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Porous medium equation with a drift
Applications

Porous medium equation with drifts

Consider a nonegative weak solution of

ρt!"#$
Time evolution

= ∆ρm
! "# $
Diffusion

+∇ · (Vρ)
! "# $

Drift

in ΩT (1)

Diffusion: ∆ρm ∼ ∇ ·
%
ρm−1∇ρ

&

Heat equation: m = 1

Degenerate (Porous media equations): m > 1, traffic jam

Singular (Fast diffusion equations): 0 < m < 1,
scattering or gathering a flock of birds

S. Hwang PMEs with drift



Introduction
Regualrity results
Existence results

Porous medium equation with a drift
Applications

Fluid dynamics

Drift-diffusion equations (Silvestre-Vicol-Zlatos, ARMA 2013)

∂tθ + u ·∇θ + (−∆)sθ = 0, with θ(0, ·) = θ0.

where s ∈ (0, 1], and u is a given divergence-free vector field.

Continuity results and counterexamples under various conditions on s and u

divergence-free drifts: importance due to incompressibility

surface quasi-deostrophic (SQG) model

the drift plays an important role in the well-posedness of the problem
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Porous medium equation with a drift
Applications

Keller-Segel Model Bacillus Subtilis

Keller-Segel model for the motion of swimming bacteria
(Chung-H.-Kang-Kim, JDE 2017)

Consider the following system
'
((()

(((*

∂tn −∆n1+α + u ·∇n = −∇ · (χ(c)nq∇c) ,

∂tc −∆c + u ·∇c = −k(c)n,

∂tu −∆u +∇p = −n∇φ,

∇ · u = 0

where α > 0, q ≥ 1, and

n : the density of bacteria,

c : the oxygen concentration,

u, p : the velocity vector of the fluid and associated pressure.
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the motion of swimming bacteria, Bacillus Subtilis

Let q = 1, and concentrate on the porous medium type equation

∂tn −∆n1+α + u ·∇n = −∇ · (χ(c)n∇c)

where

∆n1+α : diffusion, anticongestion effect,

u ·∇n : motion affected by the fluid,

∇ · (χ(c)n∇c) : motion of bacteria pursuing high oxygen.
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Porous medium equation with a drift
Applications

Degenerate diffusion-drift equations

ρt = ∆ρm +∇ · (V (x , t) ρ)

If m = 1, classical diffusion-drift equation.

V ∈ Lpt L
q
x : Ladyzhenskaya-Ural’ceva 1961, Lieberman 1996,

Nazarov-Ural’ceva 2009
Osada 1987 V ∈ L∞t (L∞x )−1

Zhang 2004, Friedlander-Vicol 2011 V ∈ L∞t BMO−1
x

Seregin-Silvestre-Sverak-Zlatos 2012
• divergence-free drift (incompressible flows)
Silvestre-Vicol-Zlatos 2013
• Fractional diffusion ((−∆)su) with divergence-free drift in 2-d

If V = 0, classical porous medium equation.

Vazquez 2007, DiBenedetto-Gianazza-Vespri 2012
With initially integrable data, unique nonnegative weak solutions exist.
Immediately becomes Hölder continuous for positive times.
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Regularity results:

What are the critical conditions on V ∈ LpxL
q
t regarding the continuity of a solution?

Kim-Zhang (SIMA, 2018)

Chung-H.-Kang-Kim (JDE, 2017)

H.-Zhang (to appear at NLA)

joint work with Kyungkeun Kang (Yonsei Univ.) and Yuming Paul Zhang (UCSD).
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Diffusion Vs. Drift
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Counterexamples

Consider ut = ∆um +∇ · (uV ), with u(·, 0) = u0. (2)

Loss of regularity (Kim-Zhang, SIMA 2018)

(a) Let d ≥ 2 and 1 ≤ p ≤ d . Then there exists a sequence of vector fields
{∇ΦA(x)}A∈N which are uniformly bounded in Lp(Rd ) such that the following
holds. Let uA solve (2) with V = ∇ΦA and with a smooth, compactly supported
initial data u0. Then

sup
x∈Rd ,t>0

uA(x , t) → ∞ as A → ∞.

