29.03.2021

Monday's Nonstandard Seminar 26

14:00

Author: Sławomir Kolasiński (Uniwersytet Warszawski)

Title: The Alexandrov Theorem in Minkowski spaces

Abstract: Let $F : \mathbf{R}^n \to \mathbf{R}$ be a uniformly convex smooth norm. The *F*-perimeter of a Caccioppoli set $\Omega \subseteq \mathbf{R}^n$ is defined as

$$\mathscr{P}(\Omega) = \int_{\partial^*\Omega} F(\mathbf{n}(\Omega, x)) \,\mathrm{d}\mathscr{H}^{n-1}(x) \,,$$

where $\mathbf{n}(\Omega, x)$ denotes the Euclidean exterior unit normal of Ω at $x \in \partial^* \Omega$. We study critical points of \mathscr{P} restricted to the family \mathscr{A} of Caccioppoli sets $\Omega \subseteq \mathbf{R}^n$ with fixed volume $\mathscr{L}^n(\Omega) = 1$. Minima of $\mathscr{P}|\mathscr{A}$ solve the anisotropic isoperimetric problem and are well known, by the results of Jean Taylor from the 70's, to be Wulff shapes, i.e., balls with respect to the dual norm F^* . More recently He, Li, Ma, and Ge [Indiana Univ. Math. J., 2009] proved that critical points with smooth boundaries must be finite sums of Wulff shapes. Delgadino and Maggi [Anal. PDE, 2019] characterised critical points in case F is the Euclidean norm (in this case $\mathscr{P}(\Omega) = \mathscr{H}^{n-1}(\partial^*\Omega)$) but without any a priori assumptions on regularity of $\partial^*\Omega$.

I shall present my joint work with Antonio De Rosa and Mario Santilli [ARMA, 2020] in which we prove that critical points satisfying $\mathscr{H}^{n-1}(\partial\Omega \sim \partial^*\Omega) = 0$ must be finite sums of Wulff shapes.