)$, has at least one locally Lipschitz continuous solution.

Variational problems

$$\inf\left\{\int_{\Omega}f^{lk}(x,Du)\,dx:u\in\mathcal{K}^*_{\psi}(\Omega)\right\}$$

with $f^{lk}(x,\xi) = f^{l}(x,\xi) + \frac{1}{k}(1+|\xi|^2)^{\frac{1}{2}}$

There exists a solution $u^{lk} \in \mathcal{K}^*_{\psi}(\Omega)$ with $u_0 \in W^{1,q}(\Omega)$. Moreover, we can consider $u_0 \in \mathcal{K}^*_{\psi}(\Omega)$.

Remark

Let us notice that, by replacing u_0 by $\tilde{u}_0 = \max\{u_0, \psi\}$, we may assume that the boundary value function u_0 satisfies $u_0 \ge \psi$ in Ω . Moreover assumptions $f(x, Du) \in L^1_{loc}(\Omega)$ and $f(x, Du_0) \in L^1_{loc}(\Omega)$ imply $f(x, D\tilde{u}_0) \in L^1_{loc}(\Omega)$.

Variational problems

$$\inf\left\{\int_{\Omega} f^{lk}(x, Du) \, dx : u \in \mathcal{K}^*_{\psi}(\Omega)\right\}$$

with $f^{lk}(x, \xi) = f^l(x, \xi) + \frac{1}{k} \left(1 + |\xi|^2\right)^{\frac{q}{2}}$

There exists a solution $u^{lk} \in \mathcal{K}^*_{\psi}(\Omega)$ with $u_0 \in W^{1,q}(\Omega)$. Moreover, we can consider $u_0 \in \mathcal{K}^*_{\psi}(\Omega)$.

Remark

Let us notice that, by replacing u_0 by $\tilde{u}_0 = \max\{u_0, \psi\}$, we may assume that the boundary value function u_0 satisfies $u_0 \ge \psi$ in Ω . Moreover assumptions $f(x, Du) \in L^1_{loc}(\Omega)$ and $f(x, Du_0) \in L^1_{loc}(\Omega)$ imply $f(x, D\tilde{u}_0) \in L^1_{loc}(\Omega)$.

Variational problems

$$\inf \left\{ \int_{\Omega} f^{lk}(x, Du) \, dx : u \in \mathcal{K}^*_{\psi}(\Omega) \right\}$$

with $f^{lk}(x, \xi) = f^{l}(x, \xi) + \frac{1}{k} \left(1 + |\xi|^2\right)^{\frac{q}{2}}$

There exists a solution $u^{lk} \in \mathcal{K}^*_{\psi}(\Omega)$ with $u_0 \in W^{1,q}(\Omega)$. Moreover, we can consider $u_0 \in \mathcal{K}^*_{\psi}(\Omega)$.

Remark

Let us notice that, by replacing u_0 by $\tilde{u}_0 = \max\{u_0, \psi\}$, we may assume that the boundary value function u_0 satisfies $u_0 \ge \psi$ in Ω . Moreover assumptions $f(x, Du) \in L^1_{loc}(\Omega)$ and $f(x, Du_0) \in L^1_{loc}(\Omega)$ imply $f(x, D\tilde{u}_0) \in L^1_{loc}(\Omega)$.

By the growth conditions, the minimality of u^{lk} and the previous remark

$$\int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f^l(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$

$$\lim_{l\to+\infty}\int_{\Omega}|Du^{lk}|^p\,dx\,\leq\,\int_{\Omega}f(x,Du_0)\,dx+\frac{1}{k}\int_{\Omega}(1+|Du_0|^2)^{\frac{q}{2}}\,dx$$

By the previous Theorem, the functions f^{lk} satisfy the hypothesis, so we can apply the a-priori estimate on u^{lk} and obtain for all $B\Subset\Omega$ that

$$\|Du^{lk}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_0) + \frac{1}{k} (1 + |Du_0|^2)^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

where C, γ depend on all the parameters except for I, k.

Therefore there exist $u^k \in \mathcal{K}_{\psi}(\Omega)$, for all $k \in \mathbb{N}$, such that

$$u^{lk} \stackrel{l \to \infty}{\longrightarrow} u^k$$
 weakly in $W^{1,p}(\Omega)$

 $u^{lk} \stackrel{l \to \infty}{\longrightarrow} u^k$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

By the growth conditions, the minimality of u^{lk} and the previous remark

$$\int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f^l(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$
$$\lim_{l \to +\infty} \int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$

By the previous Theorem, the functions f'^k satisfy the hypothesis, so we can apply the a-priori estimate on u'^k and obtain for all $B\Subset \Omega$ that

$$\|Du^{lk}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_0) + \frac{1}{k} (1 + |Du_0|^2)^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

where C, γ depend on all the parameters except for I, k.

