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Introduction . q q 3
Porous medium equation with a drift

Applications

Porous medium equation with drifts

Consider a nonegative weak solution of

Pt = Ap" +V-(Vp) inQr (1)
~—~ ~—— ——
Time evolution Diffusion Drift

o Diffusion: Ap™ ~ V- (p’"_IVp)
® Heat equation: m=1
® Degenerate (Porous media equations): m > 1, traffic jam

® Singular (Fast diffusion equations): 0 < m < 1,
scattering or gathering a flock of birds
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Introduction . 5 3
Porous medium equation with a drift

Applications

Fluid dynamics

e Drift-diffusion equations (Silvestre-Vicol-Zlatos, ARMA 2013)
0:0 +u-VO+ (—A)°0 =0, with 6(0,-) = 6p.
where s € (0,1], and v is a given divergence-free vector field.
Continuity results and counterexamples under various conditions on s and u
divergence-free drifts: importance due to incompressibility

surface quasi-deostrophic (SQG) model

the drift plays an important role in the well-posedness of the problem
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Introduction . 5 3
Porous medium equation with a drift

Applications

Keller-Segel Model Bacillus Subtilis

Keller-Segel model for the motion of swimming bacteria
(Chung-H.-Kang-Kim, JDE 2017)

Consider the following system
O¢n — Antt® + y-Vn= -V - (x(c)nVc),
Otc — Ac+ u-Ve = —k(c)n,
Otu — Au+ Vp = —nVo,
V.-u=0
where a > 0, g > 1, and
n: the density of bacteria,
c : the oxygen concentration,

u, p: the velocity vector of the fluid and associated pressure.
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Introduction . " 5 :
Porous medium equation with a drift
Applications

the motion of swimming bacteria, Bacillus Subtilis

| i \ . |
— B

o

® Let g = 1, and concentrate on the porous medium type equation
dn— An't® 44 Vn= -V (x(c)nVc)

where

An't® . diffusion, anticongestion effect,
u-Vn: motion affected by the fluid,
V - (x(c)nVc) : motion of bacteria pursuing high oxygen.
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Introduction . 5 3
Porous medium equation with a drift

Applications

Degenerate diffusion-drift equations

pr=Dp" + V- (V(x,t) p)

® If m =1, classical diffusion-drift equation.

e Ve LfLZ: Ladyzhenskaya-Ural’ceva 1961, Lieberman 1996,
Nazarov-Ural'ceva 2009

Osada 1987 V € L (LX)t

Zhang 2004, Friedlander-Vicol 2011 V € L$°BMO;?
Seregin-Silvestre-Sverak-Zlatos 2012

e divergence-free drift (incompressible flows)
Silvestre-Vicol-Zlatos 2013

e Fractional diffusion ((—A)*u) with divergence-free drift in 2-d

e If V =0, classical porous medium equation.

e Vazquez 2007, DiBenedetto-Gianazza-Vespri 2012
With initially integrable data, unique nonnegative weak solutions exist.
o Immediately becomes Holder continuous for positive times.
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Scaling invariant classes for V in L°°-sense

Regualrity results )
gualrity Continuity results

Regularity results:
What are the critical conditions on V € L{L] regarding the continuity of a solution?

® Kim-Zhang (SIMA, 2018)
® Chung-H.-Kang-Kim (JDE, 2017)
® H.-Zhang (to appear at NLA)

joint work with Kyungkeun Kang (Yonsei Univ.) and Yuming Paul Zhang (UCSD).
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Diffusion Vs.