(b) There exist a family of potentials ΦA such that ∇ΦA ∈ Ld (Rd ) and a family of
initial data uA0 which are uniformly bounded in L1 ∩ L∞ ∩ C∞ such that the

following holds: The solutions uA with V = ∇ΦA with initial data uA0 stays
uniformly bounded but lacks any uniform modulus of continuity as A → ∞.
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Scaling invariant classes of V (x) in L∞-sense

Consider
ρt = ∆ρm +∇ · (V ρ) for m ≥ 1.

For given λ > 0 r > 0, let

ρλ,r (x , t) := λ ρ(rx ,λm−1r2t) and Vλ,r := λm−1rV (rx),

which solves
∂tρλ,r = ∆ρmλ,r +∇ · (Vλ,rρλ,r ).

Note that

‖Vλ,r (·)‖Lp(Rd ) = λm−1r
1− d

p ‖V (·)‖Lp(Rd ).

Critical case: p = d

If p < d , then 1− d/p < 0. Boundeness breaks when r → 0.
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Scaling invariant classes of V (x , t) in L∞-sense

Let
Vλ,r (x , t) = λ1−mrV (rx ,λ1−mr2t).

Then we make an observation that

‖Vλ,r‖L2q̂1t L
2q̂2
x

=

+

,
ˆ 0

−λ1−mr2

-
ˆ

Br

V 2q̂2
λ,r (y , s) dy

. 2q̂1
2q̂2

ds

/

0

1
2q̂2

= λ
(1−m)

!
1− 1

2q̂1

"

r
1− 1

2

!
2
q̂1

+ d
q̂2

"

‖V ‖
L
2q̂1
t L

2q̂2
x

Equivalently, we observe that

V ∈ L2q̂2x L2q̂1t , where
d

q̂2
+

2

q̂1
= 2− dκ

for some κ ∈ [0, 2/d).
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In Kim-Zhang (SIMA, 2018), there are two results.

time-independent V (x) ∈ Lpx

Hölder regularity if

p > d +
4

d + 2

counterexamples when p = d
Constructing a limit solution that breaks any modulus of continuity.

time-dependent V (x , t)

Hölder continuity if

V ∈ LpxL
∞
t for p > d +

4

d + 2

Question marks on the range d < p ≤ d + 4
d+2
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Hölder regularity

Local Hölder continuity Result (CHKK, 2017)

Let ρ be a nonnegative bounded weak solution under

V ∈ L2q̂1,2q̂2x,t , ∇V ∈ Lq̂1,q̂2x,t where
d

q̂1
+

2

q̂2
= 2− dκ

for some κ ∈ (0, 2/d). Then u is locally Hölder continuous. Moreover, there exist
positive constants β ∈ (0, 1) and γ depending on data (that is,
m, d ,ΩT ,Ω

′
T , ‖V ‖2q̂1,2q̂2 ) such that

|ρ(x1, t1)− ρ(x2, t2)| ≤ γ‖ρ‖∞

+

, |x1 − x2|+ ‖ρ‖
m−1
2∞ |t1 − t2|1/2

distp(Ω′
T ; ∂pΩT )

/

0
β

.

p-Laplace equation with lower order terms (DiBenedetto, 1983)

G−Laplacian (H.-Lieberman, 2015)
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Recall

V ∈ L2q̂2x L2q̂1t ,
d

q̂2
+

2

q̂1
= 2− dκ

for some κ ∈ [0, 2/d).

Subcritical Regime: in case κ ∈ (0, 2/d)

Hölder continuity for a bounded weak solution

Critical Regime: in case κ = 0 where q̂1 ∈ (1,∞] and q̂2 ∈ [d ,∞)

counterexample failing any modulus of continuity
Uniform continuity under the divergence-free condition on V
Not sure when q̂2 = ∞ due to the regularity in terms of t

Supercritical Regime: in case κ < 0.

counterexample of (−∆)su, s ∈ (0, 1], Silvestre-Vicol-Zlatos (ARMA 2013)
open question for porous medium type equation
unknown whether or not there exist discontinuous solutions for m > 1
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Subcritical regime: Hölder continuity

Theorem H.-Zhang (NLA, to appear)

Let u be a non-negative bounded weak solution with m ≥ 1 in Q1 under B is in
subcritical regime. Then u is uniformly Hölder continuous in Q 1

2
.

Let v = ρm. Then we rewrite the equation to

∂tv
1/m = ∆v +∇ · (B v1/m).