Therefore there exist $u^k \in \mathcal{K}_{\psi}(\Omega)$, for all $k \in \mathbb{N}$, such that

$$u^{lk} \stackrel{l \to \infty}{\longrightarrow} u^k$$
 weakly in $W^{1,p}(\Omega)$

 $u^{lk} \stackrel{l \to \infty}{\longrightarrow} u^k$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

By the growth conditions, the minimality of u^{lk} and the previous remark

$$\int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f'(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$
$$\lim_{l \to +\infty} \int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$

By the previous Theorem, the functions f^{lk} satisfy the hypothesis, so we can apply the a-priori estimate on u^{lk} and obtain for all $B \Subset \Omega$ that

$$\|Du^{lk}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_0) + \frac{1}{k} (1 + |Du_0|^2)^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

where C, γ depend on all the parameters except for I, k.

Therefore there exist $u^k \in \mathcal{K}_{\psi}(\Omega)$, for all $k \in \mathbb{N}$, such that

 $u^{lk} \stackrel{l \to \infty}{\longrightarrow} u^k$ weakly in $W^{1,p}(\Omega)$

 $u^{lk} \xrightarrow{l \to \infty} u^k$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

By the growth conditions, the minimality of u^{lk} and the previous remark

$$\int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f'(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$
$$\lim_{l \to +\infty} \int_{\Omega} |Du^{lk}|^p \, dx \, \leq \, \int_{\Omega} f(x, Du_0) \, dx + \frac{1}{k} \int_{\Omega} (1 + |Du_0|^2)^{\frac{q}{2}} \, dx$$

By the previous Theorem, the functions f^{lk} satisfy the hypothesis, so we can apply the a-priori estimate on u^{lk} and obtain for all $B \Subset \Omega$ that

$$\|Du^{lk}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_0) + \frac{1}{k} (1 + |Du_0|^2)^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

where C, γ depend on all the parameters except for I, k.

Therefore there exist $u^k \in \mathcal{K}_{\psi}(\Omega)$, for all $k \in \mathbb{N}$, such that

$$u^{lk} \stackrel{l o \infty}{\longrightarrow} u^k$$
 weakly in $W^{1,p}(\Omega)$
 $u^{lk} \stackrel{l o \infty}{\longrightarrow} u^k$ weakly star in $W^{1,p}_{loc}(\Omega)$

Following the previous estimates we also have

$$\begin{split} \|Du^{k}\|_{L^{p}(\Omega)} &\leq \int_{\Omega} f(x, Du_{0}) \, dx + \int_{\Omega} (1 + |Du_{0}|^{2})^{\frac{q}{2}} \, dx \\ \|Du^{k}\|_{L^{\infty}(B)} &\leq C \, \left\{ \int_{\Omega} [1 + f(x, Du_{0}) + \frac{1}{k} \, (1 + |Du_{0}|^{2})^{\frac{q}{2}}] \, dx \right\}^{\frac{\gamma}{p}} \end{split}$$

So there exists, up to subsequences, $\overline{u}\in\mathcal{K}_\psi(\Omega)$ such that

$$u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u} \text{ weakly in } W^{1,p}(\Omega)$$
$$u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u} \text{ weakly star in } W^{1,\infty}(\Omega)$$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Strong convergence

 $u^k o \overline{u} ext{ in } W^{1,p}_0(\Omega) + u_0, ext{ } \overline{u} \in K_\psi(\Omega)$

Following the previous estimates we also have

$$\begin{split} \|Du^{k}\|_{L^{p}(\Omega)} &\leq \int_{\Omega} f(x, Du_{0}) \, dx + \int_{\Omega} (1 + |Du_{0}|^{2})^{\frac{q}{2}} \, dx \\ \|Du^{k}\|_{L^{\infty}(B)} &\leq C \, \left\{ \int_{\Omega} [1 + f(x, Du_{0}) + \frac{1}{k} (1 + |Du_{0}|^{2})^{\frac{q}{2}}] \, dx \right\}^{\frac{\gamma}{p}} \end{split}$$

So there exists, up to subsequences, $\overline{u} \in \mathcal{K}_\psi(\Omega)$ such that

$$u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$$
 weakly in $W^{1,p}(\Omega)$
 $u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Strong convergence

 $u^k o \overline{u} ext{ in } W^{1,p}_0(\Omega) + u_0, ext{ } \overline{u} \in K_\psi(\Omega)$