7 Scaling invariant classes for V in L°°-sense
Regualrity results caing
Continuity results
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Sl Scaling invariant classes for V/ in Lo°-sense
gualrity Continuity results

Counterexamples

Consider ug = Au"+ V- (uV), with u(:,0) = up. (2)

Loss of regularity (Kim-Zhang, SIMA 2018)

(a) Let d >2and 1 < p < d. Then there exists a sequence of vector fields
{V®A(x)}aen which are uniformly bounded in LP(R?) such that the following
holds. Let uya solve (2) with V = V&4 and with a smooth, compactly supported
initial data ug. Then

sup  ua(x,t) > o0 as A— oo.
xERI >0

(b) There exist a family of potentials ®4 such that V4 € L4(R?) and a family of
initial data uf' which are uniformly bounded in L} N L% N C* such that the

following holds: The solutions u” with V = V&4 with initial data ug‘ stays
uniformly bounded but lacks any uniform modulus of continuity as A — oo.
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Regualrity results Scaling invariant classes for V in L°°-sense
gualrity Continuity results

Scaling invariant classes of V(x) in L>-sense

® Consider
pr=0p"+V-(Vp) for m>1.
® For given A >0 r >0, let
P (X, t) == Ap(rx, )\"'_ler) and V) ,:= ALV (rx),
which solves

Otpa,r = DpX, + V- (Va,roa,r)-
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Scaling invariant classes for V in L°°-sense

Regualrity results
gualrity Continuity results

Scaling invariant classes of V(x) in L>-sense

® Consider
pr=0p"+V-(Vp) for m>1.

For given A >0 r > 0, let
P (X, t) == Ap(rx, )\"'_ler) and V) ,:= ALV (rx),

which solves

Otpa,r = DpX, + V- (Va,roa,r)-

® Note that p

IVarlipgey = A" 2 IV E) o gre)-

Critical case: p=d

If p < d, then1—d/p < 0. Boundeness breaks when r — 0.
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Scaling invariant classes for V in L°°-sense

Regualrity results
gualrity Continuity results

Scaling invariant classes of V(x, t) in L*°-sense

® Let
Va,r (X, 1) = AV (i, A1),

® Then we make an observation that

261 242

0 N 2
2, a2
1Va,rll 2y 260 = / Vi2(y,s)dy| = ds
Lt Lx —Al-m2 B, ’

_ _ 1 _1(2,d
_aem(i-gk) 2 z(a#az)”vHL%LmZ

t X
® Equivalently, we observe that

Ve 12 Lfél, where

for some k € [0,2/d).
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

In Kim-Zhang (SIMA, 2018), there are two results.
® time-independent V(x) € L%
e Holder regularity if
4
>d+ ——
P d+2

e counterexamples when p = d
Constructing a limit solution that breaks any modulus of continuity.

® time-dependent V/(x, t)

e Holder continuity if

4
VELgL?O for p>d+m
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

In Kim-Zhang (SIMA, 2018), there are two results.
® time-independent V(x) € L%

e Holder regularity if

4
>d+ ——
P +d+2

e counterexamples when p = d
Constructing a limit solution that breaks any modulus of continuity.

® time-dependent V/(x, t)

e Holder continuity if

4
VELgL?O for p>d+m

® Question marks on the range d < p < d + diﬁ
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

Holder regularity

Local Holder continuity Result (CHKK, 2017)

Let p be a nonnegative bounded weak solution under

VeL?®R, vvelLl® where —+ = =2-dx

d 2
G G
for some k € (0,2/d). Then u is locally Hlder continuous. Moreover, there exist
positive constants 8 € (0,1) and v depending on data (that is,

m,d, QT,Q/-I—7 || VHQal’Qaz) such that

m—1
Ixi = x| + llpllod |t — t2]*/2
disty (2 9pQ7)

lp(x1, t1) — p(x2, 22)] < Allplloo

® p-Laplace equation with lower order terms (DiBenedetto, 1983)
® G—Laplacian (H.-Lieberman, 2015)
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

® Recall
Ve 1230 §+ ~ =2—dk
for some k € [0,2/d).
® Subcritical Regime: in case k € (0,2/d)
e Holder continuity for a bounded weak solution
o Critical Regime: in case k = 0 where ¢1 € (1,00] and g2 € [d, >0)

e counterexample failing any modulus of continuity
e Uniform continuity under the divergence-free condition on V
e Not sure when §o = oo due to the regularity in terms of t