DiBenedetto 1993 : |b(x , t, u,Du)| ≤ c|Du|p + ϕ(x , t), ϕ ∈ Lq̂xL
r̂
t

Energy estimate: A+
k,ρ := Qρ ∩ {(v − µ+ + k)+ > 0}

µ
−β
+ sup

t0≤t≤t1

ˆ

Kρ×{t}
v2
+ζ

2 dx +

¨

Qρ

|∇(v+ ζ)|2 dx dt

≤ C(µ+ − k)−β
¨

Qρ

v2
+|ζζt | dx dt + C

¨

Qρ

v2
+|∇ζ|2 dx dt

+ Cµ
2/m
+ ‖B‖2

L
2q̂1
t L

2q̂2
x (Qρ)

!
ˆ t1

t0

"
A+
k,ρ(t)

# q1
q2 dt

$ 2(1+κ)
q1

.

(3)
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Critical regime

Let
"B (r) := sup

(x0,t0)
‖B‖

L
2q̂1
t L

2q̂2
x (((x0,t0)+Qr )∩Q1)

with Qr := Kr × (−r2, 0].

Theorem H.-Zhang (NLA)

Suppose that B is divergence-free. Let ρ be a non-negative bounded weak solution
with m ≥ 1 in Q1. Then ρ is uniformly continuous in Q 1

2
depending on m, d , q̂1, q̂2

and ,B(r).

From ∇ · B = 0, we are able to obtain local energy estimate.

Roughly speaking,
´

∇(ρB)ρm ∼
´

B ·∇ρ ρm ∼
´

B ·∇ρmρ ∼ ε
´

|∇ρm|2 + c(ε)
´

|B|2ρ2

µ
−β
+ sup

t0≤t≤t1

ˆ

Kρ×{t}
v2
+ζ

2 dx +

¨

|∇(v+ ζ)|2 dxdt

≤ C
k2

(µ+ − k)β

¨

v+>0

|ζζt | dx + Ck2
¨

v+>0

|∇ζ|2 dxdt

+ C(µ+ − k)−2β‖B‖2

L
2q̂1
t L

2q̂2
x (Qρ)

‖v+ζ‖2

L
q1
t L

q2
x (Qρ)

.

(4)
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Theorem H.-Zhang (NLA)

There exist sequences of vector fields {Bn}n, which are uniformly bounded in Ld (R)
and

,Bn (r) := sup
(x0,t0)

‖Bn‖Ld ((x0,t0)+Qr )
≤ ω(r) for some modulus of continuity ω,

along with sequences of uniformly bounded functions {un} in K1 which are stationary
solutions with B = Bn such that, they do not share any common mode of continuity.

The divergence free condition is essential, otherwise it fails uniform continuity.

sharp condition even for linear diffusion cases
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Existence Results

with Kyungkeun Kang (Yonsei Univ.) and Hwakil Kim (Hannam Univ.)
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Let us recall the condition

V ∈ Lq1x Lq2t where
d

q1
+

2

q2
≤ 1

appears also for linear equations.

so called Serrin conditions

Considering Navier-Stokes equations
1
∂tu + (u ·∇)u −∆u = −∇π,

∇ · u = 0.

If u ∈ Lp (0,T ; Lq(Ω)) for 2
p
+ 3

q
≤ 1, p ∈ [2,∞), then u is regular.

by Prodi (1959) and Serrin (1962), independently.

Anyway to find out connection of nonlinear factor and drift ?
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Let, for q ≥ 1 and λ > 0,

ρλ(x , t) = λd/qρ(λx ,λβt) and Vλ(x , t) = λαV (λx ,λβt),

where positive constants α,β to be determined later.

The factor λd/q is to preserve Lqx norm.

Then the PDE provides

λd/q+βρt = λ
md
q

+2
∆ρm + λd/q+α+1∇ · (ρV ).

Then the equality d
q
+ β = md

q
+ 2 = d

q
+ α+ 1 determines

α = qm,d + 1, β = qm,d + 2, for qm,d :=
d(m − 1)

q
.

With such α and β, we observe the following, for q1, q2 > 0,

‖Vλ(x , t)‖Lq1,q2x,t
= λ

α− d
q1

− β
q2 ‖V (x , t)‖

L
q1,q2
x,t

,

and then see the following relation

α−
d

q1
−

β

q2
= 0 ⇐⇒

d

q1
+

2 + qm,d

q2
= 1 + qm,d .
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Scaling invariant classes in Lq-sense

For m ≥ 1 and q ≥ 1, let

qm,d :=
d(m − 1)

q
.