Following the previous estimates we also have

$$\|Du^{k}\|_{L^{p}(\Omega)} \leq \int_{\Omega} f(x, Du_{0}) dx + \int_{\Omega} (1 + |Du_{0}|^{2})^{\frac{q}{2}} dx$$
$$\|Du^{k}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_{0}) + \frac{1}{k} (1 + |Du_{0}|^{2})^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

So there exists, up to subsequences, $\overline{u} \in \mathcal{K}_\psi(\Omega)$ such that

$$u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$$
 weakly in $W^{1,p}(\Omega)$
 $u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Strong convergence

 $u^k o \overline{u} ext{ in } W_0^{1,p}(\Omega) + u_0, ext{ } \overline{u} \in K_{\psi}(\Omega)$

Following the previous estimates we also have

$$\|Du^{k}\|_{L^{p}(\Omega)} \leq \int_{\Omega} f(x, Du_{0}) dx + \int_{\Omega} (1 + |Du_{0}|^{2})^{\frac{q}{2}} dx$$
$$\|Du^{k}\|_{L^{\infty}(B)} \leq C \left\{ \int_{\Omega} [1 + f(x, Du_{0}) + \frac{1}{k} (1 + |Du_{0}|^{2})^{\frac{q}{2}}] dx \right\}^{\frac{\gamma}{p}}$$

So there exists, up to subsequences, $\overline{u} \in \mathcal{K}_\psi(\Omega)$ such that

$$u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$$
 weakly in $W^{1,p}(\Omega)$
 $u^k \stackrel{k \to \infty}{\longrightarrow} \overline{u}$ weakly star in $W^{1,\infty}_{loc}(\Omega)$

C. Gavioli - J. Elliptic Parabol. Equ. (2019)

Strong convergence

$$u^k o \overline{u} ext{ in } W_0^{1,p}(\Omega) + u_0, ext{ } \overline{u} \in K_{\psi}(\Omega)$$

For any fixed $k \in \mathbb{N}$, using the uniform convergence of f' to f in $\Omega_0 \times K$ (for any K compact subset of \mathbb{R}^n) and the minimality of u'^k , we get for all $w \in \mathcal{K}^*_{\psi}(\Omega)$

$$\int_{\Omega_0} f(x, Du^k) dx \leq \liminf_{l \to \infty} \int_{\Omega} f'(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

Then, for $\Omega_0 o \Omega$

$$\int_{\Omega} f(x, Du^k) dx \leq \int_{\Omega} f(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

By the relaxed functional's definition, we have

$$\overline{\mathcal{F}}(\overline{u}) \leq \liminf_{k \to \infty} \int_{\Omega} f(x, Du^k) \, dx \leq \int_{\Omega} f(x, Dw) \, dx \qquad \forall \, w \in \mathcal{K}^*_{\psi}(\Omega)$$

For any fixed $k \in \mathbb{N}$, using the uniform convergence of f' to f in $\Omega_0 \times K$ (for any K compact subset of \mathbb{R}^n) and the minimality of u'^k , we get for all $w \in \mathcal{K}^*_{\psi}(\Omega)$

$$\int_{\Omega_0} f(x, Du^k) dx \leq \liminf_{l \to \infty} \int_{\Omega} f'(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

Then, for $\Omega_0 \to \Omega$

$$\int_{\Omega} f(x, Du^k) dx \leq \int_{\Omega} f(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

By the relaxed functional's definition, we have

$$\overline{\mathcal{F}}(\overline{u}) \leq \liminf_{k \to \infty} \int_{\Omega} f(x, Du^k) \, dx \leq \int_{\Omega} f(x, Dw) \, dx \qquad \forall \, w \in \mathcal{K}^*_{\psi}(\Omega)$$

For any fixed $k \in \mathbb{N}$, using the uniform convergence of f' to f in $\Omega_0 \times K$ (for any K compact subset of \mathbb{R}^n) and the minimality of u'^k , we get for all $w \in \mathcal{K}^*_{\psi}(\Omega)$

$$\int_{\Omega_0} f(x, Du^k) dx \leq \liminf_{l \to \infty} \int_{\Omega} f'(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

Then, for $\Omega_0 \to \Omega$

$$\int_{\Omega} f(x, Du^k) dx \leq \int_{\Omega} f(x, Dw) dx + \frac{1}{k} \int_{\Omega} (1 + |Dw|^2)^{\frac{q}{2}} dx$$

By the relaxed functional's definition, we have

$$\overline{\mathcal{F}}(\overline{u}) \leq \liminf_{k \to \infty} \int_{\Omega} f(x, Du^k) \, dx \leq \int_{\Omega} f(x, Dw) \, dx \qquad \forall \, w \in \mathcal{K}^*_{\psi}(\Omega)$$