® Supercritical Regime: in case k < 0.

e counterexample of (—A)°u, s € (0, 1], Silvestre-Vicol-Zlatos (ARMA 2013)
® open question for porous medium type equation
e unknown whether or not there exist discontinuous solutions for m > 1
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

Subcritical regime: Holder continuity

Theorem H.-Zhang (NLA, to appear)

Let u be a non-negative bounded weak solution with m > 1 in Q; under B is in
subcritical regime. Then u is uniformly Holder continuous in Q1 .
2

® Let v = p™. Then we rewrite the equation to

OV = Av+V - (BVY™).
e DiBenedetto 1993 :  |b(x, t, u, Du)| < c|DulP + o(x,t), ¢ € LgLi
® Energy estimate: A;‘p =Q,N{(v—p++k); >0}

,LLIB sup / vi(2 dx+// |V (vy C)|2 dx dt
to<t<t JKy x {1} e
< Clpy — k)78 // V2|¢Ce| dx dt + c// V2 IV¢P dxdt
Qp Qp

2(1+k)

C/—" B 241 ,2 A t dt
q X‘?Z(Q ) k,p
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

Critical regime

Let
og(r) := sup B § o with Q, := K, X (—r ,0].
( ) (xp:t0) H Hqul L>2<q (((xo,to)+Q,) 101) " ( ]

Theorem H.-Zhang (NLA)

Suppose that B is divergence-free. Let p be a non-negative bounded weak solution
with m > 1 in Q;. Then p is uniformly continuous in Q1 depending on m, d, 41, G
2

and pg(r).

® From V - B =0, we are able to obtain local energy estimate.

® Roughly speaking, [ V(pB)p™ ~ [B-Vpp™ ~ [B-Vp"p ~e[|Vp"? + c(e) [|B|?p?

;L:ﬁ sup / vi(zdx+//|V(v+§)\2dxdt
tog<t<ty JKpx {t}

k? 2 2
<C—0w o| dx + Ck V¢|? dxd (4)
— (puy — k)P //V+>0|CC b+ //V+>o‘ I dht

—28 g2 2
+ C(p+ — k) HBHLialLiﬁz(QP) HV*“‘L?MZZ(Q,,)'
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Scaling invariant classes for V in L°°-sense

Regualrity results P
g Y Continuity results

Theorem H.-Zhang (NLA)

There exist sequences of vector fields {B,},, which are uniformly bounded in L(R)
and

0B,(r) == (sup) 1Bnll La((x,0)+@,) < w(r) for some modulus of continuity w,
X0,t0

along with sequences of uniformly bounded functions {un} in K1 which are stationary
solutions with B = Bj, such that, they do not share any common mode of continuity.

® The divergence free condition is essential, otherwise it fails uniform continuity.

@ sharp condition even for linear diffusion cases
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Introduction Scaling invariant classes for V in L9-sense, ¢ > 1
Regualrity resul Existence in Wasserstein spaces
Existence results Main existence results

Existence Results

e with Kyungkeun Kang (Yonsei Univ.) and Hwakil Kim (Hannam Univ.)
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Let us recall the condition

d 2
VelLaL? where —+ =<1
a @

® appears also for linear equations.
® so called Serrin conditions
e Considering Navier-Stokes equations
Otu+ (u-V)u— Au= —Vm,
V-u=0.
If ue LP(0, T; L)) for % + % <1, p €[2,00), then u is regular.
e by Prodi (1959) and Serrin (1962), independently.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Let us recall the condition

d 2
VelLaL? where —+ =<1
a @

® appears also for linear equations.
® so called Serrin conditions
e Considering Navier-Stokes equations

Otu+ (u-V)u— Au= —Vm,
V-u=0.

If ue LP(0, T; L)) for % + % <1, p €[2,00), then u is regular.
e by Prodi (1959) and Serrin (1962), independently.