Scaling invariant classes

S(q1,q2)
m,q :=

2
V : ‖V ‖

L
q1,q2
x,t

< ∞ where
d

q1
+

2 + qm,d

q2
= 1 + qm,d

3
.

Sacling invariant norm
‖V ‖

S(q1,q2)
m,q

:= ‖V ‖
L
q1,q2
x,t

Note that
qm,d → 0 as either m = 1, or q = ∞.
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Existence of a linear type equation

∂tρ = ∇ · (∇ρ− vρ) with ρ(·, 0) = ρ0.

Theorem (Kang-Kim, SIMA 19)

For α > d , suppose that

ρ0 ∈ P2(Rd ) ∩ Lp(Rd ), for p ≥
α

α− 2
.

And assume further that

v ∈ Lβ(0,T ; Lα(Rd )) for
d

α
+

2

β
≤ 1.

Then, there exists an absolutely continuous curve ρ ∈ AC(0,T ;P2(Rd )) such that ρ
solves

∂tρ = ∆ρ−∇ · (vρ) ρ(0) = ρ0,

in the sense of distributions.
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Wasserstein space - P2(Rd)

P2(Rd ) := {µ ∈ P(Rd ) :
´

Rd |x |2dµ(x) < ∞},
where P(Rd ) is the set of all Borel probability measures on Rd .

Given µ, ν ∈ P2(Rd ), we define Wasserstein distance W2(µ, ν) by

W 2
2 (µ, ν) := min

γ∈Γ(µ,ν)

ˆ

Rd×Rd
|x − y |2dγ(x , y),

where γ ∈ Γ(µ, ν) means γ ∈ P(Rd × Rd ) such that

γ(A× Rd ) = µ(A), γ(Rd × A) = ν(A),

for any Borel subsets A ⊂ Rd .

(P2(Rd ),W2): a complete separable metric space.

Villani (2009), Ambrogio-Gigli-Savare (2008)
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Lie-Trotter formula and splitting method for ODE

Splitting method for the ODE

x ′(t) = (A+ B)x(t), x(0) = x0

we have

x(t) = e(A+B)tx0 = lim
n→∞

4
e

At
n e

Bt
n

5n
x0.
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Splitting method for linear type equation

ρt = ∆ρ+∇ · (vρ) =⇒ ρt = ∇ ·
62

∇ρ

ρ
+ v

3
ρ

7

First, we define two flows ΦF and Φv on P2(Rd ) as follows.

Let ΦF : [0,∞)× P2,ac (Rd ) /→ P2,ac (Rd ) be the gradient flow of the entropy
function F .i.e. 2

∂tΦF (t, ρ) = ∆ΦF (t, ρ)
ΦF (0, ρ) = ρ.

For given vector field v , let ψv : [0,∞)× [0,∞)× Rd /→ Rd be the flow map
generated by the vector field. That is,

2
d
dt
ψv (s; t, x) = v(t,ψv (s; t, x))

ψv (s; s, x) = x .

We define Φv : [0,∞)× [0,∞)× P2(Rd ) /→ P2(Rd ) be by

Φv (s; t, ρ) := ψv (s; t, ·)#ρ.
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Splitting method

Linear type equation

ρt = ∆ρ+∇ · (vρ) =⇒ ρt = ∇ ·
62

∇ρ

ρ
+ v

3
ρ

7

Porous medium type equation

ρt = ∆ρm +∇ · (Vρ) =⇒ ρt = ∇ ·
62

∇ρm

ρ
+ V

3
ρ

7

a priori estimates, p-moment and speed estimates

convergence of ρm

Aubin-Lions theorem, uniform Hölder continuity upto t = 0
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Summary of existence results

For m > 1, q ≥ 1, let us denote
8
ρ0 ∈ P(Rd ) : ρ0 ≥ 0 and ‖ρ0‖L1x (Rd ) = 1

9
,

Further, let

1 < p ≤ pq := min

2
2, 1 +

d(q − 1) + q

d(m − 1) + q

3

and, for 〈x〉p =
%
1 + |x |2

& p
2 ,

2
ρ0 ∈ Pp(Rd ) : ρ0 ∈ P(Rd ) and

ˆ

Rd
ρ0〈x〉p dx < ∞

3
.