Let $v \in \mathcal{K}_{\psi}(\Omega)$. By the Convergence Lemma, there exists $u_k \in \mathcal{K}^*_{\psi}(\Omega)$ such that $u_k \rightarrow v$ weakly in $W^{1,\rho}(\Omega)$ and

$$\lim_{k\to\infty}\int_{\Omega}f(x,Du_k)\,dx\,=\,\overline{\mathcal{F}}(v)$$

By the last estimate on the relaxed functional

$$\overline{\mathcal{F}}(\overline{u}) \leq \int_{\Omega} f(x, Du_k) \, dx$$

and we can conclude that

$$\overline{\mathcal{F}}(\overline{u}) \leq \lim_{k \to \infty} \int_{\Omega} f(x, Du_k) \, dx = \overline{\mathcal{F}}(v) \qquad \forall \, v \in \mathcal{K}_{\psi}(\Omega)$$

Then $\overline{u} \in W^{1,\infty}_{\mathsf{loc}}(\Omega)$ is a solution to the problem $\mathsf{min}\{\overline{\mathcal{F}}(u): u \in \mathcal{K}_\psi(\Omega)\}.$

Let $v \in \mathcal{K}_{\psi}(\Omega)$. By the Convergence Lemma, there exists $u_k \in \mathcal{K}^*_{\psi}(\Omega)$ such that $u_k \rightarrow v$ weakly in $W^{1,p}(\Omega)$ and

$$\lim_{k\to\infty}\int_{\Omega}f(x,Du_k)\,dx\,=\,\overline{\mathcal{F}}(v)$$

By the last estimate on the relaxed functional

$$\overline{\mathcal{F}}(\overline{u}) \leq \int_{\Omega} f(x, Du_k) \, dx$$

and we can conclude that

$$\overline{\mathcal{F}}(\overline{u}) \leq \lim_{k \to \infty} \int_{\Omega} f(x, Du_k) \, dx = \overline{\mathcal{F}}(v) \qquad \forall v \in \mathcal{K}_{\psi}(\Omega)$$

Then $\overline{u} \in W^{1,\infty}_{\mathsf{loc}}(\Omega)$ is a solution to the problem $\mathsf{min}\{\overline{\mathcal{F}}(u): u \in \mathcal{K}_\psi(\Omega)\}.$

Let $v \in \mathcal{K}_{\psi}(\Omega)$. By the Convergence Lemma, there exists $u_k \in \mathcal{K}^*_{\psi}(\Omega)$ such that $u_k \rightarrow v$ weakly in $W^{1,\rho}(\Omega)$ and

$$\lim_{k\to\infty}\int_{\Omega}f(x,Du_k)\,dx\,=\,\overline{\mathcal{F}}(v)$$

By the last estimate on the relaxed functional

$$\overline{\mathcal{F}}(\overline{u}) \leq \int_{\Omega} f(x, Du_k) \, dx$$

and we can conclude that

$$\overline{\mathcal{F}}(\overline{u}) \leq \lim_{k \to \infty} \int_{\Omega} f(x, Du_k) \, dx = \overline{\mathcal{F}}(v) \qquad \forall v \in \mathcal{K}_{\psi}(\Omega)$$

Then $\overline{u}\in W^{1,\infty}_{\mathsf{loc}}(\Omega)$ is a solution to the problem $\mathsf{min}\{\overline{\mathcal{F}}(u): u\in\mathcal{K}_\psi(\Omega)\}.$

Let $v \in \mathcal{K}_{\psi}(\Omega)$. By the Convergence Lemma, there exists $u_k \in \mathcal{K}^*_{\psi}(\Omega)$ such that $u_k \rightarrow v$ weakly in $W^{1,p}(\Omega)$ and

$$\lim_{k\to\infty}\int_{\Omega}f(x,Du_k)\,dx\,=\,\overline{\mathcal{F}}(v)$$

By the last estimate on the relaxed functional

$$\overline{\mathcal{F}}(\overline{u}) \leq \int_{\Omega} f(x, Du_k) \, dx$$

and we can conclude that

$$\overline{\mathcal{F}}(\overline{u}) \leq \lim_{k \to \infty} \int_{\Omega} f(x, Du_k) dx = \overline{\mathcal{F}}(v) \qquad \forall v \in \mathcal{K}_{\psi}(\Omega)$$

Then $\overline{u} \in W^{1,\infty}_{loc}(\Omega)$ is a solution to the problem $\min\{\overline{\mathcal{F}}(u) : u \in \mathcal{K}_{\psi}(\Omega)\}.$

THANK YOU FOR THE ATTENTION!