® Anyway to find out connection of nonlinear factor and drift 7
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Scaling invariant classes for V in L9-sense, ¢ > 1.
Existence in Wasserstein spaces
Existence results Main existence results

® Let, forg>1and A >0,
ox(x, 1) = A79p(Ax, APt) and  Vi(x,t) = A®V(Ax, A7t),
where positive constants «, 3 to be determined later.

® The factor A9/9 is to preserve LY norm.
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Scaling invariant classes for V in L9-sense, ¢ > 1.
Existence in Wasserstein spaces
Existence results Main existence results

® Let, forg>1and A >0,
ox(x, 1) = A79p(Ax, APt) and  Vi(x,t) = A®V(Ax, A7t),

where positive constants «, 3 to be determined later.
® The factor A9/9 is to preserve LY norm.
® Then the PDE provides

md
/\d/q+[3pt _ /\T+2Apm + \d/atatly . (pV).

Then the equality % + 8= de +2= %’ + «a + 1 determines

d(m—1)

a=qmd+1l, B=qma¢+2, for qmqg:= 7
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Scaling invariant classes for V in L9-sense, ¢ > 1.
Existence in Wasserstein spaces
Existence results Main existence results

® Let, forg>1and A >0,
ox(x, 1) = A79p(Ax, APt) and  Vi(x,t) = A®V(Ax, A7t),
where positive constants «, 3 to be determined later.
® The factor A9/9 is to preserve LY norm.
® Then the PDE provides
md
/\d/q+5pt —\a +2Apm + \d/atatly . (pV).
Then the equality % + 8= de +2= %’ + «a + 1 determines
dim—1
a=Qqmd+1l, B=qmas+2, hrqmw:—L;—l
® With such « and 3, we observe the following, for g1, g2 > 0,

a_d_B
IVAGE Dl =278 [V(x, Ol

and then see the following relation

d d 2
a———ﬁ:o — —+M

=1+ Adm,d-
g g2 q1 q2
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Scaling invariant classes for V in L9-sense, ¢ > 1.

Existence in Wasserstein spaces

Existence results Main existence results

Scaling invariant classes in L9-sense

® Form>1land g>1, let

dim—1
dm,d ‘= ( )
q
@ Scaling invariant classes
S(Qly‘h) P V- ”VH h i
m,q = : LZIEqZ < oo where ™ +
® Sacling invariant norm
IVllggop 0 = 1Vl

® Note that

2+ dm,d

:1+Qm,d}~

Qm,d — 0 aseither m=1 or g=oo.
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Introduction Scaling invariant classes for V in L9-sense, ¢ > 1.
Regualrity results Existence in Wasserstein spaces
Existence results Main existence results

S = s{112) or s{ILe2)

IH+dm.a
2+4m,a

ol=

S (W‘Z}dqﬂ 57(73711192)

o a
Ltama  fd(m=1) o
d d

-

Figure 1. pairs (i, %) in Sy(g}dqz) in (1.4)

S. Hwang PMEs with drift



Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Existence of a linear type equation

Otp =V -(Vp—vp) with p(-0)= po.

Theorem (Kang-Kim, SIMA 19)
For ao > d, suppose that

po € PoRY) N LP(RY), forp> ——.
p—

And assume further that
d 2
ve PO, T; L%RY)) for — + 3 <1
«

Then, there exists an absolutely continuous curve p € AC(0, T; P2(R9)) such that p
solves

Otp=Dp—V -(vp) p(0) = po,
in the sense of distributions.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Wasserstein space - P»(RY)

® Po(RY) = {n € P(RY) : [pu [x]dps(x) < o0},
where P(R?) is the set of all Borel probability measures on R9.
® Given i, v € P2(RY), we define Wasserstein distance Wa(p, v) by
Wiu)i= min [ x— vy
ver(k,v) Jrd xRY
where v € (11, v) means v € P(RY x R?) such that
YA XRY) = p(A), (R x A) = v(A),
for any Borel subsets A C RY.
® (P2(R?), Wh): a complete separable metric space.
e Villani (2009), Ambrogio-Gigli-Savare (2008)
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Introduction Scaling invariant classes for V in L9-sense, ¢ > 1
Regualrity results Existence in Wasserstein spaces
Existence results Main existence results