Three types of initial data

I. ρ0 ∈ Pp(Rd ) and
´

Rd ρ0 log ρ0 dx < ∞, for 1 < p ≤ p1.

II. ρ0 ∈ P(Rd ) and Lqx (Rd ), for q > 1.
III. ρ0 ∈ Pp(Rd ) and Lqx (Rd ), for q > 1 and 1 < p ≤ pq .
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Let us consider

the following equation for a non-negative function ρ : Rd × [0,T ] /→ R, d ≥ 2, which
is given as 2

∂tρ = ∇ · (∇ρm − Vρ)
ρ(·, 0) = ρ0

in QT := Rd × [0, T ], (5)

where V is a vector field.
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Main Theorem I-(i)

Let 1 < m ≤ 2 and 1 < p ≤ p1 := 1 + 1
d(m−1)+1 . Suppose that

ρ0 ∈ Pp(Rd ), and

ˆ

Rd
ρ0 log ρ0 dx < ∞. (6)

Moreover, assume that

V ∈ S(q1,q2)
m,1 for

%
2 ≤ q2 ≤ m

m−1 , if d > 2,

2 ≤ q2 < m
m−1 , if d = 2.

(7)

Then, there exists an absolutely continuous curve ρ ∈ AC(0,T ;Pp(Rd )) such that ρ(·, 0) = ρ0

which solves (5) in the sense of distribution, namely, for any ϕ ∈ C∞
c (Rd × [0,T )), satisfying

ˆ T

0

ˆ

Rd

&
[∂tϕ + ∇ϕ · V ] ρ + ∆ϕρ

m' dx dt = −
ˆ

Rd
ϕ(·, 0)ρ0 dx. (8)

Furthermore, ρ satisfies

sup
0≤t≤T

ˆ

Rd×{t}
ρ
(
|log ρ| + 〈x〉p

)
dx +

¨

QT

***∇ρ
m
2

***
2
dx dt

+

¨

QT

+****
∇ρm

ρ

****
p

+ |V |p
,

ρ dx dt ≤ C

(9)

and

Wp(ρ(t), ρ(s)) ≤ C(t − s)
p−1
p , ∀ 0 ≤ s ≤ t ≤ T , (10)

where the constant C = C(‖V‖
S(q1,q2)
m,1

,
´

Rd (ρ0 log ρ0 + ρ0〈x〉p) dx).
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Main Theorem I-(ii), divergence free case

Let m > 1. Assume

ρ0 ∈ Pp(Rd ), and

ˆ

Rd
ρ0 log ρ0 dx < ∞, (11)

and the divergence-free V (i.e., ∇ · V = 0) satisfying

V ∈ S(q1,q2)
m,1 for

1
p1 ≤ q2 ≤ p1m

m−1
, if d > 2,

p1 ≤ q2 < p1m
m−1

, if d = 2.
(12)

Then the same conclusion holds as in above theorem.
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Think of testing log ρ:

ρt log ρ = ∂t (ρ log ρ)− ρ∂t log ρ = ∂t (ρ log ρ− ρ) ,

∇ρm∇ log ρ ∼ |∇ρm/2|2,

Vρ∇logρ = Vρ
∇ρ

ρ
= V∇ρ ∼ Vρ1−

m
2 ∇ρm/2.

1− m
2
≥ 0 implies that 1 < m ≤ 2.

the p-entropy inequality:
ˆ

Rd
ρ |log ρ| dx ≤

ˆ

Rd
ρ log ρ dx +

ˆ

Rd
ρ〈x〉p dx + c(d).

divergence-free case
Vρ∇logρ = V∇ρ ∼ ∇Vρ
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Thank you for your attention!!

The results hold for m = 1. Embedding property for t-direction.

The scaling invariant classes can be replaced by sub-scaling cases

S
(q1,q2)
m,q :=

-
V : ‖V‖

L
q1,q2
x,t

< ∞ where
d

q1
+

2 + qm,d

q2
≤ 1 + qm,d

.

There are corresponding results for scaling invariant classes of ∇V

S̃
(q̃1,q̃2)
m,q :=

-
V : ‖∇V‖

L
q̃1,q̃2
x,t

< ∞ where
d

q̃1
+

2 + qm,d

q̃2
≤ 2 + qm,d

.

Application: an repulsion type of Keller-Segel equations, which is given of the form

ρt − ∆ρ
m = ∇ (ρ∇c) , ct − ∆c = ρ. (13)
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