Lie-Trotter formula and splitting method for ODE

® Splitting method for the ODE
X'(t) = (A+ B)x(t), x(0)=xo
we have

. At Bt\”N
x(t) = eA By = Jim (e nen ) X0-
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Introduction Scaling invariant classes for V in L9-sense, ¢ > 1
Regualrity result Existence in Wasserstein spaces
Existence results Main existence results

Lie-Trotter formula and splitting method for ODE
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Splitting method for linear type equation

v
pr:Ap+V~(VP):>pt:V~({TerV}p)

First, we define two flows ®f and ®, on P»(RY) as follows.
® Let O : [0,00) X P2 ac(RY) = P a2c(RY) be the gradient flow of the entropy

function F .i.e.
{ Or®e(t, p) = APE(t, p)
P£(0,p) = p.

® For given vector field v, let ¥, : [0,00) x [0,00) x RY i R? be the flow map
generated by the vector field. That is,

{ %T/J\/(S; t,x) = v(t,Yv(s; t, x))

Yu(s; s, x) = x.
We define ®, : [0, 00) x [0,00) X P2(R?) = P2(RY) be by
Sy (s;t,p) == Pu(s; t, )up.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Splitting method

Linear type equation

pr=Ap+V-(Vp)=>pr=V-({EJrV}p)

Porous medium type equation

vm
pt:Ap’"+V-(Vp)=>pr=V-({%JrV}p)

® a priori estimates, p-moment and speed estimates
® convergence of p™

® Aubin-Lions theorem, uniform Hdlder continuity upto t =0
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Summary of existence results

® For m>1, g > 1, let us denote
{0 € P(R) : po >0 and [|pollz(aey = 1}

® Further, let

d(g—1
1<p§pq::min{2,l+w}

dim—1)+gq
and, for (x)P = (1 + ‘X‘2)g,

{poEPp(Rd): po € P(RY) and /deo(x>pdx<oo}.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Summary of existence results

® For m>1, g > 1, let us denote
{0 € P(R) : po >0 and [|pollz(aey = 1}
® Further, let

d(q71)+q}

1<p< =min< 2,1+
P=Pa { dm—1)+gq

and, for (x)P = (1 + \x\2)g,
{po € Po(R?) : po € P(RY) and /dp0<x>p dx < oo}.
R

® Three types of initial data

I. po € Pp(RY) and Jgd polog po dx < oo, for 1 < p < p1.
Il. po € P(RY) and LI(RY), for g > 1.
. po € Pp(R?) and LI(RY), for g > 1and 1 < p < pq.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

us consider

the following equation for a non-negative function p : RY x [0, T] — R, d > 2, which
is given as

{ U=V VO i @ri=Rx o, T, (5)

where V is a vector field.
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Main Theorem I-(i)

letl<m<2andl<p<ps ::l+m. Suppose that

po € Pp(RY), and /]Rd po log po dx < oo. (6)

Moreover, assume that

2< < My, ifd>2,

v quqz) f
€ Sma C 2< < ny, ifd=2.

Then, there exists an absolutely continuous curve p € AC(0, T; P,(R%)) such that p(-,0) = po
which solves (5) in the sense of distribution, namely, for any ¢ € C(R? x [0, T)), satisfying

T ,
/0 /Rd {[8:p + Vo - VIp+ App™} dxdt = —/[Rd (-, 0)po dx. )

Furthermore, p satisfies

r m |2
sup / p (Jlog p| + (x)?) dx+// ’fo‘ dx dt
0<t<T JRY x {t} Qr
- v
I, (5
or \|I »
p=1

Wo(p(t),p(s)) < C(t—s) P, V O0<s<t<T, (10)
where the constant C = C(HVH$<‘71"72)’ Jzd (polog po + po(x)P) dx).
m,1

+\V\P> pdxdt < C

and
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces

Existence results Main existence results

Main Theorem I-(ii), divergence free case

Let m > 1. Assume

po € Pp(RY), and /d po log po dx < oo, (11)
R

and the divergence-free V (i.e., V - V = 0) satisfying

pim
Ve S(‘hﬂz) for P1 S q2 S #’
e pL < g < 2

Then the same conclusion holds as in above theorem.

S. Hwang PMEs with drift
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Introduction Scaling invariant classes for V in L9-sense, ¢ > 1

Regualrity results Existence in Wasserstein spaces
Existence results Main existence results
1 AR — cla1.92)
™y AB= 8"
14
(L 1
1id R(ABC): (q1 q2) satisfying (1.14).
24 A=(0,%), B=(3,0), C=(3,3
1 — 2—m)+d(m—1 1
2 g= (51, 5), b= (Bt ot
C
A
_____________ ’R(ABDE) (— E satisfying (1.18).
..... : __/14+d _14d _ 1+d
........ : Séqll,qz) = (57 2(2+d))’ = (o, m)
; ) 1+d 1) m—
Sf'(s,lfQQ) f= (0’ P1 ) i=( = <m ’ plm1
0 i : =
B 1 14dm-1 1 RV
2 T—a d

Figure 3-(i). (1.14) and (1.18) in Theorem 1.8 for d > 2
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

® Think of testing log p:
ptlogp = 0 (plog p) — potlogp = Ot (plog p — p),
V™V log p ~ |Vp™/2 ]2,

\Y m
VpViogp = Vp—p = VVp~ Vpl= 2Vpm/2,
P

° 1—% > 0 implies that 1 < m < 2.
® the p-entropy inequality:

/ p |log p| dxg/ plogpdx+/ p(x)P dx + c(d).
Rd Rd Rd
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

® Think of testing log p:
ptlogp = 0 (plog p) — potlogp = Ot (plog p — p),
V™V log p ~ |Vp™/2 ]2,

v m
VpViogp = Vp—p = VVp~ Vpl= 2Vpm/2,
P

° 1—% > 0 implies that 1 < m < 2.
® the p-entropy inequality:

/ p |log p| dxg/ plogpdx+/ p(x)P dx + c(d).
Rd Rd Rd

® divergence-free case
VpViegp = VVp~VVp

S. Hwang PMEs with drift



Introduction Scaling invariant classes for V in L9-sense, ¢ > 1.

Regualrity results Existence in Wasserstein spaces
Existence results Main existence results

1 AB »

P AB:S}?l1 qz), 1<mqg <2, and ma > 2.

A-E, f,i: same as in Figure 3-(i).

P (Mmol) moly g (g Ldmo)y g g

> prm > Srd(m—1) )
'R(ABFG): (H’ E) satisfying (1.18)

52(,?11,%) Slar: q2)

ma,1

S(qlqu)

my.1

B Lidm-1) 7
d

;
1 1+d(m-1)
2 a

Figure 3-(ii). (1.18) in Theorem 1.4 for d > 2
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Scaling invariant classes for V in L9-sense, ¢ > 1
Existence in Wasserstein spaces
Existence results Main existence results

Thank you for your attention!!

® The results hold for m = 1. Embedding property for t-direction.

® The scaling invariant classes can be replaced by sub-scaling cases

d 2
ng}éqz) = {V : ||V”L<71t»qz < o0 where L 4 2T dmd

<1+ qm7d}
a1 q2

® There are corresponding results for scaling invariant classes of V'V

- (&0 & d  2+qnm
Glia) = {V : HVVHL51752 < oo where — + —Jqu <
X\t

mq ¢ < 2+qm,d}
a1 qz

® Application: an repulsion type of Keller-Segel equations, which is given of the form
pr — Ap™ =V (pVe), c — Ac = p. (13)
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